-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcompute_ECE.py
669 lines (542 loc) · 23.6 KB
/
compute_ECE.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
from copy import deepcopy
from PIL import Image
import matplotlib.pyplot as plt
import warnings
from sklearn.metrics import average_precision_score
from sklearn.metrics import precision_recall_curve
from sklearn import metrics
from tqdm import tqdm
import argparse
from mmcv import Config, DictAction
import os.path
import mmcv
import numpy as np
import torch
from dywsss.tool import pyutils, imutils
import dywsss.tool.data
from torchvision import transforms
from torch.utils.data import DataLoader
from torch.backends import cudnn
from dywsss.tool.torch_utils import *
import timm
from ml_metric import Accuracy, F1Measure, F1Measure_sklearn, ECE_loss
cudnn.enabled = True
categories = ['aeroplane', 'bicycle', 'bird', 'boat', 'bottle', 'bus', 'car', 'cat', 'chair', 'cow',
'diningtable', 'dog', 'horse', 'motorbike', 'person', 'pottedplant', 'sheep', 'sofa', 'train', 'tvmonitor']
def average_performance(pred, target, thr=None, k=None):
"""Calculate CP, CR, CF1, OP, OR, OF1, where C stands for per-class
average, O stands for overall average, P stands for precision, R stands for
recall and F1 stands for F1-score.
Args:
pred (torch.Tensor | np.ndarray): The model prediction with shape
(N, C), where C is the number of classes.
target (torch.Tensor | np.ndarray): The target of each prediction with
shape (N, C), where C is the number of classes. 1 stands for
positive examples, 0 stands for negative examples and -1 stands for
difficult examples.
thr (float): The confidence threshold. Defaults to None.
k (int): Top-k performance. Note that if thr and k are both given, k
will be ignored. Defaults to None.
Returns:
tuple: (CP, CR, CF1, OP, OR, OF1)
"""
if isinstance(pred, torch.Tensor) and isinstance(target, torch.Tensor):
pred = pred.detach().cpu().numpy()
target = target.detach().cpu().numpy()
elif not (isinstance(pred, np.ndarray) and isinstance(target, np.ndarray)):
raise TypeError('pred and target should both be torch.Tensor or'
'np.ndarray')
if thr is None and k is None:
thr = 0.5
warnings.warn('Neither thr nor k is given, set thr as 0.5 by '
'default.')
elif thr is not None and k is not None:
warnings.warn('Both thr and k are given, use threshold in favor of '
'top-k.')
assert pred.shape == \
target.shape, 'pred and target should be in the same shape.'
eps = np.finfo(np.float32).eps
target[target == -1] = 0
if thr is not None:
# a label is predicted positive if the confidence is no lower than thr
pos_inds = pred >= thr
else:
# top-k labels will be predicted positive for any example
sort_inds = np.argsort(-pred, axis=1)
sort_inds_ = sort_inds[:, :k]
inds = np.indices(sort_inds_.shape)
pos_inds = np.zeros_like(pred)
pos_inds[inds[0], sort_inds_] = 1
tp = (pos_inds * target) == 1
fp = (pos_inds * (1 - target)) == 1
fn = ((1 - pos_inds) * target) == 1
precision_class = tp.sum(axis=0) / np.maximum(
tp.sum(axis=0) + fp.sum(axis=0), eps)
recall_class = tp.sum(axis=0) / np.maximum(
tp.sum(axis=0) + fn.sum(axis=0), eps)
CP = precision_class.mean() * 100.0
CR = recall_class.mean() * 100.0
CF1 = 2 * CP * CR / np.maximum(CP + CR, eps)
OP = tp.sum() / np.maximum(tp.sum() + fp.sum(), eps) * 100.0
OR = tp.sum() / np.maximum(tp.sum() + fn.sum(), eps) * 100.0
OF1 = 2 * OP * OR / np.maximum(OP + OR, eps)
return CP, CR, CF1, OP, OR, OF1
def average_precision(pred, target):
r"""Calculate the average precision for a single class.
AP summarizes a precision-recall curve as the weighted mean of maximum
precisions obtained for any r'>r, where r is the recall:
.. math::
\text{AP} = \sum_n (R_n - R_{n-1}) P_n
Note that no approximation is involved since the curve is piecewise
constant.
Args:
pred (np.ndarray): The model prediction with shape (N, ).
target (np.ndarray): The target of each prediction with shape (N, ).
Returns:
float: a single float as average precision value.
"""
eps = np.finfo(np.float32).eps
# sort examples
sort_inds = np.argsort(-pred)
sort_target = target[sort_inds]
# count true positive examples
pos_inds = sort_target == 1
tp = np.cumsum(pos_inds)
total_pos = tp[-1]
# count not difficult examples
pn_inds = sort_target != -1
pn = np.cumsum(pn_inds)
tp[np.logical_not(pos_inds)] = 0
precision = tp / np.maximum(pn, eps)
ap = np.sum(precision) / np.maximum(total_pos, eps)
return ap
# from mmcls
def mAP(pred, target):
"""Calculate the mean average precision with respect of classes.
Args:
pred (torch.Tensor | np.ndarray): The model prediction with shape
(N, C), where C is the number of classes.
target (torch.Tensor | np.ndarray): The target of each prediction with
shape (N, C), where C is the number of classes. 1 stands for
positive examples, 0 stands for negative examples and -1 stands for
difficult examples.
Returns:
float: A single float as mAP value.
"""
if isinstance(pred, torch.Tensor) and isinstance(target, torch.Tensor):
pred = pred.detach().cpu().numpy()
target = target.detach().cpu().numpy()
elif not (isinstance(pred, np.ndarray) and isinstance(target, np.ndarray)):
raise TypeError('pred and target should both be torch.Tensor or'
'np.ndarray')
assert pred.shape == \
target.shape, 'pred and target should be in the same shape.'
num_classes = pred.shape[1]
ap = np.zeros(num_classes)
# exist_classes = range(num_classes)
label_exist = np.where(pred > 0.5, 1, 0).sum(0) + target.sum(0)
# exist_classes = np.argwhere(label_exist > 0)[0]
exist_classes = (label_exist > 0).nonzero()[0].tolist()
# print(f'num_exist_classes is {len(exist_classes)}, exist_classes is {exist_classes}')
# exist_classes = pass
for k in exist_classes:
ap[k] = average_precision(pred[:, k], target[:, k])
mean_ap = ap.mean() * 100.
return mean_ap
def Average_Precision(pred, target):
N = len(target)
for i in range(N):
if max(target[i]) == 0 or min(target[i]) == 1:
pass
precision = 0
for i in range(N):
index = np.where(target[i] == 1)[0]
score = pred[i][index]
score = sorted(score)
score_all = sorted(pred[i])
precision_tmp = 0
for item in score:
tmp1 = score.index(item)
tmp1 = len(score) - tmp1
tmp2 = score_all.index(item)
tmp2 = len(score_all) - tmp2
precision_tmp += tmp1 / tmp2
precision += precision_tmp / len(score)
Average_Precision = precision / N
return Average_Precision
def mean_avg_precision(pred, target):
meanAP = metrics.average_precision_score(
target, pred, average='macro', pos_label=1)
return meanAP
class Normalize():
def __init__(self, mean=(0.485, 0.456, 0.406), std=(0.229, 0.224, 0.225)):
self.mean = mean
self.std = std
def __call__(self, img):
imgarr = np.asarray(img)
proc_img = np.empty_like(imgarr, np.float32)
proc_img[..., 0] = (imgarr[..., 0] / 255. - self.mean[0]) / self.std[0]
proc_img[..., 1] = (imgarr[..., 1] / 255. - self.mean[1]) / self.std[1]
proc_img[..., 2] = (imgarr[..., 2] / 255. - self.mean[2]) / self.std[2]
return proc_img
def analyse_bin_10(prediction_batch, labels_batch):
debug = 1
for idx in range(labels_batch.shape[0]):
y = np.argsort(prediction_batch[idx])[-1]
x = np.sort(prediction_batch[idx])[-1]
label = (labels_batch[idx] == 1).nonzero(as_tuple=True)[0]
# Multi-label ECE
def compute_Conf_ECE(args, dir_score, num_bin, metric_func, note):
df_score = pd.read_csv(dir_score)
# sort by confidence
df_score.sort_values(by=['confidence'], inplace=True)
conf_score = df_score['confidence'].to_list()
prediction_all = torch.randn(0)
labels_all = torch.randn(0)
perfermance_bins = []
count_bins = []
images_list_bins = []
# mAP_function = mean_avg_precision
# mAP_function = Average_Precision
model = timm.create_model(args.network, pretrained=True, num_classes=20)
model.load_state_dict(torch.load(args.weights))
print(f'Loading weights from {args.weights}')
print('\nvalidating ... ', flush=True, end='')
# devide miou_score to num_bin bins
each_bin = 1/num_bin
for bin in tqdm(range(num_bin)):
bin_lower = bin * each_bin
bin_upper = (bin + 1) * each_bin
# find the name_images in bin
idx_in_bin = (np.array(conf_score) <= bin_upper) * \
(np.array(conf_score) >= bin_lower)
img_name_list_in_bin = np.array(
df_score['name_image'].tolist())[idx_in_bin]
mIoU_in_bin = np.array(df_score['confidence'].tolist())[idx_in_bin]
images_list_bins.append(img_name_list_in_bin)
count_bins.append(len(img_name_list_in_bin))
# print(f'In [{bin_lower, bin_upper}] bin have {len(img_name_list_in_bin)} samples')
normalize = Normalize()
val_dataset = dywsss.tool.data.VOC12ClsDataset(
img_name_list_path='',
img_name_list=img_name_list_in_bin,
voc12_root=args.voc12_root,
transform=transforms.Compose([
np.asarray,
normalize,
imutils.CenterCrop(args.crop_size),
imutils.HWC_to_CHW,
torch.from_numpy,
])
)
val_data_loader = DataLoader(
val_dataset,
batch_size=args.batch_size,
shuffle=False,
num_workers=args.num_workers,
pin_memory=True,
drop_last=False
)
model.eval()
model = model.cuda()
valid_dict = {}
count = 0
prediction_batch = torch.randn(0)
labels_batch = torch.randn(0)
with torch.no_grad():
for pack in val_data_loader:
names = pack[0]
imgs = pack[1].cuda(non_blocking=True)
labels = pack[2].cuda(non_blocking=True)
x = model(imgs)
prediction = torch.sigmoid(x)
prediction_batch = torch.cat(
(prediction_batch, prediction.cpu()), 0)
labels_batch = torch.cat((labels_batch, labels.cpu()), 0)
# visualization
case_idx = 4
try:
case_show(args, names[case_idx], img=imgs[case_idx], label=labels[case_idx], prediction=prediction[case_idx],
mIoU=mIoU_in_bin[case_idx], bin=bin,
dir_save=f'Fig/fig_ECE/{args.session_name}/case_show_batch_{case_idx}')
except Exception as e:
print(f'case show error! {e}')
prediction_all = torch.cat((prediction_all, prediction_batch.cpu()), 0)
labels_all = torch.cat((labels_all, labels_batch.cpu()), 0)
# perfermance_bin = metric_func(pred=prediction_batch, target=labels_batch)
try:
# compute mAP pred, target
perfermance_bin = metric_func(
pred=prediction_batch, target=labels_batch)
except:
perfermance_bin = 0
perfermance_bins.append(perfermance_bin)
perfermance_overall = metric_func(pred=deepcopy(
prediction_all), target=deepcopy(labels_all))
ML_ECE = ECE_loss(pred=deepcopy(prediction_all), target=deepcopy(
labels_all), num_bin=num_bin, network=args.fignote, save_path=f'Fig/fig_ECE/{args.session_name}')
return perfermance_bins, count_bins, images_list_bins, perfermance_overall, ML_ECE
def compute_CAM_ECE(args, dir_score, num_bin):
df_score = pd.read_csv(dir_score)
df_score.sort_values(by=['miou'], inplace=True)
miou_score = df_score['miou'].to_list()
prediction_all = torch.randn(0)
labels_all = torch.randn(0)
mAP_bins = []
count_bins = []
images_list_bins = []
# mAP_function = mean_avg_precision
mAP_function = mAP
# mAP_function = Average_Precision
model = timm.create_model(args.network, pretrained=True, num_classes=20)
model.load_state_dict(torch.load(args.weights))
print(f'Loading weights from {args.weights}')
print('\nvalidating ... ', flush=True, end='')
each_bin = 1/num_bin
for bin in range(num_bin):
bin_lower = bin * each_bin
bin_upper = (bin + 1) * each_bin
idx_in_bin = (np.array(miou_score) <= bin_upper) * \
(np.array(miou_score) >= bin_lower)
img_name_list_in_bin = np.array(
df_score['name_image'].tolist())[idx_in_bin]
mIoU_in_bin = np.array(df_score['miou'].tolist())[idx_in_bin]
images_list_bins.append(img_name_list_in_bin)
count_bins.append(len(img_name_list_in_bin))
normalize = Normalize()
val_dataset = dywsss.tool.data.VOC12ClsDataset(
img_name_list_path='',
img_name_list=img_name_list_in_bin,
voc12_root=args.voc12_root,
transform=transforms.Compose([
np.asarray,
normalize,
imutils.CenterCrop(args.crop_size),
imutils.HWC_to_CHW,
torch.from_numpy,
])
)
val_data_loader = DataLoader(
val_dataset,
batch_size=args.batch_size,
shuffle=False,
num_workers=args.num_workers,
pin_memory=True,
drop_last=False
)
model.eval()
model = model.cuda()
valid_dict = {}
count = 0
prediction_batch = torch.randn(0)
labels_batch = torch.randn(0)
with torch.no_grad():
for pack in val_data_loader:
names = pack[0]
imgs = pack[1].cuda(non_blocking=True)
labels = pack[2].cuda(non_blocking=True)
x = model(imgs)
prediction = torch.sigmoid(x)
prediction_batch = torch.cat(
(prediction_batch, prediction.cpu()), 0)
labels_batch = torch.cat((labels_batch, labels.cpu()), 0)
prediction_all = torch.cat((prediction_all, prediction_batch.cpu()), 0)
labels_all = torch.cat((labels_all, labels_batch.cpu()), 0)
try:
mAP_bin = mAP_function(pred=prediction_batch, target=labels_batch)
except:
mAP_bin = 0
mAP_bins.append(mAP_bin)
mAP_overall = mAP_function(pred=prediction_all, target=labels_all)
return mAP_bins, count_bins, images_list_bins, mAP_overall
def draw_plot_CAM(mAP_bins, count_bins, network, note):
# count_bins = [count / 1449 * 100 for count in count_bins]
num_bin = len(mAP_bins)
# bins = [0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9]
bins = np.linspace(start=0, stop=1-1/num_bin, num=num_bin).tolist()
bins_hundred = np.linspace(start=0, stop=(
1 - 1 / num_bin) * 100, num=num_bin).tolist()
# plt.bar(bins, mAP_bins, width=1/num_bin-1/(num_bin*10), edgecolor='#4D79C8')
# plt.bar(bins, bins_hundred, width=1 / num_bin, color='#FA7F6F', edgecolor='black', label='GAP')
plt.bar(bins, mAP_bins, width=1 / num_bin,
color='#82B0D2', edgecolor='black', label='mIoU')
plt.title(f'{note} per bin {network}')
plt.xlabel('CAM')
plt.ylabel(f'{note} of the Multi-label Classification')
plt.legend()
plt.savefig(f'Fig/fig_ECE/{args.session_name}/{network}_{note}.png')
# plt.show()
plt.clf()
# plt.bar(bins, count_bins, width=1/num_bin-1/(num_bin*10), edgecolor='#4D79C8')
plt.bar(bins, count_bins, width=1 / num_bin,
color='#FA7F6F', edgecolor='black', label='Count')
plt.title(f'count per bin {network}')
plt.savefig(f'Fig/fig_ECE/{args.session_name}/{network}_confidence_count.png')
# plt.show()
def draw_plot_confidence(mAP_bins, count_bins, network, note):
# count_bins = [count / 1449 * 100 for count in count_bins]
num_bin = len(mAP_bins)
# bins = [0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9]
bins = np.linspace(start=0, stop=1-1/num_bin, num=num_bin).tolist()
bins_hundred = np.linspace(start=0, stop=(
1 - 1 / num_bin) * 100, num=num_bin).tolist()
# plt.bar(bins, mAP_bins, width=1/num_bin-1/(num_bin*10), edgecolor='#4D79C8')
# plt.bar(bins, bins_hundred, width=1 / num_bin, color='#FA7F6F', edgecolor='black', label='GAP')
plt.bar(bins, mAP_bins, width=1 / num_bin,
color='#82B0D2', edgecolor='black', label='mIoU')
plt.title(f'{note} per bin {network}')
plt.xlabel('confidence')
plt.ylabel(f'{note} of the Multi-label Classification')
plt.legend()
plt.savefig(f'Fig/fig_ECE/{args.session_name}/{network}_{note}.png')
# plt.show()
plt.clf()
# plt.bar(bins, count_bins, width=1/num_bin-1/(num_bin*10), edgecolor='#4D79C8')
plt.bar(bins, count_bins, width=1 / num_bin,
color='#FA7F6F', edgecolor='black', label='Count')
plt.title(f'count per bin {network}')
plt.savefig(f'Fig/fig_ECE/{args.session_name}/{network}_confidence_count.png')
# plt.show()
def cam2mask(cam):
h, w = list(cam.values())[0].shape
tensor = np.zeros((21, h, w), np.float32)
for key in cam.keys():
tensor[key + 1] = cam[key]
tensor[0, :, :] = 0.1
mask = np.argmax(tensor, axis=0).astype(np.uint8)
return mask
def compute_mIoU(prediction, gt):
pass
def putpalette(mask):
colormap = [[0, 0, 0], [128, 0, 0], [0, 128, 0], [128, 128, 0], [0, 0, 128],
[128, 0, 128], [0, 128, 128], [128, 128, 128], [64, 0, 0],
[192, 0, 0], [64, 128, 0], [192, 128, 0], [64, 0, 128],
[192, 0, 128], [64, 128, 128], [192, 128, 128], [0, 64, 0],
[128, 64, 0], [0, 192, 0], [128, 192, 0], [0, 64, 128]]
r = mask.copy()
g = mask.copy()
b = mask.copy()
for cls in range(21):
r[mask == cls] = colormap[cls][0]
g[mask == cls] = colormap[cls][1]
b[mask == cls] = colormap[cls][2]
# b[mask == cls] = self.colormap[color_cls][2]
rgb = np.zeros((mask.shape[0], mask.shape[1], 3))
rgb[:, :, 0] = b
rgb[:, :, 1] = g
rgb[:, :, 2] = r
return rgb.astype('uint8')
def concat_two_img(img1, img2):
image = np.hstack((img1, img2))
return image
def case_show(args, name, img, label, prediction, mIoU, bin, dir_save):
dir_img = os.path.join(args.voc12_root, args.img_dir, name+'.jpg')
dir_cam = os.path.join(args.out_cam, name+'.npy')
args.gt_dir = gt_dir = "voc12/VOC2012/SegmentationClassAug"
dir_gt = os.path.join(args.gt_dir, name+'.png')
img = mmcv.imread(dir_img)
cam = np.load(dir_cam, allow_pickle=True).item()
gt = mmcv.imread(dir_gt, flag='grayscale')
cam_mask = cam2mask(cam)
# mIou = compute_mIoU(cam_mask, gt)
cam_mask = putpalette(cam_mask)
gt = putpalette(gt)
vis_cam = cv2.addWeighted(img, 0.4, cam_mask, 0.6, gamma=0.1)
vis_gt = cv2.addWeighted(img, 0.4, gt, 0.6, gamma=0.1)
vis = concat_two_img(vis_cam, vis_gt)
vis = mmcv.imresize(vis.copy(), (2048, 1024))
# prediction, label, mIoU
label = np.argwhere(label.cpu())[0].tolist()
prediction_classes = np.argwhere(prediction.cpu() > 0.5)[0].tolist()
label = [categories[item] for item in label]
prediction_classes = [categories[item] for item in prediction_classes]
prediction_confidence = prediction[prediction > 0.5].mean().item()
if np.isnan(prediction_confidence):
prediction_confidence = prediction.max().item()
# sample_accuracy = (prediction > 0.5).sum() + label
# sample_loss = 0
text_mIoU = f"JS score = {round(mIoU * 100, 2)}%"
text_Confidence = f"ML-Confidence = {round(prediction_confidence * 100, 2)}%"
text_label = f"label = {label}"
text_prediction = f"prediction = {prediction_classes}"
cv2.rectangle(vis, (1200, 0), (2048, 0 + 200), (255, 255, 255), -1)
cv2.putText(vis, text_mIoU, (1225, 25),
cv2.FONT_HERSHEY_COMPLEX, 1.0, (0, 0, 0), 2)
cv2.putText(vis, text_Confidence, (1225, 75),
cv2.FONT_HERSHEY_COMPLEX, 1.0, (0, 0, 0), 2)
cv2.putText(vis, text_label, (1225, 125),
cv2.FONT_HERSHEY_COMPLEX, 1.0, (0, 0, 0), 2)
cv2.putText(vis, text_prediction, (1225, 175),
cv2.FONT_HERSHEY_COMPLEX, 1.0, (0, 0, 0), 2)
if not os.path.exists(dir_save):
os.makedirs(dir_save)
mmcv.imwrite(vis, os.path.join(dir_save, f'{bin}.png'))
def parse_args():
parser = argparse.ArgumentParser(description='Train a models')
parser.add_argument('config', help='train config file path')
parser.add_argument('--csv', type=str)
parser.add_argument('--work-dir', help='the dir to save logs and models')
parser.add_argument(
'--resume-from', help='the checkpoint file to resume from')
parser.add_argument('--tag', help='the tag')
parser.add_argument(
'--no-validate',
action='store_true',
help='whether not to evaluate the checkpoint during training')
group_gpus = parser.add_mutually_exclusive_group()
group_gpus.add_argument('--device', help='device used for training')
group_gpus.add_argument(
'--gpus',
type=int,
help='number of gpus to use '
'(only applicable to non-distributed training)')
group_gpus.add_argument(
'--gpu-ids',
type=int,
nargs='+',
help='ids of gpus to use '
'(only applicable to non-distributed training)')
parser.add_argument('--seed', type=int, default=None, help='random seed')
parser.add_argument(
'--deterministic',
action='store_true',
help='whether to set deterministic options for CUDNN backend.')
parser.add_argument(
'--options', nargs='+', action=DictAction, help='arguments in dict')
args = parser.parse_args()
return args
def writedict(file, dictionary):
s = ''
for key in dictionary.keys():
sub = '%s:%s ' % (key, dictionary[key])
s += sub
s += '\n'
file.write(s)
def writelog(filepath, metric, comment):
filepath = filepath
logfile = open(filepath, 'a')
import time
logfile.write(time.strftime("%Y-%m-%d %H:%M:%S", time.localtime()))
logfile.write('\t%s\n' % comment)
writedict(logfile, metric)
logfile.write('=====================================\n')
logfile.close()
if __name__ == '__main__':
args = parse_args()
cfg = Config.fromfile(args.config)
if args.options is not None:
cfg.merge_from_dict(args.options)
args = cfg
args.model_dir = os.path.join('work_dirs', args.session_name, "model")
args.weights = os.path.join(args.model_dir, args.weights)
args.test_dir = os.path.join('work_dirs', args.session_name, "test")
args.out_cam = os.path.join(args.test_dir,
f'cam_{args.eval_list.split("/")[-1].split(".")[0]}_{args.weights.split("/")[-1].split(".")[0]}')
if os.path.exists(f'Fig/fig_ECE/{args.session_name}') == False:
os.makedirs(f'Fig/fig_ECE/{args.session_name}')
dir_score = f'miou_loss_csv/miou_loss_{args.session_name}_{args.weights.split("/")[-1].split(".")[0]}_{args.eval_list.split("/")[-1].split(".")[0]}.csv'
Accuracy_bins, Accuracy_count_bins, _, Accuracy_overall, ML_ECE = compute_Conf_ECE(
args, dir_score, num_bin=20, metric_func=Accuracy, note='Accuracy')
draw_plot_confidence(Accuracy_bins, Accuracy_count_bins, args.fignote, note='Accuracy')
print(f'{args.session_name} Accuracy_overall is {Accuracy_overall}')
print(f'{args.session_name} ML_ECE is {ML_ECE}')