-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
46 lines (40 loc) · 1.73 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
import data
import model
import argparse
from data import dataset
from model import edsr_model
parser = argparse.ArgumentParser()
#parser.add_argument("--dataset", default = "/home/slz839/dataset/phantom_v2")
#parser.add_argument("--num_rows", default = 256, type = int)
#parser.add_argument("--num_cols", default = 256, type = int)
parser.add_argument("--dataset", default = "/home/slz839/dataset/simulation")
parser.add_argument("--num_rows", default = 312, type = int)
parser.add_argument("--num_cols", default = 640, type = int)
parser.add_argument("--imgdepth", default = 1, type = int)
parser.add_argument("--cropsize", default = 32, type = int)
parser.add_argument("--batchsize", default = 16, type = int)
parser.add_argument("--layers", default = 16, type = int)
parser.add_argument("--filters", default = 256, type = int)
parser.add_argument("--epochs", default = 1, type = int)
parser.add_argument("--resume", default = 0, type = int)
parser.add_argument("--test", default = True, type = bool)
args = parser.parse_args()
# Initialize dataset.
training_data = dataset(args.dataset,
args.imgdepth,
args.num_rows,
args.num_cols,
args.cropsize,
args.batchsize)
edsr = edsr_model(training_data.num_train_iterations,
training_data.num_test_iterations,
args.batchsize,
args.layers,
args.filters,
args.imgdepth,
args.cropsize,
args.test)
edsr.set_functions(training_data.get_train_batch,
training_data.get_test_batch,
training_data.shuffle)
edsr.train(args.epochs, args.resume)