Skip to content

Commit 729c9f2

Browse files
authored
Merge pull request #328 from NGO-Algorithm-Audit/feature/structural_edits
Feature/structural edits
2 parents efea07e + 56c7f02 commit 729c9f2

15 files changed

+406
-85
lines changed

content/.DS_Store

0 Bytes
Binary file not shown.

content/english/_index.md

Lines changed: 16 additions & 12 deletions
Original file line numberDiff line numberDiff line change
@@ -52,25 +52,22 @@ overview_block:
5252
Activity_Feed:
5353
featured_title: Featured
5454
featured_activities:
55+
- title: 'Algoprudence: Predicting irresponsible driving'
56+
intro: >
57+
Case study how irresponsible driving can be predicted based on data of a car sharing platform.
58+
link: /algoprudence/cases/aa202501_predicting-irresponsible-driving-behavior/
59+
image: /images/algoprudence/AA202501/Cover_EN.png
60+
date: 30-09-2025
61+
type: algoprudence
5562
- title: >-
5663
Inventory 14 Dutch Ministries Netherlands Algorithm Registry
5764
intro: >
58-
Last summer, 14 Dutch ministries published their inventories of high-risk AI systems and high-impact algorithms. We compiled an overview.
65+
Overview of 14 Dutch ministries' inventories of high-risk AI systems and high-impact algorithms.
5966
link: >-
6067
/knowledge-platform/knowledge-base/inventory_high_risk_ai_systems/
6168
image: /images/knowledge_base/Inventarisation Netherlands Algorithm Registry.png
6269
date: 26-08-2025
6370
type: review
64-
- title: Local-only tools for AI validation
65-
intro: >
66-
Slides explaining the concept of 'local-only' tools. Highlighting
67-
similarities and differences with cloud computing, including examples
68-
how Algorithm Audit's open source software can be used for unsupervised
69-
bias detection and synthetic data generation tool.
70-
link: /technical-tools/bdt/#local-only
71-
image: /images/BDT/20250605_carrousel_local-only.png
72-
date: 05-06-2025
73-
type: open source code
7471
featured_button_text: More items
7572
featured_button_link: /knowledge-platform/knowledge-base/
7673
items_title: Upcoming events
@@ -102,8 +99,15 @@ Activity_Feed:
10299
link: >-
103100
/knowledge-platform/knowledge-base/public_standard_meaningful_human_intervention/
104101
image: /images/partner logo-cropped/NPD.png
105-
date: 30-10-2025
102+
date: 31-10-2025
106103
type: presentation
104+
- title: >-
105+
Panel discussion 'Statistics: burden or solution for efficient supervision on algorithms and AI?', Dutch Journal for Supervision and network of competent authorities VIDE
106+
link: >-
107+
https://www.videnet.nl/activiteiten/detail/157/seminar-toezicht-op-emerging-technologies/schedule
108+
image: /images/partner logo-cropped/Vide.png
109+
date: 31-10-2025
110+
type: panel discussion
107111
items_button_text: More events
108112
items_button_link: /events/activities/
109113
Areas_of_AI_expertise:

content/english/algoprudence/case-repository.md

Lines changed: 60 additions & 19 deletions
Original file line numberDiff line numberDiff line change
@@ -1,11 +1,14 @@
11
---
2+
layout: repository
23
title: Algoprudence repository
3-
subtitle: "Stakeholders learn from our\_techno-ethical jurisprudence, can help to improve it and can use it as to resolve ethical issues in a harmonized manner.\n\nWe are open to new cases. Please <span style=\"color:#005aa7\">[submit</span>](/algoprudence/submit-a-case/) a case for review.\n\nOr read our <span style=\"color:#005aa7\">[white paper</span>](/knowledge-platform/knowledge-base/white_paper_algoprudence/) on algoprudence.\n"
4+
subtitle: "Stakeholders learn from our case law for algorithms (_algoprudence_), can help to improve it and can use it to resolve ethical issues in a harmonized manner when deploying algorithmic systems"
45
image: /images/svg-illustrations/case_repository.svg
56
facet_groups:
67
- value: year
78
title: Year
89
facets:
10+
- value: "2025"
11+
label: "2025"
912
- value: "2024"
1013
label: "2024"
1114
- value: "2023"
@@ -69,6 +72,51 @@ facet_groups:
6972
label: Algorithm Audit
7073
title_content: Case repository
7174
algoprudences:
75+
- title: Predicting irresponsible driving
76+
intro: >-
77+
Case study how irresponsible driving can be identified and predicted in the database of a car sharing platform. An independent commission issues advice on among others model validity, balancing false positives and false negatives and meaningful transparency.
78+
image: /images/algoprudence/AA202501/AA202501P_EN.png
79+
link: /algoprudence/cases/aa202501_predicting-irresponsible-driving-behavior/
80+
facets:
81+
- value: AA202501
82+
label: "TA:AA:2025:01"
83+
- value: year_2025
84+
label: "2025"
85+
hide: true
86+
- value: type_of_audit_normative
87+
label: normative review
88+
- value: type_of_algorithm_ml
89+
label: machine learning
90+
- value: type_of_algorithm_profiling
91+
label: profiling
92+
- value: ethical_issue_fp_fn_balancing
93+
label: FP-FN balancing
94+
- value: owner_private
95+
label: car sharing platform
96+
- value: standard_risk_management
97+
label: risk management
98+
hide: true
99+
- value: standard_governance_data_quality
100+
label: governance & data quality
101+
hide: true
102+
- value: standard_transparency_provisions
103+
label: transparancy provisions
104+
hide: true
105+
- value: standard_human_oversight
106+
label: human oversight
107+
hide: true
108+
- value: standard_quality_management_system
109+
label: quality management
110+
hide: true
111+
- value: standard_accuracy_specifications
112+
label: Accuracy specifications
113+
hide: true
114+
- value: standard_robustness_specifications
115+
label: Robustness specifications
116+
hide: true
117+
- value: standard_quality_management_system
118+
label: Quality management system
119+
hide: true
72120
- title: Addendum Preventing prejudice
73121
intro: >-
74122
Further research into CUB process of Education Executive Agency of The
@@ -92,9 +140,9 @@ algoprudences:
92140
- value: ethical_issue_proxy
93141
label: proxy discrimination
94142
- value: owner_public
95-
label: public organisation
143+
label: DUO
96144
- value: standard_risk_management
97-
label: risk mmanagement
145+
label: risk management
98146
hide: true
99147
- value: standard_governance_data_quality
100148
label: governance & data quality
@@ -132,7 +180,7 @@ algoprudences:
132180
- value: ethical_issue_proxy
133181
label: proxy discrimination
134182
- value: owner_public
135-
label: public organisation
183+
label: DUO
136184
- value: standard_risk_management
137185
label: risk management
138186
hide: true
@@ -150,8 +198,8 @@ algoprudences:
150198
hide: true
151199
- title: Risk Profiling for Social Welfare Reexamination
152200
intro: >-
153-
The commission judges that algorithmic risk profiling can be used under
154-
strict conditions for sampling residents receiving social welfare for
201+
Case study to ML-driven risk predictions on unduly granted social welfare. An independent commission judges that algorithmic risk profiling can be used under
202+
strict conditions for sampling residents for
155203
re-examination. The aim of re-examination is a leading factor in judging
156204
profiling criteria.
157205
image: /images/algoprudence/AA202302/AA202302A_cover_EN.png
@@ -170,11 +218,11 @@ algoprudences:
170218
- value: type_of_algorithm_ml
171219
label: ML
172220
- value: type_of_algorithm_high_risk_AI
173-
label: high-risk AI
221+
label: high-risk AI system
174222
- value: ethical_issue_proxy
175223
label: proxy discrimination
176224
- value: owner_public
177-
label: public organisation
225+
label: Municipality of Rotterdam
178226
- value: standard_risk_management
179227
label: risk management
180228
hide: true
@@ -198,10 +246,7 @@ algoprudences:
198246
hide: true
199247
- title: BERT-based disinformation classifier
200248
intro: >-
201-
The audit commission believes there is a low risk of (higher-dimensional)
202-
proxy discrimination by the BERT-based disinformation classifier and that
203-
the particular difference in treatment identified by the quantitative bias
204-
scan can be justified, if certain conditions apply.
249+
Case study to algorithmic detection on fake news on Twitter. An independent advice commission believes there is a low risk of proxy discrimination by the BERT-based disinformation classifier and that the particular difference in treatment identified by the quantitative bias scan can be justified, if certain conditions apply.
205250
image: /images/algoprudence/AA202301/Cover.png
206251
link: /algoprudence/cases/aa202301_bert-based-disinformation-classifier
207252
facets:
@@ -222,6 +267,7 @@ algoprudences:
222267
label: FP-FN balancing
223268
- value: owner_self
224269
label: Algorithm Audit
270+
hide: true
225271
- value: disinformation
226272
label: disinformation
227273
- value: standard_risk_management
@@ -235,12 +281,8 @@ algoprudences:
235281
hide: true
236282
- title: Type of SIM card as a predictor variable to detect payment fraud
237283
intro: >-
238-
The audit commission advises against using type of SIM card as an input
239-
variable in algorithmic models that predict payment defaults and block
240-
afterpay services for specific customers. As it is likely that type of SIM
241-
card acts as a proxy-variable for sensitive demographic categories, the
242-
model would run an intolerable risk of disproportionally excluding
243-
vulnerable demographic groups from the payment service.
284+
Case study to ML-driven risk profiling to detect after-pay fraud at an e-commerce platform. An independent commission advises against using type of SIM card as an input variable in the algorithmic risk model. As it is likely that type of SIM
285+
card acts as a proxy-variable for sensitive demographic categories, the model would run an intolerable risk of disproportionally excluding vulnerable demographic groups from the payment service.
244286
image: /images/algoprudence/AA202201/Cover.png
245287
link: /algoprudence/cases/aa202201_type-of-sim
246288
facets:
@@ -268,5 +310,4 @@ algoprudences:
268310
- value: standard_transparency_provisions
269311
label: transparency provisions
270312
hide: true
271-
layout: repository
272313
---
Lines changed: 122 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,122 @@
1+
---
2+
layout: case
3+
title: Predicting irresponsible driving
4+
subtitle: |
5+
Problem statement (ALGO:AA:2025:01:P) and advice document (ALGO:AA:2025:01:A)
6+
image: /images/algoprudence/AA202501/Cover_EN.png
7+
dynamic_form_engine:
8+
- title: React to this normative judgement
9+
content: >-
10+
Your reaction will be sent to the team maintaining algoprudence. A team will
11+
review your response and, if it complies with the guidelines, it will be
12+
placed in the Discussion & debate section above.
13+
id: case-reaction
14+
icon: fas fa-align-justify
15+
section:
16+
- questions:
17+
- title: |
18+
Name
19+
identifier: name
20+
required: true
21+
type: text
22+
- title: |
23+
Affiliated organization
24+
identifier: affiliated-organization
25+
type: text
26+
- title: |
27+
Reaction
28+
identifier: reaction
29+
required: true
30+
type: textarea
31+
- title: |
32+
Contact details
33+
identifier: contact-details
34+
required: true
35+
type: text
36+
placeholder: Mail address
37+
complete_form_options:
38+
type: submit
39+
button_text: Submit
40+
backend_link: "https://formspree.io/f/xyyrjyzr"
41+
---
42+
43+
{{< tab_header width="4" tab1_id="description" tab1_title="Description of algoprudence" tab2_id="actions" tab2_title="Actions following algoprudence" tab3_id="discussion" tab3_title="Discussion & debate" default_tab="description" >}}
44+
45+
{{< tab_content_open icon="fa-car" title="Predicting irresponsible driving" id="description" >}}
46+
47+
#### Algoprudence identification code
48+
49+
ALGO:AA:2025:01
50+
51+
#### Key takeaways normative advice commission
52+
53+
- <span style="color:#005aa7; font-weight:600;">Model validity is fundamental</span>\
54+
The algorithm must be altered to specifically predict driving behavior that causes damage, not general platform misuse. As for any risk prediction model, getting alignment between training data and intended purpose is a critical prerequisite.
55+
- <span style="color:#005aa7; font-weight:600;">Balance monitoring with user autonomy</span>\
56+
Monitoring irresponsible driving to reduce damage costs is a legitimate business interest but must not become excessive surveillance or veer into paternalistic advice about general driving habits.
57+
- <span style="color:#005aa7; font-weight:600;">Meaningful transparency required</span>\
58+
Users need specific explanations about what driving behavior triggered the warning and clear guidance for improvement, not generic warnings or confusing technical jargon that means nothing to the average driver.
59+
- <span style="color:#005aa7; font-weight:600;">Careful variable selection</span>\
60+
Speeding has obvious safety implications, but acceleration and similar variables are trickier. They depend on context and may just reflect personal driving preferences. Before including them, there must be solid evidence linking them to actual damage risk, not just different driving styles or environments.
61+
- <span style="color:#005aa7; font-weight:600;">Human oversight essential</span>\
62+
Human analysts currently override 50-60% of the model’s recommendations, demonstrating real discretion rather than rubber-stamping. This meaningful human oversight must continue.
63+
64+
#### Summary advice
65+
66+
The commission judges that algorithmic risk prediction for identifying irresponsible driving behavior should
67+
take place under strict conditions and should be weighed against alternative methods of reducing damage.
68+
The validity of the prediction model is a critical prerequisite, and hence the current mismatch between the
69+
stated objective (predicting irresponsible driving) and the target variable in training (user bans for a wide variety
70+
of misuse) must first be resolved. The commission emphasizes that while monitoring to reduce damage cost
71+
may be a legitimate business interest, it should not become excessive surveillance or be used for paternalistic
72+
feedback on users’ general driving style. Users should receive specific, meaningful explanations about which
73+
driving behaviors triggered warnings, not generic notifications or lists of technical variables that users cannot
74+
comprehend. Variable selection must be carefully justified, with speeding as the most legitimate variable,
75+
while contextual behaviors like fast acceleration or hard braking require attention to driving context and solid
76+
evidence in what sense they are related to damage risk. The commission recommends maintaining substantial
77+
human review of algorithmic recommendations, to mitigate the risk that warnings are unduly sent and to
78+
facilitate appeal and redress by users.
79+
80+
#### Source of case
81+
82+
Collaboration with car sharing platform. Both the commission and Algorithm Audit have conducted this
83+
study independently from the car sharing platform. Neither the investigation nor the advice have been commissioned or funded by the platform.
84+
85+
#### Presentation
86+
87+
This case study was published during UNESCO's Expert roundtable II: Capacity building for AI supervisory authorities in Paris on September 30, 2025.
88+
89+
<!-- {{< image id="presentation-minister" image1="/images/algoprudence/AA202302/Algorithm audit presentatie BZK FB-18.jpg" alt1="Presentation advice report to Dutch Minister of Digitalization" caption1="Presentation advice report to Dutch Minister of Digitalization" width_desktop="5" width_mobile="12" >}} -->
90+
91+
#### Problem statement and advice document
92+
93+
{{< embed_pdf url="/pdf-files/algoprudence/ALGO_AA202501/EN/Problem statement Predicting irresponsible driving.pdf" url2="/pdf-files/algoprudence/ALGO_AA202501/EN/Advice Predicting irresponsible driving.pdf" >}}
94+
95+
#### Normative advice commission
96+
97+
- Cynthia Liem, Associate Professor at the Multimedia Computing Group, TU Delft
98+
- Hilde Weerts, Assistant Professor Fair and Explainable Machine Learning, TU Eindhoven
99+
- Joris Krijger, AI & Ethics Officer, De Volksbank
100+
- Maaike Harbers, Professor of Applied Sciences (lector) Artificial Intelligence & Society, Rotterdam University of Applied Sciences
101+
- Monique Steijns, Founder The People’s AI agency
102+
- Anne Rijlaarsdam, user car sharing platform.
103+
104+
{{< tab_content_close >}}
105+
106+
{{< tab_content_open icon="" title="" id="actions" >}}
107+
108+
{{< accordions_area_open id="actions" >}}
109+
110+
{{< accordions_area_close >}}
111+
112+
{{< tab_content_close >}}
113+
114+
{{< tab_content_open id="discussion" >}}
115+
116+
{{< accordions_area_open id="discussion" >}}
117+
118+
{{< accordions_area_close >}}
119+
120+
{{< tab_content_close >}}
121+
122+
{{< dynamic_form_engine index="0" >}}

content/nederlands/_index.md

Lines changed: 15 additions & 12 deletions
Original file line numberDiff line numberDiff line change
@@ -55,6 +55,13 @@ overview_block:
5555
Activity_Feed:
5656
featured_title: Uitgelicht
5757
featured_activities:
58+
- title: 'Algoprudentie: Voorspellen van onverantwoord rijgedrag'
59+
intro: >
60+
Case study naar het voorspellen van onverantwoord rijgedrag op basis van de data van een autodeelplatform.
61+
link: /nl/algoprudence/cases/aa202501_predicting-irresponsible-driving-behavior/
62+
image: /images/algoprudence/AA202501/Cover_NL.png
63+
date: 30-09-2025
64+
type: algoprudence
5865
- title: Inventarisatie 14 ministries Algoritmeregister
5966
intro: >
6067
Afgelopen zomer hebben 14 Nederlandse ministeries hun inventarisaties
@@ -64,17 +71,6 @@ Activity_Feed:
6471
image: /images/knowledge_base/Inventarisatie Algoritmeregister.png
6572
date: 26-08-2025
6673
type: onderzoek
67-
- title: Local-only tools voor AI validatie
68-
intro: >
69-
Slides die het concept van 'local-only' tools uitleggen. Verschillen en
70-
overeenkomsten met cloud computing worden toegelicht, inclusief
71-
voorbeelden hoe Algorithm Audit’s open source software gebruikt kan
72-
worden gebruikt voor usnupervised bias detectie en synthetische
73-
datageneratie.
74-
link: /nl/technical-tools/bdt/#local-only
75-
image: /images/BDT/20250605_carrousel_local-only.png
76-
date: 05-06-2025
77-
type: open source code
7874
featured_button_text: Meer items
7975
featured_button_link: /nl/knowledge-platform/knowledge-base/
8076
items_title: Aankomende events
@@ -104,8 +100,15 @@ Activity_Feed:
104100
link: >-
105101
/nl/knowledge-platform/knowledge-base/public_standard_meaningful_human_intervention/
106102
image: /images/partner logo-cropped/NPD.png
107-
date: 30-10-2025
103+
date: 31-10-2025
108104
type: presentatie
105+
- title: >-
106+
Paneldiscussie ‘Statistiek: kwaal of wondermiddel voor effectief toezicht op algoritmes en AI?’, Tijdschrift voor Toezicht en professional association VIDE
107+
link: >-
108+
https://www.videnet.nl/activiteiten/detail/157/seminar-toezicht-op-emerging-technologies/schedule
109+
image: /images/partner logo-cropped/Vide.png
110+
date: 31-10-2025
111+
type: paneldiscussion
109112
items_button_text: Meer events
110113
items_button_link: /nl/events/activities/
111114
Areas_of_AI_expertise:

0 commit comments

Comments
 (0)