Skip to content

Commit

Permalink
Merge pull request #408 from jnesfield/main
Browse files Browse the repository at this point in the history
Added Numerical Range Data Quality Check
  • Loading branch information
nnansters authored Jul 19, 2024
2 parents 8507064 + 5730807 commit 123d3b7
Show file tree
Hide file tree
Showing 11 changed files with 562 additions and 17 deletions.
2 changes: 1 addition & 1 deletion nannyml/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -39,7 +39,7 @@

from .calibration import Calibrator, IsotonicCalibrator, needs_calibration
from .chunk import Chunk, Chunker, CountBasedChunker, DefaultChunker, PeriodBasedChunker, SizeBasedChunker
from .data_quality import MissingValuesCalculator, UnseenValuesCalculator
from .data_quality import MissingValuesCalculator, UnseenValuesCalculator, NumericalRangeCalculator
from .datasets import (
load_modified_california_housing_dataset,
load_synthetic_binary_classification_dataset,
Expand Down
1 change: 1 addition & 0 deletions nannyml/data_quality/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -7,3 +7,4 @@

from .missing import MissingValuesCalculator
from .unseen import UnseenValuesCalculator
from .range import NumericalRangeCalculator
3 changes: 1 addition & 2 deletions nannyml/data_quality/missing/calculator.py
Original file line number Diff line number Diff line change
Expand Up @@ -76,8 +76,7 @@ def __init__(
... timestamp_column_name='timestamp',
... ).fit(reference_df)
>>> res = calc.calculate(analysis_df)
>>> for column_name in res.feature_column_names:
... res = res.filter(period='analysis', column_name=column_name).plot().show()
>>> res.filter(period='analysis').plot().show()
"""
super(MissingValuesCalculator, self).__init__(
chunk_size, chunk_number, chunk_period, chunker, timestamp_column_name
Expand Down
3 changes: 1 addition & 2 deletions nannyml/data_quality/missing/result.py
Original file line number Diff line number Diff line change
Expand Up @@ -79,8 +79,7 @@ def plot(
... timestamp_column_name='timestamp',
... ).fit(reference)
>>> res = calc.calculate(analysis)
>>> for column_name in res.column_names:
... res = res.filter(period='analysis', column_name=column_name).plot().show()
>>> res.filter(period='analysis').plot().show()
"""
return plot_metrics(
Expand Down
8 changes: 8 additions & 0 deletions nannyml/data_quality/range/__init__.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,8 @@
# Author: James Nesfield <jamesnesfield@live.com>
#
# License: Apache Software License 2.0

"""Package containing the Data Quality Calculators implementation."""

from .calculator import NumericalRangeCalculator
from .result import Result
263 changes: 263 additions & 0 deletions nannyml/data_quality/range/calculator.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,263 @@
# Author: James Nesfield <jamesnesfield@live.com>
#
# License: Apache Software License 2.0

"""Continuous numerical variable range monitor to ensure range supplied is within training bounds."""

from typing import Any, Dict, List, Optional, Union

import numpy as np
import pandas as pd
from pandas import MultiIndex

from nannyml.base import AbstractCalculator, _list_missing, _split_features_by_type
from nannyml.chunk import Chunker
from nannyml.exceptions import InvalidArgumentsException
from nannyml.thresholds import Threshold, calculate_threshold_values, ConstantThreshold
from nannyml.usage_logging import UsageEvent, log_usage
from .result import Result

"""
Values Out Of Range Data Quality Module.
"""


class NumericalRangeCalculator(AbstractCalculator):
"""NumericalRangeCalculator ensures the monitoring data set numerical ranges match the reference data set ones."""

def __init__(
self,
column_names: Union[str, List[str]],
normalize: bool = True,
timestamp_column_name: Optional[str] = None,
chunk_size: Optional[int] = None,
chunk_number: Optional[int] = None,
chunk_period: Optional[str] = None,
chunker: Optional[Chunker] = None,
threshold: Threshold = ConstantThreshold(lower=None, upper=0),
):
"""Creates a new NumericalRangeCalculator instance.
Parameters
----------
column_names: Union[str, List[str]]
A string or list containing the names of features in the provided data set.
Missing Values will be calculated for each entry in this list.
normalize: bool, default=True
Whether to provide the missing value ratio (True) or the absolute number of missing values (False).
timestamp_column_name: str
The name of the column containing the timestamp of the model prediction.
chunk_size: int
Splits the data into chunks containing `chunks_size` observations.
Only one of `chunk_size`, `chunk_number` or `chunk_period` should be given.
chunk_number: int
Splits the data into `chunk_number` pieces.
Only one of `chunk_size`, `chunk_number` or `chunk_period` should be given.
chunk_period: str
Splits the data according to the given period.
Only one of `chunk_size`, `chunk_number` or `chunk_period` should be given.
chunker : Chunker
The `Chunker` used to split the data sets into a lists of chunks.
threshold: Threshold, default=StandardDeviationThreshold
The threshold you wish to evaluate values on. Defaults to a StandardDeviationThreshold with default
options. The other available value is ConstantThreshold.
Examples
--------
>>> import nannyml as nml
>>> reference_df, analysis_df, _ = nml.load_synthetic_car_price_dataset()
>>> feature_column_names = [col for col in reference_df.columns if col not in [
... 'fuel','transmission','timestamp', 'y_pred', 'y_true']]
>>> calc = nml.NumericalRangeCalculator(
... column_names=feature_column_names,
... timestamp_column_name='timestamp',
... ).fit(reference_df)
>>> res = calc.calculate(analysis_df)
>>> res.filter(period='analysis').plot().show()
"""
super(NumericalRangeCalculator, self).__init__(
chunk_size, chunk_number, chunk_period, chunker, timestamp_column_name
)
if isinstance(column_names, str):
self.column_names = [column_names]
elif isinstance(column_names, list):
for el in column_names:
if not isinstance(el, str):
raise InvalidArgumentsException(
f"column_names elements should be either a column name string or a list of strings, found\n{el}"
)
self.column_names = column_names
else:
raise InvalidArgumentsException(
"column_names should be either a column name string or a list of columns names strings, "
"found\n{column_names}"
)
self.result: Optional[Result] = None

# threshold strategy is the same across all columns
self.threshold = threshold
self._upper_alert_thresholds: Dict[str, Optional[float]] = {column_name: 0 for column_name in self.column_names}
self._lower_alert_thresholds: Dict[str, Optional[float]] = {column_name: 0 for column_name in self.column_names}

self.lower_threshold_value_limit: float = 0
self.upper_threshold_value_limit: Optional[float] = None
self.normalize = normalize

if self.normalize:
self.data_quality_metric = 'out_of_range_values_rate'
self.upper_threshold_value_limit = 1
else:
self.data_quality_metric = 'out_of_range_values_count'
self.upper_threshold_value_limit = np.nan

# object tracks values as list [min,max]
self._reference_value_ranges: Dict[str, list] = {column_name: list() for column_name in self.column_names}

def _calculate_out_of_range_stats(self, data: pd.Series, lower_bound: float, upper_bound: float):
# to do make this calc out of range stats
count_tot = data.shape[0]
count_out_of_range = ((data < lower_bound) | (data > upper_bound)).sum()
if self.normalize:
count_out_of_range = count_out_of_range / count_tot
return count_out_of_range

@log_usage(UsageEvent.DQ_CALC_VALUES_OUT_OF_RANGE_FIT, metadata_from_self=['normalize'])
def _fit(self, reference_data: pd.DataFrame, *args, **kwargs):
"""Fits the drift calculator to a set of reference data."""
if reference_data.empty:
raise InvalidArgumentsException('data contains no rows. Please provide a valid data set.')

_list_missing(self.column_names, reference_data)

# All provided columns must be continuous
# We do not make int categorical
continuous_column_names, categorical_column_names = _split_features_by_type(reference_data, self.column_names)
if not set(self.column_names) == set(continuous_column_names):
raise InvalidArgumentsException(
f"Specified columns_names for NumericalRangeCalculator must all be continuous. "
f"Categorical columns found: {categorical_column_names}"
)

for col in self.column_names:
self._reference_value_ranges[col] = [reference_data[col].min(), reference_data[col].max()]

self.result = self._calculate(data=reference_data)
self.result.data[('chunk', 'period')] = 'reference'

return self

@log_usage(UsageEvent.DQ_CALC_VALUES_OUT_OF_RANGE_RUN, metadata_from_self=['normalize'])
def _calculate(self, data: pd.DataFrame, *args, **kwargs) -> Result:
"""Calculates methods for both categorical and continuous columns."""
if data.empty:
raise InvalidArgumentsException('data contains no rows. Please provide a valid data set.')

_list_missing(self.column_names, data)

chunks = self.chunker.split(data)

rows = []
for chunk in chunks:
row = {
'key': chunk.key,
'chunk_index': chunk.chunk_index,
'start_index': chunk.start_index,
'end_index': chunk.end_index,
'start_datetime': chunk.start_datetime,
'end_datetime': chunk.end_datetime,
'period': 'analysis',
}

for column_name in self.column_names:
for k, v in self._calculate_for_column(chunk.data, column_name).items():
row[f'{column_name}_{k}'] = v

rows.append(row)

result_index = _create_multilevel_index(
column_names=self.column_names,
)
res = pd.DataFrame(rows)
res.columns = result_index
res = res.reset_index(drop=True)

if self.result is None:
self._set_metric_thresholds(res)
res = self._populate_alert_thresholds(res)
self.result = Result(
results_data=res,
column_names=self.column_names,
data_quality_metric=self.data_quality_metric,
timestamp_column_name=self.timestamp_column_name,
chunker=self.chunker,
)
else:
# TODO: review subclassing setup => superclass + '_filter' is screwing up typing.
# Dropping the intermediate '_filter' and directly returning the correct 'Result' class works OK
# but this causes us to lose the "common behavior" in the top level 'filter' method when overriding.
# Applicable here but to many of the base classes as well (e.g. fitting and calculating)
res = self._populate_alert_thresholds(res)
self.result = self.result.filter(period='reference')
self.result.data = pd.concat([self.result.data, res], ignore_index=True)

return self.result

def _calculate_for_column(self, data: pd.DataFrame, column_name: str) -> Dict[str, Any]:
result = {}
value_range = self._reference_value_ranges[column_name]
value = self._calculate_out_of_range_stats(data[column_name], value_range[0], value_range[1])
result['value'] = value
return result

def _set_metric_thresholds(self, result_data: pd.DataFrame):
for column_name in self.column_names:
(
self._lower_alert_thresholds[column_name],
self._upper_alert_thresholds[column_name],
) = calculate_threshold_values( # noqa: E501
threshold=self.threshold,
data=result_data.loc[:, (column_name, 'value')],
lower_threshold_value_limit=self.lower_threshold_value_limit,
upper_threshold_value_limit=self.upper_threshold_value_limit,
logger=self._logger,
)

def _populate_alert_thresholds(self, result_data: pd.DataFrame) -> pd.DataFrame:
for column_name in self.column_names:
result_data[(column_name, 'upper_threshold')] = self._upper_alert_thresholds[column_name]
result_data[(column_name, 'lower_threshold')] = self._lower_alert_thresholds[column_name]
result_data[(column_name, 'alert')] = result_data.apply(
lambda row: True
if (
row[(column_name, 'value')]
> (
np.inf
if row[(column_name, 'upper_threshold')] is None
else row[(column_name, 'upper_threshold')] # noqa: E501
)
or row[(column_name, 'value')]
< (
-np.inf
if row[(column_name, 'lower_threshold')] is None
else row[(column_name, 'lower_threshold')] # noqa: E501
)
)
else False,
axis=1,
)
return result_data


def _create_multilevel_index(
column_names,
):
chunk_column_names = ['key', 'chunk_index', 'start_index', 'end_index', 'start_date', 'end_date', 'period']
chunk_tuples = [('chunk', chunk_column_name) for chunk_column_name in chunk_column_names]
column_tuples = [
(column_name, 'value')
for column_name in column_names
# for el in ['value', 'upper_threshold', 'lower_threshold', 'alert']
]
tuples = chunk_tuples + column_tuples
return MultiIndex.from_tuples(tuples)
Loading

0 comments on commit 123d3b7

Please sign in to comment.