-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy path10-2- Perceptron-Classification.py
141 lines (111 loc) · 4.12 KB
/
10-2- Perceptron-Classification.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
# Load training and test data from CSV files
Train_data = pd.read_csv('linear_data_train.csv').to_numpy()
Test_data = pd.read_csv('linear_data_test.csv').to_numpy()
# Extract features and labels for training and test sets
X_train = Train_data[:, [0,1]]
Y_train = Train_data[:, 2]
X_test = Test_data[:, [0,1]]
Y_test = Test_data[:, 2]
# Reshape labels for compatibility with numpy operations
Y_train = Y_train.reshape(-1, 1)
Y_test = Y_test.reshape(-1, 1)
class Perceptron:
def __init__(self):
pass
def train(self, itr, X_train, Y_train):
"""
Train the perceptron model.
Args:
itr (int): Number of iterations for training.
X_train (numpy.ndarray): Input features for training.
Y_train (numpy.ndarray): Output labels for training.
Returns:
list: Mean absolute error (MAE) for each iteration.
list: Mean squared error (MSE) for each iteration.
"""
x_range = np.arange(X_train[:, 0].min(), X_train[:, 0].max(), 0.1)
y_range = np.arange(X_train[:, 1].min(), X_train[:, 1].max(), 0.1)
x, y = np.meshgrid(x_range, y_range)
self.W = np.random.rand(2)
lr = 0.001
MAE = []
MSE = []
for i in range(X_train.shape[0]):
x_train = X_train[i].reshape(1, -1)
y_pred = np.matmul(x_train, self.W)
e = Y_train[i] - y_pred
self.W = self.W + e * lr * X_train[i]
Y_pred = np.matmul(X_train, self.W)
mae = np.mean(np.square(Y_train - Y_pred))
MAE.append(mae)
mse = np.mean(np.abs(Y_train - Y_pred))
MSE.append(mse)
# Plot
ax.clear()
z = x * model.W[0] + y * model.W[1]
ax.plot_surface(x, y, z, alpha=0.8, rstride=1, cstride=1)
ax.scatter(X_train[:, 0], X_train[:, 1], Y_train, c='m', marker='o')
ax.set_xlabel('X0')
ax.set_ylabel('X1')
ax.set_zlabel('Y')
plt.pause(0.001)
plt.show()
return MAE, MSE
def predict(self, X_test):
"""
Predict output labels for test data using the trained model.
Args:
X_test (numpy.ndarray): Input features for testing.
Returns:
numpy.ndarray: Predicted output labels.
"""
Y_pred = np.matmul(X_test, self.W)
Y_pred[Y_pred > 0] = 1
Y_pred[Y_pred < 0] = -1
return Y_pred
def evaluate(self, X_test, Y_test, metric):
"""
Evaluate the performance of the model on the test data.
Args:
X_test (numpy.ndarray): Input features for testing.
Y_test (numpy.ndarray): True output labels for testing.
metric (str): Metric to use for evaluation (e.g., 'MAE', 'MSE', 'accuracy').
Returns:
float: Evaluation result based on the specified metric.
"""
Y_pred = np.matmul(X_test, self.W)
Y_pred = Y_pred.reshape(-1, 1)
if metric == 'MAE':
absolute_error = np.abs(Y_pred - Y_test)
absolute_error = np.round(absolute_error, 1)
evaluation = np.mean(absolute_error)
if metric == 'MSE':
squared_error = (Y_pred - Y_test) ** 2
squared_error = np.round(squared_error, 1)
evaluation = np.mean(squared_error)
if metric == 'accuracy':
Y_pred[Y_pred > 0] = 1
Y_pred[Y_pred < 0] = -1
evaluation = np.count_nonzero(Y_pred == Y_test) / len(Y_test)
return evaluation
# 3D plot data
fig = plt.figure()
ax = fig.add_subplot(projection='3d')
ax.view_init(10, 70)
iteration = 1000
model = Perceptron()
MAE, MSE = model.train(iteration, X_train, Y_train)
Y_pred = model.predict(X_test)
accuracy = model.evaluate(X_test, Y_test, 'accuracy')
MSE_test = model.evaluate(X_test, Y_test, 'MSE')
MAE_test = model.evaluate(X_test, Y_test, 'MAE')
print("accuracy_test", accuracy)
print("MSE_test", MSE_test)
print("MAE_test", MAE_test)
plt.plot((np.arange(len(MAE))), MAE, c='b')
plt.grid(True)
plt.xticks(np.arange(0,len(MAE)+1,100))
plt.xlabel