-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_NeuroCog.m
50 lines (36 loc) · 1 KB
/
test_NeuroCog.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
%% Clear
clear;
clc;
%% Add path
addpath('C:\Users\Kevin_Tyner\Documents\MATLAB\matnwb-2.6.0.2');
%% Properties
refScheme = 'bipolar'; % can be 'bipolar' or 'laplace'
lfreq = 1;
hfreq = 200;
type = 'fir'; % can be 'fir' or 'iir'
order = 256; % for 'fir', order = 256; for 'iir', order = 2
%% Test folder
folderDir = 'Z:\Tyner_K_Projects\NEW_OLD_DELAY\SUBJECT_Data\MW12_PY22NO12\Variant3\';
%folderDir = 'Z:\Tyner_K_Projects\MEM_ORDER\DataFolder\MW23\'; % 19, 21, 22, 23
%% Constructor object
obj = NeuroCog(folderDir);
%% Load eye data
loadEyeData(obj);
%% Identify bad channels
identifyBads(obj);
%% Reference
dataReference(obj,refScheme);
%% Filter
dataFilter(obj,lfreq,hfreq,type,order);
%% Identify TTLs
identifyTTLs(obj);
%% Identify boundaries (MemOrder only)
identifyBoundaries(obj);
%% Allocate the data
allocateData(obj);
%% Baseline correction and Z-scoring
baselineCorrectZscore(obj);
%% Plot the task phases - pure sanity check
%plotPhases(obj);
%% Theta saccades
saccadeAnalysis(obj,2,10,type,order);