-
Notifications
You must be signed in to change notification settings - Fork 424
/
Copy pathconfig.py
69 lines (55 loc) · 2.14 KB
/
config.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
# SPDX-FileCopyrightText: Copyright (c) 2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from functools import lru_cache
from transformers import AutoConfig, AutoModelForCausalLM, AutoTokenizer, pipeline
from nemoguardrails.llm.helpers import get_llm_instance_wrapper
from nemoguardrails.llm.providers import (
HuggingFacePipelineCompatible,
register_llm_provider,
)
@lru_cache
def get_dolly_v2_3b_llm(streaming: bool = True):
name = "databricks/dolly-v2-3b"
config = AutoConfig.from_pretrained(name, trust_remote_code=True)
device = "cpu"
config.init_device = device
config.max_seq_len = 45
model = AutoModelForCausalLM.from_pretrained(
name,
config=config,
trust_remote_code=True,
)
tokenizer = AutoTokenizer.from_pretrained(name)
params = {"temperature": 0.01, "max_new_tokens": 100}
# If we want streaming, we create a streamer.
if streaming:
from nemoguardrails.llm.providers.huggingface import AsyncTextIteratorStreamer
streamer = AsyncTextIteratorStreamer(tokenizer, skip_prompt=True)
params["streamer"] = streamer
pipe = pipeline(
model=model,
task="text-generation",
tokenizer=tokenizer,
device=device,
do_sample=True,
use_cache=True,
**params,
)
llm = HuggingFacePipelineCompatible(pipeline=pipe, model_kwargs=params)
return llm
HFPipelineDolly = get_llm_instance_wrapper(
llm_instance=get_dolly_v2_3b_llm(), llm_type="hf_pipeline_dolly"
)
register_llm_provider("hf_pipeline_dolly", HFPipelineDolly)