-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathnotes.tex
75 lines (57 loc) · 2.77 KB
/
notes.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
\documentclass[10pt]{article}
\usepackage[utf8]{inputenc}
\usepackage{amsmath}
% partial derivative as a fraction
\newcommand{\fracpd}[2]{
\ensuremath{\frac{\partial #1}{\partial #2}}
}
\begin{document}
% --------------------------------------- %
% Section
% --------------------------------------- %
\section{Introduction}
This repository holds the solutions to a general set of growth models that incorporate the following explore the differences between
\begin{itemize}
\item One Agent vs Two Agent
\item One Good vs Two Goods
\item Time Additive Preferences vs Recursive Preferences
\item Constant Volatility vs Stochastic Volatility
\end{itemize}
By solve the 16 possible versions of this model, we are able to isolate the effects of each bell and whistle that we include in the model.
% --------------------------------------- %
% Section
% --------------------------------------- %
\section{One Agent One Good General Model}
We will write our one agent general unscaled model as the following:
\begin{align*}
J_t(k_t, x_t, v_t) &= \max_{k_{t+1}} \left[(1 - \beta) c_t^{\rho} + \beta \mu(J_{t+1}(k_{t+1}, x_{t+1}, v_{t+1}))^{\rho} \right]^{\frac1\rho} \\
\text{Subject To }& \\
c_t &= \left[ \eta k_{t}^{\nu} + (1 - \eta) z_t^{\nu} \right]^{\frac1\nu} + (1 - \delta) k_t - k_{t+1} \\
x_{t+1} &= A x_{t} + B v_t^{\frac{1}{2}} \varepsilon_{1, t+1} \\
v_{t+1} &= (1 - \phi_v) \bar{v} + \phi_v v_{t} + \tau \varepsilon_{2, t+1} \\
\log(z_t) &= \log(z_{t-1}) + \log(\bar{g}) + x_t
\end{align*}
We could then scale the model by dividing by $z_t$ to give us (will not both writing tildes for now -- everything here is divided by $z_t$)
\begin{align*}
J_t(k_t, x_t, v_t) &= \max_{\chi_{t}} \left[(1 - \beta) c_t^{\rho} + \beta \mu(J_{t+1}(k_{t+1}, x_{t+1}, v_{t+1}) g_{t+1})^{\rho} \right]^{\frac1\rho} \\
\text{Subject To }& \\
c_t &= \left[ \eta k_{t}^{\nu} + (1 - \eta) \right]^{\frac1\nu} + (1 - \delta) k_t - \chi_t \\
\chi_t &= k_{t+1} g_{t+1} \\
x_{t+1} &= A x_{t} + B v_{t}^{\frac{1}{2}} \varepsilon_{1, t+1} \\
v_{t+1} &= (1 - \phi_v) \bar{v} + \phi_v v_{t} + \tau \varepsilon_{2, t+1} \\
\log(g_t) &= \log(z_t) - \log(z_{t-1}) = \log(\bar{g}) + x_t
\end{align*}
Notice we can get constant volatility by allowing $\tau = \phi_v = 0$ or time separable preferences by $\rho = \alpha$.
% --------------------------------------- %
% Section
% --------------------------------------- %
\section{One Agent Two Goods General Model}
% --------------------------------------- %
% Section
% --------------------------------------- %
\section{Two Agent One Good General Model}
% --------------------------------------- %
% Section
% --------------------------------------- %
\section{Two Agent Two Goods General Model}
\end{document}