diff --git a/README.md b/README.md
index aed7974e..c9e19414 100644
--- a/README.md
+++ b/README.md
@@ -1,78 +1,20 @@
+
+
+
-
+## GitHub project for NVIDIA Cosmos: https://github.com/nvidia-cosmos
---------------------------------------------------------------------------------
-### [Website](https://www.nvidia.com/en-us/ai/cosmos/) | [HuggingFace](https://huggingface.co/collections/nvidia/cosmos-6751e884dc10e013a0a0d8e6) | [GPU-free Preview](https://build.nvidia.com/explore/discover) | [Paper](https://arxiv.org/abs/2501.03575) | [Paper Website](https://research.nvidia.com/labs/dir/cosmos1/)
+NVIDIA Cosmos now includes three subprojects:
-[NVIDIA Cosmos](https://www.nvidia.com/cosmos/) is a developer-first world foundation model platform designed to help Physical AI developers build their Physical AI systems better and faster. Cosmos contains
+### Cosmos-Predict1: https://github.com/nvidia-cosmos/cosmos-predict1
+- Cosmos-Predict1 is a collection of general-purpose world foundation models for Physical AI that can be fine-tuned into customized world models for downstream applications.
-1. pre-trained models, available via [Hugging Face](https://huggingface.co/collections/nvidia/cosmos-6751e884dc10e013a0a0d8e6) under the [NVIDIA Open Model License](https://www.nvidia.com/en-us/agreements/enterprise-software/nvidia-open-model-license/) that allows commercial use of the models for free
-2. training scripts under the [Apache 2 License](https://www.apache.org/licenses/LICENSE-2.0), offered through [NVIDIA Nemo Framework](https://github.com/NVIDIA/NeMo) for post-training the models for various downstream Physical AI applications
+### Cosmos-Transfer1: https://github.com/nvidia-cosmos/cosmos-transfer1
+- Cosmos-Transfer1 is a world-to-world transfer model designed to bridge the perceptual divide between simulated and real-world environments.
-Details of the platform is described in the [Cosmos paper](https://research.nvidia.com/publication/2025-01_cosmos-world-foundation-model-platform-physical-ai). Preview access is avaiable at [build.nvidia.com](https://build.nvidia.com).
+### Cosmos-Reason1: https://github.com/nvidia-cosmos/cosmos-reason1
+- Cosmos-Reason1 models understand the physical common sense and generate appropriate embodied decisions in natural language through long chain-of-thought reasoning processes.
-## Key Features
+-----------------------------------------------------------
-- [Pre-trained Diffusion-based world foundation models](cosmos1/models/diffusion/README.md) for Text2World and Video2World generation where a user can generate visual simulation based on text prompts and video prompts.
-- [Pre-trained Autoregressive-based world foundation models](cosmos1/models/autoregressive/README.md) for Video2World generation where a user can generate visual simulation based on video prompts and optional text prompts.
-- [Video tokenizers](cosmos1/models/tokenizer) for tokenizing videos into continuous tokens (latent vectors) and discrete tokens (integers) efficiently and effectively.
-- Video curation pipeline for building your own video dataset. [Coming soon]
-- [Post-training scripts](cosmos1/models/POST_TRAINING.md) via NeMo Framework to post-train the pre-trained world foundation models for various Physical AI setup.
-- Pre-training scripts via NeMo Framework for building your own world foundation model. [[Diffusion](https://github.com/NVIDIA/NeMo/tree/main/nemo/collections/diffusion)] [[Autoregressive](https://github.com/NVIDIA/NeMo/tree/main/nemo/collections/multimodal_autoregressive)] [[Tokenizer](cosmos1/models/tokenizer/nemo/README.md)].
-
-## Model Family
-
-| Model name | Description | Try it out |
-|------------|----------|----------|
-| [Cosmos-1.0-Diffusion-7B-Text2World](https://huggingface.co/nvidia/Cosmos-1.0-Diffusion-7B-Text2World) | Text to visual world generation | [Inference](cosmos1/models/diffusion/README.md) |
-| [Cosmos-1.0-Diffusion-14B-Text2World](https://huggingface.co/nvidia/Cosmos-1.0-Diffusion-14B-Text2World) | Text to visual world generation | [Inference](cosmos1/models/diffusion/README.md) |
-| [Cosmos-1.0-Diffusion-7B-Video2World](https://huggingface.co/nvidia/Cosmos-1.0-Diffusion-7B-Video2World) | Video + Text based future visual world generation | [Inference](cosmos1/models/diffusion/README.md) |
-| [Cosmos-1.0-Diffusion-14B-Video2World](https://huggingface.co/nvidia/Cosmos-1.0-Diffusion-14B-Video2World) | Video + Text based future visual world generation | [Inference](cosmos1/models/diffusion/README.md) |
-| [Cosmos-1.0-Autoregressive-4B](https://huggingface.co/nvidia/Cosmos-1.0-Autoregressive-4B) | Future visual world generation | [Inference](cosmos1/models/autoregressive/README.md) |
-| [Cosmos-1.0-Autoregressive-12B](https://huggingface.co/nvidia/Cosmos-1.0-Autoregressive-12B) | Future visual world generation | [Inference](cosmos1/models/autoregressive/README.md) |
-| [Cosmos-1.0-Autoregressive-5B-Video2World](https://huggingface.co/nvidia/Cosmos-1.0-Autoregressive-5B-Video2World) | Video + Text based future visual world generation | [Inference](cosmos1/models/autoregressive/README.md) |
-| [Cosmos-1.0-Autoregressive-13B-Video2World](https://huggingface.co/nvidia/Cosmos-1.0-Autoregressive-13B-Video2World) | Video + Text based future visual world generation | [Inference](cosmos1/models/autoregressive/README.md) |
-| [Cosmos-1.0-Guardrail](https://huggingface.co/nvidia/Cosmos-1.0-Guardrail) | Guardrail contains pre-Guard and post-Guard for safe use | Embedded in model inference scripts |
-
-## Example Usage
-
-### Inference
-
-Follow the [Cosmos Installation Guide](INSTALL.md) to setup the docker. For inference with the pretrained models, please refer to [Cosmos Diffusion Inference](cosmos1/models/diffusion/README.md) and [Cosmos Autoregressive Inference](cosmos1/models/autoregressive/README.md).
-
-The code snippet below provides a gist of the inference usage.
-
-```bash
-PROMPT="A sleek, humanoid robot stands in a vast warehouse filled with neatly stacked cardboard boxes on industrial shelves. \
-The robot's metallic body gleams under the bright, even lighting, highlighting its futuristic design and intricate joints. \
-A glowing blue light emanates from its chest, adding a touch of advanced technology. The background is dominated by rows of boxes, \
-suggesting a highly organized storage system. The floor is lined with wooden pallets, enhancing the industrial setting. \
-The camera remains static, capturing the robot's poised stance amidst the orderly environment, with a shallow depth of \
-field that keeps the focus on the robot while subtly blurring the background for a cinematic effect."
-
-# Example using 7B model
-PYTHONPATH=$(pwd) python cosmos1/models/diffusion/inference/text2world.py \
- --checkpoint_dir checkpoints \
- --diffusion_transformer_dir Cosmos-1.0-Diffusion-7B-Text2World \
- --prompt "$PROMPT" \
- --offload_prompt_upsampler \
- --video_save_name Cosmos-1.0-Diffusion-7B-Text2World
-```
-
-
-
-We also offer [multi-GPU inference](cosmos1/models/diffusion/nemo/inference/README.md) support for Diffusion Text2World WFM models through NeMo Framework.
-
-### Post-training
-
-NeMo Framework provides GPU accelerated post-training with general post-training for both [diffusion](cosmos1/models/diffusion/nemo/post_training/README.md) and [autoregressive](cosmos1/models/autoregressive/nemo/post_training/README.md) models, with other types of post-training coming soon.
-
-## License and Contact
-
-This project will download and install additional third-party open source software projects. Review the license terms of these open source projects before use.
-
-NVIDIA Cosmos source code is released under the [Apache 2 License](https://www.apache.org/licenses/LICENSE-2.0).
-
-NVIDIA Cosmos models are released under the [NVIDIA Open Model License](https://www.nvidia.com/en-us/agreements/enterprise-software/nvidia-open-model-license). For a custom license, please contact [cosmos-license@nvidia.com](mailto:cosmos-license@nvidia.com).
+This repository will be archived soon. To check out the initial release of NVIDIA Cosmos, please follow [README_CES2025.md](README_CES2025.md).
diff --git a/README_CES2025.md b/README_CES2025.md
new file mode 100644
index 00000000..aed7974e
--- /dev/null
+++ b/README_CES2025.md
@@ -0,0 +1,78 @@
+
+
+
+--------------------------------------------------------------------------------
+### [Website](https://www.nvidia.com/en-us/ai/cosmos/) | [HuggingFace](https://huggingface.co/collections/nvidia/cosmos-6751e884dc10e013a0a0d8e6) | [GPU-free Preview](https://build.nvidia.com/explore/discover) | [Paper](https://arxiv.org/abs/2501.03575) | [Paper Website](https://research.nvidia.com/labs/dir/cosmos1/)
+
+[NVIDIA Cosmos](https://www.nvidia.com/cosmos/) is a developer-first world foundation model platform designed to help Physical AI developers build their Physical AI systems better and faster. Cosmos contains
+
+1. pre-trained models, available via [Hugging Face](https://huggingface.co/collections/nvidia/cosmos-6751e884dc10e013a0a0d8e6) under the [NVIDIA Open Model License](https://www.nvidia.com/en-us/agreements/enterprise-software/nvidia-open-model-license/) that allows commercial use of the models for free
+2. training scripts under the [Apache 2 License](https://www.apache.org/licenses/LICENSE-2.0), offered through [NVIDIA Nemo Framework](https://github.com/NVIDIA/NeMo) for post-training the models for various downstream Physical AI applications
+
+Details of the platform is described in the [Cosmos paper](https://research.nvidia.com/publication/2025-01_cosmos-world-foundation-model-platform-physical-ai). Preview access is avaiable at [build.nvidia.com](https://build.nvidia.com).
+
+## Key Features
+
+- [Pre-trained Diffusion-based world foundation models](cosmos1/models/diffusion/README.md) for Text2World and Video2World generation where a user can generate visual simulation based on text prompts and video prompts.
+- [Pre-trained Autoregressive-based world foundation models](cosmos1/models/autoregressive/README.md) for Video2World generation where a user can generate visual simulation based on video prompts and optional text prompts.
+- [Video tokenizers](cosmos1/models/tokenizer) for tokenizing videos into continuous tokens (latent vectors) and discrete tokens (integers) efficiently and effectively.
+- Video curation pipeline for building your own video dataset. [Coming soon]
+- [Post-training scripts](cosmos1/models/POST_TRAINING.md) via NeMo Framework to post-train the pre-trained world foundation models for various Physical AI setup.
+- Pre-training scripts via NeMo Framework for building your own world foundation model. [[Diffusion](https://github.com/NVIDIA/NeMo/tree/main/nemo/collections/diffusion)] [[Autoregressive](https://github.com/NVIDIA/NeMo/tree/main/nemo/collections/multimodal_autoregressive)] [[Tokenizer](cosmos1/models/tokenizer/nemo/README.md)].
+
+## Model Family
+
+| Model name | Description | Try it out |
+|------------|----------|----------|
+| [Cosmos-1.0-Diffusion-7B-Text2World](https://huggingface.co/nvidia/Cosmos-1.0-Diffusion-7B-Text2World) | Text to visual world generation | [Inference](cosmos1/models/diffusion/README.md) |
+| [Cosmos-1.0-Diffusion-14B-Text2World](https://huggingface.co/nvidia/Cosmos-1.0-Diffusion-14B-Text2World) | Text to visual world generation | [Inference](cosmos1/models/diffusion/README.md) |
+| [Cosmos-1.0-Diffusion-7B-Video2World](https://huggingface.co/nvidia/Cosmos-1.0-Diffusion-7B-Video2World) | Video + Text based future visual world generation | [Inference](cosmos1/models/diffusion/README.md) |
+| [Cosmos-1.0-Diffusion-14B-Video2World](https://huggingface.co/nvidia/Cosmos-1.0-Diffusion-14B-Video2World) | Video + Text based future visual world generation | [Inference](cosmos1/models/diffusion/README.md) |
+| [Cosmos-1.0-Autoregressive-4B](https://huggingface.co/nvidia/Cosmos-1.0-Autoregressive-4B) | Future visual world generation | [Inference](cosmos1/models/autoregressive/README.md) |
+| [Cosmos-1.0-Autoregressive-12B](https://huggingface.co/nvidia/Cosmos-1.0-Autoregressive-12B) | Future visual world generation | [Inference](cosmos1/models/autoregressive/README.md) |
+| [Cosmos-1.0-Autoregressive-5B-Video2World](https://huggingface.co/nvidia/Cosmos-1.0-Autoregressive-5B-Video2World) | Video + Text based future visual world generation | [Inference](cosmos1/models/autoregressive/README.md) |
+| [Cosmos-1.0-Autoregressive-13B-Video2World](https://huggingface.co/nvidia/Cosmos-1.0-Autoregressive-13B-Video2World) | Video + Text based future visual world generation | [Inference](cosmos1/models/autoregressive/README.md) |
+| [Cosmos-1.0-Guardrail](https://huggingface.co/nvidia/Cosmos-1.0-Guardrail) | Guardrail contains pre-Guard and post-Guard for safe use | Embedded in model inference scripts |
+
+## Example Usage
+
+### Inference
+
+Follow the [Cosmos Installation Guide](INSTALL.md) to setup the docker. For inference with the pretrained models, please refer to [Cosmos Diffusion Inference](cosmos1/models/diffusion/README.md) and [Cosmos Autoregressive Inference](cosmos1/models/autoregressive/README.md).
+
+The code snippet below provides a gist of the inference usage.
+
+```bash
+PROMPT="A sleek, humanoid robot stands in a vast warehouse filled with neatly stacked cardboard boxes on industrial shelves. \
+The robot's metallic body gleams under the bright, even lighting, highlighting its futuristic design and intricate joints. \
+A glowing blue light emanates from its chest, adding a touch of advanced technology. The background is dominated by rows of boxes, \
+suggesting a highly organized storage system. The floor is lined with wooden pallets, enhancing the industrial setting. \
+The camera remains static, capturing the robot's poised stance amidst the orderly environment, with a shallow depth of \
+field that keeps the focus on the robot while subtly blurring the background for a cinematic effect."
+
+# Example using 7B model
+PYTHONPATH=$(pwd) python cosmos1/models/diffusion/inference/text2world.py \
+ --checkpoint_dir checkpoints \
+ --diffusion_transformer_dir Cosmos-1.0-Diffusion-7B-Text2World \
+ --prompt "$PROMPT" \
+ --offload_prompt_upsampler \
+ --video_save_name Cosmos-1.0-Diffusion-7B-Text2World
+```
+
+
+
+We also offer [multi-GPU inference](cosmos1/models/diffusion/nemo/inference/README.md) support for Diffusion Text2World WFM models through NeMo Framework.
+
+### Post-training
+
+NeMo Framework provides GPU accelerated post-training with general post-training for both [diffusion](cosmos1/models/diffusion/nemo/post_training/README.md) and [autoregressive](cosmos1/models/autoregressive/nemo/post_training/README.md) models, with other types of post-training coming soon.
+
+## License and Contact
+
+This project will download and install additional third-party open source software projects. Review the license terms of these open source projects before use.
+
+NVIDIA Cosmos source code is released under the [Apache 2 License](https://www.apache.org/licenses/LICENSE-2.0).
+
+NVIDIA Cosmos models are released under the [NVIDIA Open Model License](https://www.nvidia.com/en-us/agreements/enterprise-software/nvidia-open-model-license). For a custom license, please contact [cosmos-license@nvidia.com](mailto:cosmos-license@nvidia.com).
diff --git a/assets/nvidia-cosmos-header.png b/assets/nvidia-cosmos-header.png
new file mode 100644
index 00000000..f9ad8db0
Binary files /dev/null and b/assets/nvidia-cosmos-header.png differ