-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathinference.py
84 lines (69 loc) · 2.46 KB
/
inference.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
import hydra
import os
import torch
import warnings
import numpy as np
import pandas as pd
from omegaconf import DictConfig, OmegaConf, open_dict
from tqdm import tqdm
import alignnet
from argparse import ArgumentParser, ArgumentDefaultsHelpFormatter
@hydra.main(
config_path="./inference_configs", config_name="config.yaml", version_base=None
)
def main(cfg: DictConfig) -> None:
"""
Run inference on data with a trained model.
See `python inference.py --help` for more details.
"""
# Transform
transform = hydra.utils.instantiate(cfg.transform)
print("Initializing data")
audio_data = hydra.utils.instantiate(
cfg.data,
transform=transform,
)
print(f"Loading model from {cfg.model.path}")
model = alignnet.load_model(cfg.model.path)
# Use GPU if available
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model = model.to(device)
if cfg.model.dataset_index == "reference":
dataset_index = torch.tensor([model.network.aligner.reference_index])
else:
dataset_index = torch.tensor([cfg.model.dataset_index])
dataset_index = dataset_index.to(device)
# Switch to eval mode
model.eval()
with torch.no_grad():
output_dicts = []
print(f"Generating estimations")
for ix, (audio, mos, dataset) in enumerate(
tqdm(audio_data, total=len(audio_data))
):
# Make audio look batched
audio = audio[None, None, :]
audio = audio.to(device)
est = model(audio, dataset_index)
audio_path = audio_data.score_file.loc[ix, audio_data.pathcol]
output_dicts.append(
{
"file": audio_path,
"estimate": est.to("cpu").numpy()[0],
"dataset": dataset,
"AlignNet dataset index": dataset_index.to("cpu").numpy()[0]
}
)
# Iterating over Datasets does not always stop appropriately so this ensures it does
if ix == len(audio_data) - 1:
break
output_df = pd.DataFrame(output_dicts)
print("First 5 results:")
print(output_df.head())
output_dir = os.path.dirname(cfg.output.file)
if not os.path.exists(output_dir) and output_dir != "":
os.makedirs(output_dir)
print(f"Saving results to {cfg.output.file}")
output_df.to_csv(cfg.output.file, index=False)
if __name__ == "__main__":
main()