diff --git a/n3fit/src/n3fit/hyper_optimization/rewards.py b/n3fit/src/n3fit/hyper_optimization/rewards.py index 8b125490d8..d1bb9a49de 100644 --- a/n3fit/src/n3fit/hyper_optimization/rewards.py +++ b/n3fit/src/n3fit/hyper_optimization/rewards.py @@ -268,7 +268,7 @@ def compute_loss( ### Experiment: # Use the validation loss as the loss # summed with how far from 2 are we for the kfold - validation_loss_average = self.reduce_over_replicas(validation_loss, proportion=0.9) + validation_loss_average = self.reduce_over_replicas(validation_loss, proportion=0.8) kfold_loss_average = self.reduce_over_replicas(kfold_loss, proportion=0.1) loss = validation_loss_average + (max(kfold_loss_average, 2.0) - 2.0) elif self.loss_type == "phi2":