-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathevaluate.py
142 lines (112 loc) · 4.68 KB
/
evaluate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
# evaluate.py
import torch
import numpy as np
from sklearn.metrics import classification_report
from transformers import BertTokenizer
from load import get_dataloader
from model import PaperClassifier
from config import (
BATCH_SIZE,
DEVICE,
MODEL_DIR,
BERT_MODEL_PATH,
CATEGORY_NAMES
)
import os
import tqdm
class Evaluator:
"""
模型评估类
"""
def __init__(self, model_path):
self.tokenizer = BertTokenizer.from_pretrained(BERT_MODEL_PATH)
self.model = PaperClassifier().to(DEVICE)
self.model.load_state_dict(torch.load(model_path))
def eval(self, data_file):
dataloader = get_dataloader(data_file, self.tokenizer, BATCH_SIZE, shuffle=False)
self.model.eval()
all_labels = []
all_preds = []
with torch.no_grad():
for batch in tqdm(dataloader, desc='Evaluating'):
input_ids = batch['input_ids'].to(DEVICE)
attention_mask = batch['attention_mask'].to(DEVICE)
labels = batch['label'].to(DEVICE)
outputs = self.model(input_ids, attention_mask)
preds = torch.argmax(outputs, dim=1)
all_labels.extend(labels.cpu().numpy())
all_preds.extend(preds.cpu().numpy())
self.all_labels = all_labels
self.all_preds = all_preds
def write_stats(self, file_path):
report = classification_report(self.all_labels, self.all_preds, target_names=CATEGORY_NAMES)
with open(file_path, 'w', encoding='utf-8') as f:
f.write(report)
def show_stats(self):
report = classification_report(self.all_labels, self.all_preds, target_names=CATEGORY_NAMES)
print(report)
def decode(self, label):
return CATEGORY_NAMES[label]
def write_stats_to_csv(self, file_path):
import pandas as pd
report = classification_report(self.all_labels, self.all_preds, target_names=CATEGORY_NAMES, output_dict=True)
df = pd.DataFrame(report).transpose()
df.to_csv(file_path, index=True)
class LLaMAEvaluator:
def __init__(self, model, tokenizer):
self.model = model
self.tokenizer = tokenizer
def eval(self, data_loader):
self.model.eval()
predictions = []
true_labels = []
with torch.no_grad():
for batch in data_loader:
input_ids = batch['input_ids'].to(DEVICE)
attention_mask = batch['attention_mask'].to(DEVICE)
labels = batch['labels'].to(DEVICE)
outputs = self.model(
input_ids=input_ids,
attention_mask=attention_mask
)
logits = outputs.logits
preds = torch.argmax(logits, dim=1)
predictions.extend(preds.cpu().numpy())
true_labels.extend(labels.cpu().numpy())
return true_labels, predictions
def write_stats(self, true_labels, predictions, file_path):
report = classification_report(
true_labels, predictions, target_names=INTENT_LABELS
)
with open(file_path, 'w') as f:
f.write(report)
def show_stats(self, true_labels, predictions):
report = classification_report(
true_labels, predictions, target_names=INTENT_LABELS
)
print(report)
def decode(self, preds):
idx_to_label = {idx: label for idx, label in enumerate(INTENT_LABELS)}
decoded_preds = [idx_to_label[pred] for pred in preds]
return decoded_preds
def write_stats_to_csv(self, true_labels, predictions, file_path):
import pandas as pd
decoded_preds = self.decode(predictions)
decoded_true = self.decode(true_labels)
df = pd.DataFrame({
'True Label': decoded_true,
'Predicted Label': decoded_preds
})
df.to_csv(file_path, index=False)
def evaluate(self, data_loader):
true_labels, predictions = self.eval(data_loader)
self.show_stats(true_labels, predictions)
accuracy = (np.array(true_labels) == np.array(predictions)).mean()
return accuracy
if __name__ == '__main__':
model_path = os.path.join(MODEL_DIR, 'paper_classifier.pt')
evaluator = Evaluator(model_path)
evaluator.eval('test.jsonl')
evaluator.show_stats()
evaluator.write_stats('evaluation_report.txt')
evaluator.write_stats_to_csv('evaluation_report.csv')