Skip to content

Latest commit

 

History

History
35 lines (31 loc) · 1.75 KB

README.md

File metadata and controls

35 lines (31 loc) · 1.75 KB

Pipeline

The pipeline in this sample is as below:

Steps Backend Time
OpenCV load image + preprocessing CPU N/A
MatX reformat to cuDLA input format GPU 0.7ms
cuDLA inference DLA 4.5ms
MatX reformat to FP16 planar format GPU 0.7ms
Post-process(decode_box, nms) GPU 0.1-0.2ms
Get final bbox data CPU N/A

Code Structure

.
├── cudla_context_hybrid.cpp            # cuDLA inference context in hybrid mode [cuDLA inference]
├── cudla_context_hybrid.h              # cuDLA inference context in hybrid mode [cuDLA inference]
├── cudla_context_standalone.cpp # cuDLA inference context in standalone mode [cuDLA inference]
├── cudla_context_standalone.h   # cuDLA inference context in standalone mode [cuDLA inference]
├── decode_nms.cu                # Decode bbox and NMS [post-processing]
├── decode_nms.h                 # Decode bbox and NMS [post-processing]
├── matx_reformat                # data reformat for cuDLA inputs/outputs [pre-processing] and [post-processing]
│   ├── build_matx_reformat.sh
│   ├── CMakeLists.txt
│   ├── MatX
│   ├── matx_reformat.cu
│   ├── matx_reformat.h
│   ├── README.md
│   └── test.cpp
├── validate_coco.cpp            # Validation app, main function [jpg --> OpenCV decode]
├── yolov5.cpp                   # Yolov5 pipeline [pre-processing --> Inference(cuDLA) --> post-processing]
└── yolov5.h                     # Yolov5 pipeline [pre-processing --> Inference(cuDLA) --> post-processing]