-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathDPDDI_train.py
420 lines (360 loc) · 16.6 KB
/
DPDDI_train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Sat Jul 13 10:45:18 2019
comparing three features of structions,DBP and ATC
@author: fyh
"""
from __future__ import division
from __future__ import print_function
import csv
import time
import os
import h5py
import copy
import numpy as np
import pandas as pd
from pandas import Series,DataFrame
import scipy.io as sio
import tensorflow as tf
import scipy.sparse as sp
import random
import time
from keras import models
from keras import layers
from keras import utils
from keras import optimizers
from keras import losses
from keras import metrics
from keras.callbacks import Callback
from keras.models import Model # 泛型模型
from keras.layers import Dense, Input
import matplotlib.pyplot as plt
from numpy import linalg as LA
from sklearn.model_selection import train_test_split
from sklearn.metrics import roc_auc_score
from sklearn.metrics import average_precision_score
from sklearn.metrics import precision_score
from sklearn.metrics import confusion_matrix
from sklearn.metrics import classification_report
import matplotlib.pyplot as plt
from sklearn.metrics import roc_curve, auc
from sklearn.metrics import accuracy_score
from sklearn.metrics import recall_score
from sklearn.metrics import f1_score
from sklearn.metrics import precision_recall_curve
from gae.optimizer import OptimizerAE
from gae.model import GCNModelAE
def get_roc_score1(edges_pos, edges_neg,emb=None):
if emb is None:
feed_dict.update({placeholders['dropout']: 0})
emb = sess.run(model.z_mean, feed_dict=feed_dict)
def sigmoid(x):
return 1 / (1 + np.exp(-x))
# Predict on test set of edges
adj_rec = np.dot(emb, emb.T)
preds = []
pred_probability_pos = []
pos = []
for e in edges_pos:
pred_probability_pos.append(adj_rec[e[0], e[1]])
preds.append(sigmoid(adj_rec[e[0], e[1]]))
pos.append(adj_orig[e[0], e[1]])
preds_neg = []
pred_probability_neg = []
neg = []
for e in edges_neg:
pred_probability_neg.append(adj_rec[e[0], e[1]])
preds_neg.append(sigmoid(adj_rec[e[0], e[1]]))
neg.append(adj_orig[e[0], e[1]])
preds_all = np.hstack([preds, preds_neg])
preds_probability_all = np.hstack([pred_probability_pos, pred_probability_neg])
labels_all = np.hstack([np.ones(len(preds)), np.zeros(len(preds_neg))])
roc_score = roc_auc_score(labels_all, preds_probability_all) ## preds_all
precision, recall, pr_thresholds = precision_recall_curve(labels_all, preds_probability_all)
aupr_score = auc(recall, precision)
return roc_score, aupr_score
def get_roc_score2(pre,preds_probability_all,y_test):
preds_all = np.array(pre)
preds_probability_all = np.array(pre)
labels_all = np.array(y_test)
roc_score = roc_auc_score(labels_all,preds_probability_all)
precision, recall, pr_thresholds = precision_recall_curve(labels_all, preds_probability_all ) ##preds_all preds_probability_all
aupr_score = auc(recall, precision)
#
all_F_measure=np.zeros(len(pr_thresholds))
for k in range(0,len(pr_thresholds)):
if (precision[k]+precision[k])>0:
all_F_measure[k]=2*precision[k]*recall[k]/(precision[k]+recall[k])
else:
all_F_measure[k]=0
max_index=all_F_measure.argmax()
threshold=pr_thresholds[max_index]
#
fpr, tpr, auc_thresholds = roc_curve(labels_all, preds_probability_all)
auc_score = auc(fpr, tpr)
predicted_score=np.zeros(shape=(len(labels_all),1))
predicted_score[preds_probability_all>threshold]=1
confusion_matri = confusion_matrix(y_true=labels_all, y_pred=predicted_score)
print("confusion_matrix:",confusion_matri)
f=f1_score(labels_all,predicted_score)
accuracy=accuracy_score(labels_all,predicted_score)
precision=precision_score(labels_all,predicted_score)
recall=recall_score(labels_all,predicted_score)
return roc_score, aupr_score,precision, recall,accuracy,f
def sparse_to_tuple(sparse_mx):
if not sp.isspmatrix_coo(sparse_mx):
sparse_mx = sparse_mx.tocoo()
coords = np.vstack((sparse_mx.row, sparse_mx.col)).transpose()
values = sparse_mx.data
shape = sparse_mx.shape
return coords, values, shape
def preprocess_graph(adj):
adj = sp.coo_matrix(adj)
adj_ = adj + sp.eye(adj.shape[0])
rowsum = np.array(adj_.sum(1))
degree_mat_inv_sqrt = sp.diags(np.power(rowsum, -0.5).flatten())
adj_normalized = adj_.dot(degree_mat_inv_sqrt).transpose().dot(degree_mat_inv_sqrt).tocoo()
return sparse_to_tuple(adj_normalized)
def construct_feed_dict(adj_normalized, adj, features, placeholders):
# construct feed dictionary
feed_dict = dict()
feed_dict.update({placeholders['features']: features})
feed_dict.update({placeholders['adj']: adj_normalized})
feed_dict.update({placeholders['adj_orig']: adj})
return feed_dict
def mask_test_edges(adj):
# Remove diagonal elements
adj = adj - sp.dia_matrix((adj.diagonal()[np.newaxis, :], [0]), shape=adj.shape)
adj.eliminate_zeros()
# Check that diag is zero:
assert np.diag(adj.todense()).sum() == 0
train_edges, train_edges_false, val_edges, val_edges_false, test_edges, test_edges_false = [],[],[],[],[],[]
adj_train = []
# kfold = 5
# num_train_kd = edges.shape[0]// kfold
# num_test_kd = int(np.floor(num_train_kd * 0.2))
# num_val_kd = int(np.floor(num_train_kd * 0.5)) #num_train_kd / 20.
link_number = 0
non_link_number = 0
link_position = []
non_link_position = [] # all non-link position
for i in range(0, adj.shape[0]):
for j in range(i + 1, adj.shape[1]):
if adj[i, j] == 1:
link_number = link_number + 1
link_position.append([i, j])
elif adj[i,j] ==0:
non_link_number = non_link_number +1
non_link_position.append([i,j])
link_position = np.array(link_position)
non_link_position = np.array(non_link_position)
seed = 12
random.seed(seed)
link_index = np.arange(0, link_number)
non_link_index = np.arange(0,non_link_number)
random.shuffle(link_index)
random.shuffle(non_link_index)
kfold = 5
num_train_kd = link_number// kfold
num_test_kd = int(np.floor(num_train_kd * 0.2))
num_val_kd = int(np.floor(num_train_kd * 0.5)) #num_train_kd / 20.
num_negtive_kd = non_link_number // kfold
for i in range(kdfold):
train_link_index = link_index[i *num_train_kd:(i+1)*num_train_kd]
test_link_index = train_link_index[0:num_test_kd]
val_link_index = train_link_index[num_test_kd:num_test_kd + num_val_kd]
train_index = train_link_index[num_test_kd + num_val_kd:num_train_kd]
train_index.sort()
val_link_index.sort()
test_link_index.sort()
train_edges.append(link_position[train_index])
val_edges.append(link_position[val_link_index])
test_edges.append(link_position[test_link_index])
fold =6
kd_no_link_index = non_link_index[i*num_negtive_kd:(i+1)*num_negtive_kd]
test_no_link_index = kd_no_link_index[0: fold * num_test_kd]
val_no_link_index = kd_no_link_index[fold * num_test_kd:fold * (num_test_kd + num_val_kd)]
train_no_link_index = kd_no_link_index[fold * (num_test_kd + num_val_kd):num_negtive_kd]
train_no_index.sort()
val_no_link_index.sort()
test_no_link_index.sort()
train_edges_false.append(non_link_position[train_no_index])
val_edges_false.append(non_link_position[val_no_link_index])
test_edges_false.append(non_link_position[test_no_link_index])
data = np.ones(train_edges.shape[0])
# Re-build adj matrix
adj_train_rebuild = sp.csr_matrix((data, (train_edges[:, 0], train_edges[:, 1])), shape=adj.shape)
adj_train_rebuild = adj_train_rebuild + adj_train_rebuild.T
adj_train.append(adj_train_rebuild)
return adj_train, train_edges, train_edges_false,val_edges, val_edges_false, test_edges, test_edges_false
def node_trans_edges(test_edges,test_edges_false,val_edges,val_edges_false,train_edges,train_edges_false):
if type(test_edges) != list:
test_edges = test_edges.tolist()
if type(train_edges_false) != list:
train_edges_false = train_edges_false.tolist()
if type(train_edges) != list:
train_edges = train_edges.tolist()
if type(test_edges_false) != list:
test_edges_false = test_edges_false.tolist()
if type(val_edges) != list:
val_edges = val_edges.tolist()
if type(val_edges_false) != list:
val_edges_false = val_edges_false.tolist()
x_train_index = train_edges + train_edges_false
y_train = [1]*len(train_edges) + [0] * len(train_edges_false)
x_val_index = val_edges + val_edges_false
y_val = [1]*len(val_edges) + [0] * len(val_edges_false)
x_test_index = test_edges + test_edges_false
y_test = [1]*len(test_edges) + [0] * len(test_edges_false)
x_train = []
x_val = []
x_test = []
###transform node embdding to edges feature by concat opration
t = time.time()
for i in range(len(x_train_index)):
x_train.append(np.hstack((embedding[ x_train_index[i][0]],embedding[ x_train_index[i][1]])))
for i in range(len(x_val_index)):
x_val.append(np.hstack((embedding[ x_val_index[i][0]],embedding[ x_val_index[i][1]])))
for i in range(len(x_test_index)):
x_test.append(np.hstack((embedding[ x_test_index[i][0]] ,embedding[ x_test_index[i][1]])))
print("cost time of embedding concat", time.time()-t)
y_train = utils.to_categorical(y_train, 2)
y_test = utils.to_categorical(y_test, 2)
y_val = utils.to_categorical(y_val, 2)
x_train = np.matrix(x_train)
x_test = np.matrix(x_test)
x_val = np.matrix(x_val)
y_train = np.array(y_train)
y_test = np.array(y_test)
y_val = np.array(y_val)
print("fill embedding data accomplishment")
return x_train, x_test, x_val, y_train, y_test, y_val
class RocAucEvaluation(Callback):
def __init__(self, validation_data=(), interval=1):
super(Callback, self).__init__()
self.interval = interval
self.x_val,self.y_val = validation_data
def on_epoch_end(self, epoch, log={}):
if epoch % self.interval == 0:
y_pred = self.model.predict(self.x_val, verbose=0)
score = roc_auc_score(self.y_val, y_pred)
print('\n ROC_AUC - epoch:%d - score:%.6f \n' % (epoch+1, score))
# Settings
flags = tf.app.flags
FLAGS = flags.FLAGS
flags.DEFINE_float('learning_rate', 0.001, 'Initial learning rate.')
flags.DEFINE_integer('epochs', 1200, 'Number of epochs to train.')
flags.DEFINE_integer('hidden1', 700, 'Number of units in hidden layer 1.')
flags.DEFINE_integer('hidden2', 256, 'Number of units in hidden layer 2. ')
#flags.DEFINE_integer('hidden3', 128, 'Number of units in hidden layer 2. ')
#flags.DEFINE_integer('hidden4', 128, 'Number of units in hidden layer 2. ')
flags.DEFINE_float('weight_decay', 0, 'Weight for L2 loss on embedding matrix.')
flags.DEFINE_float('dropout', 0., 'Dropout rate (1 - keep probability).')
flags.DEFINE_string('model', 'gcn_ae', 'Model string.')
flags.DEFINE_string('dataset', 'cora', 'Dataset string.')
flags.DEFINE_integer('features',0, 'Whether to use features (1) or not (0).')
model_str = FLAGS.model
dataset_str = FLAGS.dataset
###======================读入要处理的数据为dataframe格式==================
#
filename = 'D:/CODE-myself/matlab/Data/Data.mat'
data = h5py.File(filename,'r')
adj = data['Adj_binary'][:]
adj = adj.transpose()
adj_copy = copy.deepcopy(adj)
adj = sp.csr.csr_matrix(adj)
# Store original adjacency matrix (without diagonal entries) for later
adj_orig = adj
adj_orig = adj_orig - sp.dia_matrix((adj_orig.diagonal()[np.newaxis,:], [0]), shape=adj_orig.shape)
adj_orig.eliminate_zeros()
if FLAGS.features == 0:
features = sp.identity(adj.shape[0]) # featureless
# Define placeholders
placeholders = {
'features': tf.sparse_placeholder(tf.float32),
'adj': tf.sparse_placeholder(tf.float32),
'adj_orig': tf.sparse_placeholder(tf.float32),
'dropout': tf.placeholder_with_default(0., shape=())
}
num_nodes = adj.shape[0]
features = sparse_to_tuple(features.tocoo())
num_features = features[2][1]
features_nonzero = features[1].shape[0]
adj_train, train_edges, train_edges_false, val_edges, val_edges_false, test_edges, test_edges_false = mask_test_edges(adj)
roc_score_arr,aupr_score_arr,precision_arr, recall_arr,accuracy_arr,f_arr = [],[],[],[],[],[]
print("split end")
CV = 5
for i in range(CV):
adj = adj_train[i]
adj_norm = preprocess_graph(adj) # Some preprocessing
model = GCNModelAE(placeholders, num_features, features_nonzero)
pos_weight = float(adj.shape[0] * adj.shape[0] - adj.sum()) / adj.sum()
norm = adj.shape[0] * adj.shape[0] / float((adj.shape[0] * adj.shape[0] - adj.sum()) * 2)
with tf.name_scope('optimizer'): # Optimizer
if model_str == 'gcn_ae':
opt = OptimizerAE(preds=model.reconstructions,
labels=tf.reshape(tf.sparse_tensor_to_dense(placeholders['adj_orig'],
validate_indices=False), [-1]),
pos_weight=pos_weight,
norm=norm)
sess = tf.Session() # Initialize sessioN
sess.run(tf.global_variables_initializer())
cost_val = []
acc_val = []
val_roc_score = []
adj_label = adj_train + sp.eye(adj_train.shape[0])
adj_label = sparse_to_tuple(adj_label)
for epoch in range(FLAGS.epochs):# Train model #train_loss, train_acc= [],[]
t = time.time()
feed_dict = construct_feed_dict(adj_norm, adj_label, features, placeholders) # Construct feed dictionary
feed_dict.update({placeholders['dropout']: FLAGS.dropout})
# Run single weight update
outs = sess.run([opt.opt_op, opt.cost, opt.accuracy], feed_dict=feed_dict)
# Compute average loss
avg_cost = outs[1]
avg_accuracy = outs[2]
# train_loss.append(avg_cost)
# train_acc.append(avg_accuracy)
roc_curr, aupr_score = get_roc_score1(val_edges, val_edges_false)
print("Epoch:", '%04d' % (epoch + 1), "train_loss=", "{:.5f}".format(avg_cost),
"train_acc=", "{:.5f}".format(avg_accuracy), "val_roc=", "{:.5f}".format(val_roc_score[-1]),
"val_ap=", "{:.5f}".format(aupr_score),
"time=", "{:.5f}".format(time.time() - t))
print("Optimization Finished!")
x_train, x_test, x_val, y_train, y_test, y_val = node_trans_edges(test_edges[i],test_edges_false[i],val_edges[i],val_edges_false[i],train_edges[i],train_edges_false[i])
RocAuc = RocAucEvaluation(validation_data=(x_val,y_val), interval=1)
####=====================deep learning model to predict =============================
####embedding 串联的模型 得到256维的数据
model = models.Sequential()
model.add(layers.Dense(128, activation='relu', input_shape=(256,)))
model.add(layers.Dense(64, activation='relu', input_shape=(128,)))
model.add(layers.Dense(32, activation='relu', input_shape=(64,)))
model.add(layers.Dense(2, activation='softmax'))
model.compile(optimizer=optimizers.Adagrad(lr=0.01, epsilon=None, decay=0.0), ## optimizer='adam'
loss=losses.binary_crossentropy,
metrics=[metrics.binary_accuracy])
print("model complie incomplishment,model fit begin")
# 训练网络
model.fit(x_train,y_train, batch_size=50, epochs=200,validation_data=(x_val, y_val), callbacks=[RocAuc], verbose=2)
pre = model.predict(x_test) ###输出的每一类的概率,如果是二分类,就是size(test) *2
pre_lab = np.argmax(model.predict(x_test), axis=1)
y_test = [y_test[i][1] for i in range(len(y_test))]
pre_probability = [pre[i][1] for i in range(len(pre))]
roc_score,aupr_score,precision, recall,accuracy,f = get_roc_score2(pre_lab,pre_probability,y_test)
roc_score_arr.append(roc_score)
aupr_score_arr.append(aupr_score)
precision_arr.append(precision)
recall_arr.append(recall)
accuacy_arr.append(accuracy)
f_arr.append(f)
print(roc_score,aupr_score,precision, recall,accuracy,f)
roc_score = np.mean(roc_score_arr)
aupr_score = np.mean(aupr_score_arr)
precision = np.mean(precision_arr)
recall = np.mean(recall_arr)
accuracy = np.mean(accuacy_arr)
f = np.mean(f_arr)
print( "roc_score=", "{:.5f}".format(roc_score), "aupr_score =", "{:.5f}".format(aupr_score ),
"precision=", "{:.5f}".format(precision), "recall=", "{:.5f}".format(recall),
"accuracy =", "{:.5f}".format(accuracy ), "f =", "{:.5f}".format(f))