diff --git a/tests/testthat/test-fims-estimation.R b/tests/testthat/test-fims-estimation.R index 8dbd37263..7ac3106a8 100644 --- a/tests/testthat/test-fims-estimation.R +++ b/tests/testthat/test-fims-estimation.R @@ -174,30 +174,21 @@ test_that("deterministic test of fims", { # log(R0) fims_logR0 <- sdr_fixed[1, "Estimate"] expect_gt(fims_logR0, 0.0) - # absolute relative error (are) - fims_logR0_are <- abs(fims_logR0 - log(om_input$R0)) / - log(om_input$R0) - expect_lte(fims_logR0_are, 0.0001) - + expect_equal(fims_logR0, log(om_input$R0)) + # Numbers at age for (i in 1:length(c(t(om_output$N.age)))) { - naa_are <- abs(report$naa[[1]][i] - c(t(om_output$N.age))[i]) / - c(t(om_output$N.age))[i] - expect_lte(naa_are, 0.001) + expect_equal(report$naa[[1]][i], c(t(om_output$N.age))[i]) } # Biomass for (i in 1:length(om_output$biomass.mt)) { - biomass_are <- abs(report$biomass[[1]][i] - om_output$biomass.mt[i]) / - om_output$biomass.mt[i] - expect_lte(biomass_are, 0.001) + expect_equal(report$biomass[[1]][i], om_output$biomass.mt[i]) } # Spawning biomass for (i in 1:length(om_output$SSB)) { - sb_are <- abs(report$ssb[[1]][i] - om_output$SSB[i]) / - om_output$SSB[i] - expect_lte(sb_are, 0.001) + expect_equal(report$ssb[[1]][i], om_output$SSB[i]) } # Recruitment @@ -206,9 +197,7 @@ test_that("deterministic test of fims", { ) for (i in 1:length(om_output$N.age[, 1])) { - fims_naa1_are <- abs(fims_naa[i, 1] - om_output$N.age[i, 1]) / - om_output$N.age[i, 1] - expect_lte(fims_naa1_are, 0.001) + expect_equal(fims_naa[i, 1], om_output$N.age[i, 1]) } expect_equal( @@ -217,9 +206,7 @@ test_that("deterministic test of fims", { ) for (i in 1:length(om_output$N.age[, 1])) { - recruitment_are <- abs(report$recruitment[[1]][i] - om_output$N.age[i, 1]) / - om_output$N.age[i, 1] - expect_lte(recruitment_are, 0.001) + expect_equal(report$recruitment[[1]][i], om_output$N.age[i, 1]) } # recruitment deviations (fixed at initial "true" values) @@ -232,23 +219,21 @@ test_that("deterministic test of fims", { fims_index <- report$exp_index # Expect small relative error for deterministic test for (i in 1:length(om_output$L.mt$fleet1)) { - fims_object_are <- abs(fims_index[[1]][i] - om_output$L.mt$fleet1[i]) / - om_output$L.mt$fleet1[i] - expect_lte(fims_object_are, 0.001) + expect_equal(fims_index[[1]][i],om_output$L.mt$fleet1[i]) } + # Expect small relative error for deterministic test fims_object_are <- rep(0, length(em_input$L.obs$fleet1)) for (i in 1:length(em_input$L.obs$fleet1)) { fims_object_are[i] <- abs(fims_index[[1]][i] - em_input$L.obs$fleet1[i]) / em_input$L.obs$fleet1[i] } + # Expect 95% of relative error to be within 2*cv expect_lte(sum(fims_object_are > om_input$cv.L$fleet1 * 2.0), length(em_input$L.obs$fleet1) * 0.05) # Expected catch number at age for (i in 1:length(c(t(om_output$L.age$fleet1)))) { - cnaa_are <- abs(report$cnaa[[1]][i] - c(t(om_output$L.age$fleet1))[i]) / - c(t(om_output$L.age$fleet1))[i] - expect_lte(cnaa_are, 0.001) + expect_equal(report$cnaa[[1]][i], c(t(om_output$L.age$fleet1))[i]) } # Expected catch number at age in proportion @@ -259,7 +244,7 @@ test_that("deterministic test of fims", { om_cnaa_proportion <- om_output$L.age$fleet1 / rowSums(om_output$L.age$fleet1) for (i in 1:length(c(t(om_cnaa_proportion)))) { - expect_lte(abs(c(t(fims_cnaa_proportion))[i] - c(t(om_cnaa_proportion))[i]), 0.001) + expect_equal(c(t(fims_cnaa_proportion))[i], c(t(om_cnaa_proportion))[i]) } # Expected survey index @@ -267,9 +252,7 @@ test_that("deterministic test of fims", { expect_equal(fims_index[[2]], apply(cwaa, 1, sum) * om_output$survey_q$survey1) for (i in 1:length(om_output$survey_index_biomass$survey1)) { - fims_object_are <- abs(fims_index[[2]][i] - om_output$survey_index_biomass$survey1[i]) / - om_output$survey_index_biomass$survey1[i] - expect_lte(fims_object_are, 0.001) + expect_equal(fims_index[[2]][i], om_output$survey_index_biomass$survey1[i]) } fims_object_are <- rep(0, length(em_input$surveyB.obs$survey1)) @@ -278,23 +261,21 @@ test_that("deterministic test of fims", { } # Expect 95% of relative error to be within 2*cv expect_lte(sum(fims_object_are > om_input$cv.survey$survey1 * 2.0), length(em_input$surveyB.obs$survey1) * 0.05) - + # Expected catch number at age in proportion fims_cnaa <- matrix(report$cnaa[[2]][1:(om_input$nyr * om_input$nages)], nrow = om_input$nyr, byrow = TRUE ) for (i in 1:length(c(t(om_output$survey_age_comp$survey1)))) { - cnaa_are <- abs(report$cnaa[[2]][i] - c(t(om_output$survey_age_comp$survey1))[i]) / - c(t(om_output$survey_age_comp$survey1))[i] - expect_lte(cnaa_are, 0.001) + expect_equal(report$cnaa[[2]][i], c(t(om_output$survey_age_comp$survey1))[i]) } fims_cnaa_proportion <- fims_cnaa / rowSums(fims_cnaa) om_cnaa_proportion <- om_output$survey_age_comp$survey1 / rowSums(om_output$survey_age_comp$survey1) for (i in 1:length(c(t(om_cnaa_proportion)))) { - expect_lte(abs(c(t(fims_cnaa_proportion))[i] - c(t(om_cnaa_proportion))[i]), 0.001) + expect_equal(c(t(fims_cnaa_proportion))[i], c(t(om_cnaa_proportion))[i]) } deterministic_env$fims$clear() @@ -320,7 +301,8 @@ test_that("nll test of fims", { # log(R0) fims_logR0 <- sdr_fixed[1, "Estimate"] - expect_lte(abs(fims_logR0 - log(om_input$R0)) / log(om_input$R0), 0.0001) + # expect_lte(abs(fims_logR0 - log(om_input$R0)) / log(om_input$R0), 0.0001) + expect_equal(fims_logR0, log(om_input$R0)) # Call report using deterministic parameter values # obj$report() requires parameter list to avoid errors @@ -720,7 +702,7 @@ test_that("run FIMS in a for loop", { control = list(maxit = 1000000, reltol = 1e-15) )) - report <- obj$report() + report <- obj$report(obj$par) expect_false(is.null(report)) max_gradient <- max(abs(obj$gr(opt$par)))