-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathmappings.py
163 lines (137 loc) · 6.13 KB
/
mappings.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
import torch
import torch.distributed as dist
from torch.nn.parallel import DistributedDataParallel
from utils import comm
# torch utils
from torch._utils import _flatten_dense_tensors, _unflatten_dense_tensors
# helper functions
from distributed.helpers import _reduce
class _CopyToParallelRegion(torch.autograd.Function):
"""Pass the input to the parallel region."""
@staticmethod
def symbolic(graph, input_, comm_id_):
"""symbolic method"""
return input_
@staticmethod
def forward(ctx, input_, comm_id_):
ctx.comm_id = comm_id_
return input_
@staticmethod
def backward(ctx, grad_output):
if comm.is_distributed(ctx.comm_id):
return _reduce(grad_output, group=comm.get_group(ctx.comm_id)), None
else:
return grad_output, None
class _ReduceFromParallelRegion(torch.autograd.Function):
"""All-reduce the input from the parallel region."""
@staticmethod
def symbolic(graph, input_, comm_id_): # pragma: no cover
"""symbolic method"""
if comm.is_distributed(comm_id_):
return _reduce(input_, group=comm.get_group(comm_id_))
else:
return input_
@staticmethod
def forward(ctx, input_, comm_id_): # pragma: no cover
if comm.is_distributed(comm_id_):
return _reduce(input_, group=comm.get_group(comm_id_))
else:
return input_
@staticmethod
def backward(ctx, grad_output): # pragma: no cover
return grad_output, None
# matmul parallel
def copy_to_parallel_region(input_, comm_name): # pragma: no cover
"""Parallel copy helper"""
return _CopyToParallelRegion.apply(input_, comm_name)
def reduce_from_parallel_region(input_, comm_name): # pragma: no cover
"""Parallel reduction helper"""
return _ReduceFromParallelRegion.apply(input_, comm_name)
def gather_from_parallel_region(input_, dim, comm_name):
"""Parallel gather helper"""
return _GatherFromParallelRegion.apply(input_, dim, comm_name)
def init_ddp_model_and_reduction_hooks(model,
device_ids,
output_device,
bucket_cap_mb = 25,
broadcast_buffers = True,
find_unused_parameters = False,
gradient_as_bucket_view = True,
static_graph = False):
# early exit if we are not in a distributed setting:
if not dist.is_initialized():
return model
# set this to false in init and then find out if we can use it:
need_hooks = False
ddp_group = comm.get_group("data")
# this is the trivial case
if comm.get_size("model") == 1:
# the simple case, we can just continue then
ddp_group = None
else:
# count parameters and reduction groups
num_parameters_total = 0
num_parameters_shared_model = 0
for param in model.parameters():
# # if it does not have any annotation, we assume it is shared between all model ranks
# # not needed here, sync_params annotates everything
# if not hasattr(param, "is_shared_mp"):
# param.is_shared_mp = ["model"]
# add the sharing type to the dict
num_parameters_total += 1
if "model" in param.is_shared_mp:
num_parameters_shared_model += 1
# if all parameters are shared between all model ranks, then the situation is easy
if (num_parameters_shared_model == num_parameters_total):
# we can always use DDP
ddp_group = None
# register some pre-multiply reduction hooks
print("Setting up gradient hooks to account for shared parameter multiplicity")
for param in model.parameters():
param.register_hook(lambda grad: grad * float(comm.get_size("model")))
else:
ddp_group = comm.get_group("data")
broadcast_buffers = False
need_hooks = True
model = DistributedDataParallel(model,
device_ids = device_ids,
output_device = output_device,
bucket_cap_mb = bucket_cap_mb,
broadcast_buffers = broadcast_buffers,
find_unused_parameters = find_unused_parameters,
gradient_as_bucket_view = gradient_as_bucket_view,
static_graph = static_graph,
process_group = ddp_group)
if not need_hooks:
return model
# define comm hook:
def reduction_comm_hook(state: object, bucket: dist.GradBucket) -> torch.futures.Future[torch.Tensor]:
# allreduce everything first:
buff = bucket.buffer()
# get future for allreduce
fut = dist.all_reduce(buff, op=dist.ReduceOp.AVG, group=comm.get_group("data"), async_op=True).get_future()
# get grads for shared weights
params = bucket.parameters()
def grad_reduction(fut, grads, group):
# reduce remaining gradients
coalesced = _flatten_dense_tensors(grads)
dist.all_reduce(coalesced, op=dist.ReduceOp.SUM, group=comm.get_group(group), async_op=False)
for buf, synced in zip(grads, _unflatten_dense_tensors(coalesced, grads)):
buf.copy_(synced)
return bucket.buffer()
for group in comm.get_names():
if group == "data":
continue
grads = []
for p in params:
if group in p.is_shared_mp:
if p.grad is not None:
grads.append(p.grad.data)
if not grads:
continue
# append the new reduction functions
fut = fut.then(lambda x: grad_reduction(x, grads=grads, group=group))
return fut
# register model comm hook
model.register_comm_hook(state=None, hook=reduction_comm_hook)
return model