-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
440 lines (370 loc) · 14.4 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
"""TPU training script"""
import datetime
import math
import os
import pickle
import random
import time
from pathlib import Path
import fire
import jax
import jax.numpy as jnp
import jax.tools.colab_tpu
import numpy as np
import opax
import pax
import tensorflow as tf
import config as CONFIG
from dsp import MelFilter
from hifigan import (
Generator,
MultiPeriodCritic,
MultiScaleCritic,
critic_loss,
feature_loss,
generator_loss,
)
class Critics(pax.Module):
"""Multiple Critics"""
def __init__(self, mpd, msd):
super().__init__()
self.mpd = mpd
self.msd = msd
def create_model(config):
"""return a new model"""
g = Generator(
config.num_mels,
config.resblock_kernel_sizes,
config.upsample_rates,
config.upsample_kernel_sizes,
config.upsample_initial_channel,
config.resblock_kind,
config.resblock_dilation_sizes,
)
mpd = MultiPeriodCritic()
msd = MultiScaleCritic()
mel_filter = MelFilter(
config.sample_rate,
config.n_fft,
config.win_size,
config.hop_size,
config.num_mels,
config.fmin,
config.fmax,
)
return g, Critics(mpd=mpd, msd=msd), mel_filter
@pax.pure
def critic_loss_fn(critics: Critics, inputs):
"""critic loss"""
y, y_g_hat = inputs
# MPD
y_df_hat_r, y_df_hat_g, _, _ = critics.mpd(y, y_g_hat)
loss_disc_f, losses_disc_f_r, losses_disc_f_g = critic_loss(y_df_hat_r, y_df_hat_g)
# MSD
y_ds_hat_r, y_ds_hat_g, _, _ = critics.msd(y, y_g_hat)
loss_disc_s, losses_disc_s_r, losses_disc_s_g = critic_loss(y_ds_hat_r, y_ds_hat_g)
loss_disc_all = loss_disc_s + loss_disc_f
return loss_disc_all, critics
def update_critic(nets, optims, inputs):
"""update critic"""
(loss_disc_all, nets), grads = pax.value_and_grad(critic_loss_fn, has_aux=True)(
nets, inputs
)
grads = jax.lax.pmean(grads, axis_name="i")
nets, optims = opax.apply_gradients(nets, optims, grads)
return nets, optims, loss_disc_all
def l1_loss(a, b):
"""l1 loss function"""
return jnp.mean(jnp.abs(a - b))
def loss_fn(generator, inputs):
"""main loss function"""
(x, y, y_mel), critics, optim_d, mel_filter = inputs
y_g_hat = generator(x)
y_g_hat_mel = mel_filter(y_g_hat)
y, y_g_hat = jax.tree_map(lambda t: t[..., None], (y, y_g_hat))
critics, optim_d, loss_disc_all = jax.lax.stop_gradient(
update_critic(critics, optim_d, (y, y_g_hat))
)
loss_mel = l1_loss(y_mel, y_g_hat_mel) * 45
y_df_hat_r, y_df_hat_g, fmap_f_r, fmap_f_g = critics.mpd(y, y_g_hat)
# did not update spectral norm here
y_ds_hat_r, y_ds_hat_g, fmap_s_r, fmap_s_g = critics.msd.eval()(y, y_g_hat)
loss_fm_f = feature_loss(fmap_f_r, fmap_f_g)
loss_fm_s = feature_loss(fmap_s_r, fmap_s_g)
loss_gen_f, losses_gen_f = generator_loss(y_df_hat_g)
loss_gen_s, losses_gen_s = generator_loss(y_ds_hat_g)
loss_gen_all = loss_gen_s + loss_gen_f + loss_fm_s + loss_fm_f + loss_mel
return loss_gen_all, (generator, critics, optim_d, (loss_mel, loss_disc_all))
def one_update_step(nets_optims, inputs):
"""update nets"""
nets, optims = nets_optims
generator, critics, mel_filter = nets
cond, y = inputs
if cond is None:
cond = mel_filter(y)
p = (mel_filter.n_fft - mel_filter.hop_length) // 2
bad_frames = int(math.ceil(p / mel_filter.hop_length))
cond = cond[:, bad_frames:-bad_frames, :]
pad_frames = generator.compute_padding_values()[0]
p = mel_filter.hop_length * (pad_frames + bad_frames)
y = y[:, p:-p]
mel = mel_filter(y)
inputs = cond, y, mel
optim_d, optim_g = optims
vag = pax.value_and_grad(loss_fn, has_aux=True)
(
loss_gen_all,
(generator, critics, optim_d, (loss_mel, loss_disc_all)),
), grads = vag(generator, (inputs, critics, optim_d, mel_filter))
grads = jax.lax.pmean(grads, axis_name="i")
generator, optim_g = opax.apply_gradients(generator, optim_g, grads)
nets = (generator, critics, mel_filter)
optims = (optim_d, optim_g)
losses = (loss_gen_all, loss_mel, loss_disc_all)
return (nets, optims), losses
def update_fn(nets, optims, inputs):
"""update fn"""
inputs = jax.tree_map(lambda x: x.astype(jnp.float32), inputs)
(nets, optims), losses = pax.scan(one_update_step, (nets, optims), inputs)
losses = jax.tree_map(lambda x: x[-1], losses)
return nets, optims, losses
def get_num_batch(data_dir, batch_size):
files = sorted(Path(data_dir).glob("*.npz"))
return len(files) // batch_size
def _device_put_sharded(sharded_tree, devices):
leaves, treedef = jax.tree_flatten(sharded_tree)
n = leaves[0].shape[0]
return jax.device_put_sharded(
[jax.tree_unflatten(treedef, [l[i] for l in leaves]) for i in range(n)], devices
)
def double_buffer(ds, devices):
"""
create a double buffer iterator
"""
batch = None
for next_batch in ds:
assert next_batch is not None
next_batch = _device_put_sharded(next_batch, devices)
if batch is not None:
yield batch
batch = next_batch
if batch is not None:
yield batch
def load_npz_files(data_dir, test_size=200, split="train"):
"""return list of npz file in a directory"""
files = sorted(Path(data_dir).glob("*.npz"))
random.Random(42).shuffle(files)
assert len(files) > 0, "Empty data directory"
assert len(files) > test_size, "Empty test data size"
if split == "train":
return files[test_size:]
else:
return files[:test_size]
def load_data(data_dir, config, devices, spu, pad, split="train"):
"""return data iter"""
files = load_npz_files(data_dir, split=split)
batch = []
cache = {}
num_frame = config.segment_size // config.hop_size
p = (config.n_fft - config.hop_size) // 2
# bad frames are frames that included padded values
bad_frames = int(math.ceil(p / config.hop_size))
while True:
random.shuffle(files)
num_devices = len(devices)
for f in files:
if f in cache:
mel, y = cache[f]
else:
dic = np.load(f)
y = dic["y"]
mel = dic["mel"] if "mel" in dic else None
# if the clip is too short, pad it with zeros
p = config.segment_size - len(y)
if p > 0 and mel is None:
y = np.pad(y, [(0, p)], mode="constant")
if mel is None:
# pad the input to create "padding" input frames for the FCN generator
p = config.hop_size * (pad + bad_frames)
y = np.pad(y, [(p, p)], mode="reflect")
else:
mel = np.pad(mel, [(pad, pad), (0, 0)], mode="reflect")
cache[f] = mel, y
if mel is not None:
# for text-to-speech task
start_frame = random.randint(0, mel.shape[0] - 1 - num_frame - pad * 2)
end_frame = start_frame + num_frame + pad * 2
mel = mel[start_frame:end_frame]
start_idx = start_frame * config.hop_size
end_idx = start_idx + config.segment_size
y = y[start_idx:end_idx]
batch.append((mel, y))
else:
# for normal training
L = config.segment_size + 2 * (pad + bad_frames) * config.hop_size
start_idx = random.randint(0, len(y) - L)
end_idx = start_idx + L
y = y[start_idx:end_idx]
batch.append((None, y))
if len(batch) == config.batch_size * spu:
mel, y = zip(*batch)
if mel[0] is not None:
mel = np.array(mel).astype(np.float32)
mel = mel.reshape((num_devices, spu, -1, *mel.shape[1:]))
else:
mel = None
y = np.array(y).astype(np.float32)
y = y.reshape((num_devices, spu, -1, *y.shape[1:]))
yield mel, y
batch = []
def save_ckpt(ckpt_dir, step, nets, optims):
"""save checkpoint to disk"""
(generator, critics, _) = nets
(optim_d, optim_g) = optims
dic = {
"step": step,
"generator": generator.state_dict(),
"critics": critics.state_dict(),
"optim_d": optim_d.state_dict(),
"optim_g": optim_g.state_dict(),
}
file = ckpt_dir / f"hifigan_{step:07d}.ckpt"
with open(file, "wb") as f:
pickle.dump(dic, f)
def load_ckpt(ckpt_dir, nets, optims):
"""load latest checkpoint from disk"""
ckpts = sorted(Path(ckpt_dir).glob("hifigan_*.ckpt"))
if len(ckpts) == 0:
return -1, nets, optims
print("Loading checkpoint at ", ckpts[-1])
(generator, critics, mel_filter) = nets
(optim_d, optim_g) = optims
with open(ckpts[-1], "rb") as f:
dic = pickle.load(f)
step = dic["step"]
generator = generator.load_state_dict(dic["generator"])
critics = critics.load_state_dict(dic["critics"])
optim_d = optim_d.load_state_dict(dic["optim_d"])
optim_g = optim_g.load_state_dict(dic["optim_g"])
optims = (optim_d, optim_g)
nets = (generator, critics, mel_filter)
return step, nets, optims
@jax.jit
def fast_gen(generator, cond):
"""generate with padded input"""
p = generator.compute_padding_values()[0]
cond = jnp.pad(cond, [(0, 0), (p, p), (0, 0)], mode="reflect")
return generator(cond)
def train(
data_dir: str,
log_dir: str = "logs",
spu: int = 40,
log_freq=100,
gen_freq=10_000,
ckpt_freq=10_000,
):
"""train model...
Arguments:
data_dir: path to data directory
spu: number of update steps per pmap update call
"""
current_time = datetime.datetime.now().strftime("%Y%m%d-%H%M%S")
summary_writer = tf.summary.create_file_writer(str(Path(log_dir) / current_time))
# TPU setup
if "COLAB_TPU_ADDR" in os.environ:
jax.tools.colab_tpu.setup_tpu()
generator, critics, mel_filter = create_model(CONFIG)
cpu_device = jax.devices("cpu")[0]
cpu_mel_filter = jax.jit(jax.device_put(mel_filter, cpu_device))
num_batch = get_num_batch(data_dir, CONFIG.batch_size)
print(f"Data set size: {num_batch} batches")
num_devices = jax.device_count()
devices = jax.devices()
print(f"{num_devices} devices: {devices}")
def exp_decay(step):
num_epoch = jnp.floor(step / 1000)
scale = jnp.power(CONFIG.lr_decay, num_epoch)
return scale * CONFIG.learning_rate
optim = opax.chain(
opax.scale_by_adam(b1=CONFIG.adam_b1, b2=CONFIG.adam_b2),
opax.add_decayed_weights(1e-2),
opax.scale_by_schedule(exp_decay),
)
optim_g = optim.init(generator.parameters())
optim_d = optim.init((critics.parameters()))
nets = (generator, critics, mel_filter)
input_pad = nets[0].compute_padding_values()[0]
optims = (optim_d, optim_g)
Path(CONFIG.ckpt_dir).mkdir(exist_ok=True, parents=True)
last_step, nets, optims = load_ckpt(CONFIG.ckpt_dir, nets, optims)
nets, optims = jax.device_put_replicated((nets, optims), devices)
start = time.perf_counter()
pmap_update_fn = jax.pmap(update_fn, axis_name="i", devices=devices)
test_files = load_npz_files(data_dir, split="test")
step = 0 if last_step == -1 else (last_step + spu)
# log all ground-truth test audio clips
with summary_writer.as_default(step=step):
for f in test_files[:10]:
dic = np.load(f)
tf.summary.audio(
f"gt/{f.stem}", dic["y"][None, :, None], CONFIG.sample_rate
)
test_data_iter = load_data(data_dir, CONFIG, devices, spu, input_pad, "test")
test_data_iter = double_buffer(test_data_iter, devices)
train_data_iter = load_data(data_dir, CONFIG, devices, spu, input_pad, "train")
train_data_iter = double_buffer(train_data_iter, devices)
while True:
batch = next(train_data_iter)
nets, optims, (g_loss, mel_loss, d_loss) = pmap_update_fn(nets, optims, batch)
if step % log_freq == 0:
batch = next(test_data_iter)
_, _, (_, test_mel_loss, _) = pmap_update_fn(nets, optims, batch)
losses = (g_loss, d_loss, mel_loss, test_mel_loss)
losses = jax.device_get(jax.tree_map(jnp.mean, losses))
g_loss, d_loss, mel_loss, test_mel_loss = losses
end = time.perf_counter()
dur = end - start
start = end
epoch = step // num_batch
lr = optims[0][-1].learning_rate[0]
print(
f"step {step:07d} epoch {epoch:05d} lr {lr:.2e} gen loss {g_loss:.3f}"
f" mel loss {mel_loss:.3f} test mel loss {test_mel_loss:.3f}"
f" critic loss {d_loss:.3f} {dur:.2f}s"
)
with summary_writer.as_default(step=step):
tf.summary.scalar("step", step)
tf.summary.scalar("epoch", epoch)
tf.summary.scalar("lr", lr)
tf.summary.scalar("gen_loss", g_loss)
tf.summary.scalar("mel_loss", mel_loss)
tf.summary.scalar("critic_loss", d_loss)
tf.summary.scalar("duration", dur)
tf.summary.scalar("test_mel_loss", test_mel_loss)
if step % gen_freq == 0:
with summary_writer.as_default(step=step):
g = jax.tree_map(lambda x: x[0], nets[0].eval())
g = jax.device_put(g, device=cpu_device)
for path in test_files[:10]:
dic = np.load(path)
if "mel" in dic:
mel = dic["mel"][None].astype(jnp.float32)
mel = jax.device_put(mel, cpu_device)
else:
y = jax.device_put(dic["y"][None], cpu_device)
mel = cpu_mel_filter(y)
yhat = fast_gen(g, mel)
yhat = jax.device_get(yhat)
tf.summary.audio(
f"gen/{path.stem}",
yhat[:, :, None],
CONFIG.sample_rate,
)
if step % ckpt_freq == 0:
nets_, optims_ = jax.device_get(
jax.tree_map(lambda x: x[0], (nets, optims))
)
save_ckpt(Path(CONFIG.ckpt_dir), step, nets_, optims_)
step += spu
if __name__ == "__main__":
fire.Fire(train)