-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathhsds_helpers.py
291 lines (234 loc) · 10.4 KB
/
hsds_helpers.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
# -*- coding: utf-8 -*-
"""HSDS Interface.
This file includes functions that allow interacting with HSDS:
connect to it using specified credentials, extract available heights,
extract various timeseries, etc.
"""
import h5pyd
from invalid_usage import InvalidUsage
from timing import timeit
from pyproj import Proj
import pandas as pd
import numpy as np
#import cartopy.crs as ccrs
import dateutil
import concurrent.futures
@timeit
def connected_hsds_file(request, config):
""" Return a file object that corresponds to the HSDS resource
specified in the request (using domain, endpoint, username, password,
and api_key parameters).
This function processes request parameters, uses default values for
'domain' and 'endpoint' if they aren't specified,
and uses demo API key (rate-limited)
if none of the relevant parameters is specified; it uses read-only mode.
"""
try:
# Raw request is passed
args = request.args
except:
# Request's args are passed already
args = request
if 'domain' in args:
domain = args['domain']
else:
domain = config["hsds"]["domain"]
if 'endpoint' in args:
endpoint = args['endpoint']
else:
endpoint = config["hsds"]["endpoint"]
if 'bucket' in args:
bucket = args['bucket']
else:
bucket = config["hsds"]["bucket"]
if ('username' not in args) and ('password' not in args)\
and ('api_key' not in args):
username = config["hsds"]["username"]
password = config["hsds"]["password"]
api_key = config["hsds"]["api_key"]
else:
if 'username' in args:
username = args['username']
else:
raise InvalidUsage(("HSDS username is not specified. "
"Specify all three--username, password, "
"and api_key--or remove all three from "
"request to use demo credentials."))
if 'password' in args:
password = args['password']
else:
raise InvalidUsage(("HSDS password is not specified. "
"Specify all three--username, password, "
"and api_key--or remove all three from "
"request to use demo credentials."))
if 'api_key' in args:
api_key = args['api_key']
else:
raise InvalidUsage(("HSDS api_key is not specified. "
"Specify all three--username, password, "
"and api_key--or remove all three from "
"request to use demo credentials."))
try:
f = h5pyd.File(domain=domain,
endpoint=endpoint,
username=username,
password=password,
api_key=api_key,
bucket=bucket,
mode='r')
return f
except OSError:
raise InvalidUsage(("Failed to access specified HSDS resource. "
"Check credentials: "
"domain, endpoint, username, password, api_key, bucket. "
"It could be a transient HSDS connection issue. "
"Try again later."),
status_code=403)
def available_heights(f, prefix="windspeed"):
""" Return list of all heights available in resource f --
datasets named "<prefix>_XXm", where XX is a number.
"""
prefix = prefix.rstrip("_") + "_"
try:
heights = sorted([int(attr.replace(prefix, "").rstrip("m"))
for attr in
list(f) if prefix in attr])
except ValueError:
raise InvalidUsage("Problem with processing WTK heights.")
return heights
def available_datasets(f):
""" Return list of all datasets available in resource f.
"""
try:
datasets = sorted(list(f))
except ValueError:
raise InvalidUsage("Problem with processing WTK datasets.")
return datasets
# This function finds the nearest x/y indices for a given lat/lon.
# Rather than fetching the entire coordinates database, which is 500+ MB, this
# uses the Proj4 library to find a nearby point and converts to x/y indices
def indicesForCoord(f, lat_index, lon_index):
dset_coords = f['coordinates']
projstring = """+proj=lcc +lat_1=30 +lat_2=60
+lat_0=38.47240422490422 +lon_0=-96.0
+x_0=0 +y_0=0 +ellps=sphere
+units=m +no_defs """
projectLcc = Proj(projstring)
origin_ll = reversed(dset_coords[0][0]) # Grab origin directly from db
origin = projectLcc(*origin_ll)
coords = (lon_index, lat_index)
coords = projectLcc(*coords)
delta = np.subtract(coords, origin)
ij = [int(round(x/2000)) for x in delta]
return tuple(reversed(ij))
@timeit
def find_tile(f, lat, lon, radius=3, trim=4):
""" Return dataframe with information about gridpoints in resource f that
are neighboring (lat, lon). At first, there will be (radius*2) ^ 2
entries/neighbors. The dataframe will be sorted by the distance (in meters)
from (lat, lon); the first row -- nearest neighbor. Finally,
the function will return N=trim first/nearest rows.
"""
# Appropriate for lat/lon pairs
crs_from = ccrs.PlateCarree()
# This projection uses USA_Contiguous_Albers_Equal_Area_Conic_USGS_version:
# typical projection for historical USGS maps of the lower 48
# Reference: https://spatialreference.org/ref/sr-org/usa_contiguous_/
# albers_equal_area_conic_usgs_version-2/
crs_to = ccrs.AlbersEqualArea(central_longitude=-96.0,
central_latitude=23.0,
false_easting=0.0,
false_northing=0.0,
standard_parallels=(29.5, 45.5), globe=None)
point_idx = indicesForCoord(f, lat, lon)
point_xy = coordXform(crs_from, crs_to,
np.array([lon]), np.array([lat]))[0]
# # TODO: Edge cases (around boundaries) need to be handled differently
neighbors_to_check = []
for x_idx in range(point_idx[0] - radius, point_idx[0] + radius + 1):
for y_idx in range(point_idx[1] - radius, point_idx[1] + radius + 1):
neighbors_to_check.append([x_idx, y_idx])
# Get lat/lon pairs for all neighbors (faster than one-at-a-time)
neighbors_latlon = [list(p) for p in f["coordinates"][neighbors_to_check]]
# Convert all neighbors' lat/lon pairs to x/y
neighbors_xy = coordXform(crs_from, crs_to,
np.array(neighbors_latlon).reshape(-1, 2)[:, 1],
np.array(neighbors_latlon).reshape(-1, 2)[:, 0])
res = pd.DataFrame(columns=["x_idx", "y_idx", "lat", "lon",
"x_centered", "y_centered", "d"])
for idx, latlon, xy in zip(neighbors_to_check,
neighbors_latlon, neighbors_xy):
# Distance in meters calculated after applying projections
dx = xy[0] - point_xy[0]
dy = xy[1] - point_xy[1]
d = np.sqrt(dx ** 2 + dy ** 2)
res.loc[len(res)] = [idx[0], idx[1],
latlon[0], latlon[1], dx, dy, d]
res["x_idx"] = pd.to_numeric(res["x_idx"], downcast='integer')
res["y_idx"] = pd.to_numeric(res["y_idx"], downcast='integer')
return res.sort_values("d")[:trim].reset_index(drop=True)
def coordXform(orig_crs, target_crs, x, y):
return target_crs.transform_points(orig_crs, x, y)
def time_indices(f, start_date, stop_date):
""" Return lists of time indices and timestamps corresponding to the the
requested time interval: [start_date, stop_date].
"""
dt = f["datetime"]
dt = pd.DataFrame({"datetime": dt[:]}, index=range(0, dt.shape[0]))
dt['datetime'] = dt['datetime'].apply(dateutil.parser.parse)
selected = dt.loc[(dt.datetime >= start_date) &
(dt.datetime <= stop_date)]
selected_inices = selected.index.tolist()
selected_timestamps = selected.datetime.tolist()
return selected_inices, selected_timestamps
@timeit
def extract_ts_for_neighbors(tile_df, tidx, dset, impl="parallel"):
""" Extract WTK timeseries for all neighbor points in tile_df dataframe.
Only extract values for times that correspond to time indices in tidx.
Extract values from dataset dset corresponding to a specific height.
Columns in the returned dataframe will match rows in tile_df
and the *order will be preserved*.
Behind the scenes, a sequential or a parallel implementation is called.
"""
if impl == "sequential":
return extract_ts_for_neighbors_sequential(tile_df, tidx, dset)
elif impl == "parallel":
return extract_ts_for_neighbors_parallel(tile_df, tidx, dset)
else:
raise ValueError(("Invalid usage of extract_ts_for_neighbors()."
"Choose implementation: sequential or parallel."))
@timeit
def extract_ts_for_neighbors_parallel(tile_df, tidx, dset):
""" Parallel (fast) implementation of extract_ts_for_neighbors().
"""
tasks = [(dset, tidx, row.x_idx, row.y_idx)
for idx, row in tile_df.iterrows()]
with concurrent.futures.ThreadPoolExecutor() as executor:
futures = [executor.submit(extract_ts_thread, t) for t in tasks]
results = [f.result() for f in futures]
res_df = pd.concat(results, axis=1)
return res_df
@timeit
def extract_ts_for_neighbors_sequential(tile_df, tidx, dset):
""" Sequential (slow) implementation of extract_ts_for_neighbors().
"""
res_df = pd.DataFrame(index=tidx)
tidx_min = np.array(tidx).min()
tidx_max = np.array(tidx).max()
for idx, row in tile_df.iterrows():
neighbor_data = dset[tidx_min:tidx_max+1,
row.x_idx, row.y_idx]
column_name = "%d-%d" % (row.x_idx, row.y_idx)
res_df[column_name] = neighbor_data
return res_df
def extract_ts_thread(args):
""" Function run in its own thread when multiple WTK subsets are extracted.
"""
dset, tidx, x_idx, y_idx = args
res_df = pd.DataFrame(index=tidx)
tidx_min = np.array(tidx).min()
tidx_max = np.array(tidx).max()
neighbor_data = dset[tidx_min:tidx_max+1, x_idx, y_idx]
column_name = "%d-%d" % (x_idx, y_idx)
res_df[column_name] = neighbor_data
return res_df