-
Notifications
You must be signed in to change notification settings - Fork 0
/
HogFeatureextract.py
156 lines (123 loc) · 3.6 KB
/
HogFeatureextract.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
import os, sys
import matplotlib.pyplot as plt
import matplotlib.image as iread
import tensorflow as tf
from PIL import Image
import numpy as np
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
cwd = os.getcwd()
#for sliding window for calculating histogram
#stide = 50, incr stands for this
cell = [8, 8]
incr = [8,8]
bin_num = 8
im_size = [32,32]
#image path must be wrt current working directory
def create_array(image_path):
image = Image.open(os.path.join(cwd,image_path)).convert('L')
image_array = np.asarray(image,dtype=float)
return image_array
#uses a [-1 0 1 kernel]
def create_grad_array(image_array):
image_array = Image.fromarray(image_array)
if not image_array.size == im_size:
image_array = image_array.resize(im_size, resample=Image.BICUBIC)
image_array = np.asarray(image_array,dtype=float)
# gamma correction
image_array = (image_array)**2.5
# local contrast normalisation
image_array = (image_array-np.mean(image_array))/np.std(image_array)
max_h = 32
max_w = 32
grad = np.zeros([max_h, max_w])
mag = np.zeros([max_h, max_w])
for h,row in enumerate(image_array):
for w, val in enumerate(row):
if h-1>=0 and w-1>=0 and h+1<max_h and w+1<max_w:
dy = image_array[h+1][w]-image_array[h-1][w]
dx = row[w+1]-row[w-1]+0.0001
grad[h][w] = np.arctan(dy/dx)*(180/np.pi)
if grad[h][w]<0:
grad[h][w] += 180
mag[h][w] = np.sqrt(dy*dy+dx*dx)
return grad,mag
def write_hog_file(filename, final_array):
print('Saving '+filename+' ........\n')
np.savetxt(filename,final_array)
def read_hog_file(filename):
return np.loadtxt(filename)
def calculate_histogram(array,weights):
bins_range = (0, 180)
bins = bin_num
hist,_ = np.histogram(array,bins=bins,range=bins_range,weights=weights)
return hist
def create_hog_features(grad_array,mag_array):
max_h = int(((grad_array.shape[0]-cell[0])/incr[0])+1)
max_w = int(((grad_array.shape[1]-cell[1])/incr[1])+1)
cell_array = []
w = 0
h = 0
i = 0
j = 0
#Creating 8X8 cells
while i<max_h:
w = 0
j = 0
while j<max_w:
for_hist = grad_array[h:h+cell[0],w:w+cell[1]]
for_wght = mag_array[h:h+cell[0],w:w+cell[1]]
val = calculate_histogram(for_hist,for_wght)
cell_array.append(val)
j += 1
w += incr[1]
i += 1
h += incr[0]
cell_array = np.reshape(cell_array,(max_h, max_w, bin_num))
#normalising blocks of cells
block = [2,2]
#here increment is 1
max_h = int((max_h-block[0])+1)
max_w = int((max_w-block[1])+1)
block_list = []
w = 0
h = 0
i = 0
j = 0
while i<max_h:
w = 0
j = 0
while j<max_w:
for_norm = cell_array[h:h+block[0],w:w+block[1]]
mag = np.linalg.norm(for_norm)
arr_list = (for_norm/mag).flatten().tolist()
block_list += arr_list
j += 1
w += 1
i += 1
h += 1
#returns a vextor array list of 288 elements
return block_list
#image_array must be an array
#returns a 288 features vector from image array
def apply_hog(image_array):
gradient,magnitude = create_grad_array(image_array)
hog_features = create_hog_features(gradient,magnitude)
hog_features = np.asarray(hog_features,dtype=float)
hog_features = np.expand_dims(hog_features,axis=0)
return hog_features
#path must be image path
#returns final features array from image_path
def hog_from_path(image_path):
image_array = create_array(image_path)
final_array = apply_hog(image_array)
return final_array
#Creates hog files
def create_hog_file(image_path,save_path):
image_array = create_array(image_path)
final_array = apply_hog(image_array)
write_hog_file(save_path,final_array)
if __name__ == '__main__':
create_hog_file('logo.jpg','logo.txt')
mg = read_hog_file('logo.txt')
print(mg)
print(mg.shape)