From c6189439f5b1d2046b0ca489302f1d753bd27464 Mon Sep 17 00:00:00 2001 From: Nikolaos Perrakis Date: Sat, 13 Jul 2024 00:58:22 +0300 Subject: [PATCH] update documentation for MC AP and BV --- .../multiclass/business_value.svg | 1 + .../multiclass/business_value.svg | 1 + ...ss Value - Multiclass Classification.ipynb | 876 ++++++++++++++++++ ...siness Value - Binary Classification.ipynb | 6 +- ...ss Value - Multiclass Classification.ipynb | 587 ++++++++++++ docs/glossary.rst | 13 +- docs/how_it_works/business_value.rst | 57 +- .../business_value_calculation.rst | 22 +- .../confusion_matrix_calculation.rst | 21 +- .../standard_metric_calculation.rst | 21 +- .../multiclass_performance_calculation.rst | 8 +- .../business_value_calculation.rst | 172 ++++ .../confusion_matrix_calculation.rst | 13 +- .../standard_metric_calculation.rst | 14 +- .../business_value_estimation.rst | 15 +- .../confusion_matrix_estimation.rst | 15 +- .../standard_metric_estimation.rst | 15 +- .../multiclass_performance_estimation.rst | 1 + .../business_value_estimation.rst | 169 ++++ .../confusion_matrix_estimation.rst | 15 +- .../standard_metric_estimation.rst | 14 +- nannyml/performance_calculation/calculator.py | 9 +- .../metrics/multiclass_classification.py | 7 +- .../confidence_based/cbpe.py | 8 +- 24 files changed, 1971 insertions(+), 109 deletions(-) create mode 100644 docs/_static/tutorials/performance_calculation/multiclass/business_value.svg create mode 100644 docs/_static/tutorials/performance_estimation/multiclass/business_value.svg create mode 100644 docs/example_notebooks/Tutorial - Calculating Business Value - Multiclass Classification.ipynb create mode 100644 docs/example_notebooks/Tutorial - Estimating Business Value - Multiclass Classification.ipynb create mode 100644 docs/tutorials/performance_calculation/multiclass_performance_calculation/business_value_calculation.rst create mode 100644 docs/tutorials/performance_estimation/multiclass_performance_estimation/business_value_estimation.rst diff --git a/docs/_static/tutorials/performance_calculation/multiclass/business_value.svg b/docs/_static/tutorials/performance_calculation/multiclass/business_value.svg new file mode 100644 index 000000000..f4ce3569b --- /dev/null +++ b/docs/_static/tutorials/performance_calculation/multiclass/business_value.svg @@ -0,0 +1 @@ +May 2020Jul 2020Sep 2020Nov 2020Jan 20211.31.41.51.61.71.81.92MetricAlertThresholdRealized performanceTimeBusiness ValueRealized Business ValueReferenceAnalysis \ No newline at end of file diff --git a/docs/_static/tutorials/performance_estimation/multiclass/business_value.svg b/docs/_static/tutorials/performance_estimation/multiclass/business_value.svg new file mode 100644 index 000000000..6a5283e1a --- /dev/null +++ b/docs/_static/tutorials/performance_estimation/multiclass/business_value.svg @@ -0,0 +1 @@ +May 2020Jul 2020Sep 2020Nov 2020Jan 20211.61.71.81.92MetricAlertThresholdConfidence bandEstimated performance (CBPE)TimeBusiness ValueEstimated Business ValueReferenceAnalysis \ No newline at end of file diff --git a/docs/example_notebooks/Tutorial - Calculating Business Value - Multiclass Classification.ipynb b/docs/example_notebooks/Tutorial - Calculating Business Value - Multiclass Classification.ipynb new file mode 100644 index 000000000..16a0524ad --- /dev/null +++ b/docs/example_notebooks/Tutorial - Calculating Business Value - Multiclass Classification.ipynb @@ -0,0 +1,876 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "tags": [] + }, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
idacq_channelapp_behavioral_scorerequested_credit_limitapp_channelcredit_bureau_scorestated_incomeis_customertimestampy_pred_proba_prepaid_cardy_pred_proba_highstreet_cardy_pred_proba_upmarket_cardy_predy_true
00Partner31.808232350web30915000True2020-05-02 02:01:300.970.030.00prepaid_cardprepaid_card
11Partner24.382568500mobile41823000True2020-05-02 02:03:330.870.130.00prepaid_cardprepaid_card
22Partner2-0.787575400web50724000False2020-05-02 02:04:490.470.350.18prepaid_cardupmarket_card
\n", + "
" + ], + "text/plain": [ + " id acq_channel app_behavioral_score requested_credit_limit app_channel \\\n", + "0 0 Partner3 1.808232 350 web \n", + "1 1 Partner2 4.382568 500 mobile \n", + "2 2 Partner2 -0.787575 400 web \n", + "\n", + " credit_bureau_score stated_income is_customer timestamp \\\n", + "0 309 15000 True 2020-05-02 02:01:30 \n", + "1 418 23000 True 2020-05-02 02:03:33 \n", + "2 507 24000 False 2020-05-02 02:04:49 \n", + "\n", + " y_pred_proba_prepaid_card y_pred_proba_highstreet_card \\\n", + "0 0.97 0.03 \n", + "1 0.87 0.13 \n", + "2 0.47 0.35 \n", + "\n", + " y_pred_proba_upmarket_card y_pred y_true \n", + "0 0.00 prepaid_card prepaid_card \n", + "1 0.00 prepaid_card prepaid_card \n", + "2 0.18 prepaid_card upmarket_card " + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "import nannyml as nml\n", + "from IPython.display import display\n", + "\n", + "reference_df, analysis_df, analysis_target_df = nml.load_synthetic_multiclass_classification_dataset()\n", + "\n", + "analysis_df = analysis_df.merge(analysis_target_df, on='id', how='left')\n", + "\n", + "display(reference_df.head(3))" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "+----+------+---------------+------------------------+--------------------------+---------------+-----------------------+-----------------+---------------+---------------------+-----------------------------+--------------------------------+------------------------------+--------------+---------------+\n", + "| | id | acq_channel | app_behavioral_score | requested_credit_limit | app_channel | credit_bureau_score | stated_income | is_customer | timestamp | y_pred_proba_prepaid_card | y_pred_proba_highstreet_card | y_pred_proba_upmarket_card | y_pred | y_true |\n", + "+====+======+===============+========================+==========================+===============+=======================+=================+===============+=====================+=============================+================================+==============================+==============+===============+\n", + "| 0 | 0 | Partner3 | 1.80823 | 350 | web | 309 | 15000 | True | 2020-05-02 02:01:30 | 0.97 | 0.03 | 0 | prepaid_card | prepaid_card |\n", + "+----+------+---------------+------------------------+--------------------------+---------------+-----------------------+-----------------+---------------+---------------------+-----------------------------+--------------------------------+------------------------------+--------------+---------------+\n", + "| 1 | 1 | Partner2 | 4.38257 | 500 | mobile | 418 | 23000 | True | 2020-05-02 02:03:33 | 0.87 | 0.13 | 0 | prepaid_card | prepaid_card |\n", + "+----+------+---------------+------------------------+--------------------------+---------------+-----------------------+-----------------+---------------+---------------------+-----------------------------+--------------------------------+------------------------------+--------------+---------------+\n", + "| 2 | 2 | Partner2 | -0.787575 | 400 | web | 507 | 24000 | False | 2020-05-02 02:04:49 | 0.47 | 0.35 | 0.18 | prepaid_card | upmarket_card |\n", + "+----+------+---------------+------------------------+--------------------------+---------------+-----------------------+-----------------+---------------+---------------------+-----------------------------+--------------------------------+------------------------------+--------------+---------------+\n" + ] + } + ], + "source": [ + "print(reference_df.head(3).to_markdown(tablefmt=\"grid\"))" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "tags": [] + }, + "outputs": [], + "source": [ + "# matrix can be provided as a list of lists or a numpy array\n", + "business_value_matrix = [\n", + " [1, 0, -1],\n", + " [0, 1, 0],\n", + " [-1, 0, 1]\n", + "]\n", + "calc = nml.PerformanceCalculator(\n", + " y_pred_proba={\n", + " 'prepaid_card': 'y_pred_proba_prepaid_card',\n", + " 'highstreet_card': 'y_pred_proba_highstreet_card',\n", + " 'upmarket_card': 'y_pred_proba_upmarket_card'\n", + " },\n", + " y_pred='y_pred',\n", + " y_true='y_true',\n", + " timestamp_column_name='timestamp',\n", + " problem_type='classification_multiclass',\n", + " metrics=['business_value'],\n", + " business_value_matrix = business_value_matrix,\n", + " normalize_business_value='per_prediction',\n", + " chunk_size=6000\n", + ")" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "tags": [] + }, + "outputs": [], + "source": [ + "calc.fit(reference_df)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "tags": [] + }, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
chunkbusiness_value
keychunk_indexstart_indexend_indexstart_dateend_dateperiodtargets_missing_ratesampling_errorvalueupper_thresholdlower_thresholdalert
0[0:5999]0059992020-09-01 03:10:012020-09-13 16:15:10analysis0.00.0080472.0012202.0503161.963201False
1[6000:11999]16000119992020-09-13 16:15:322020-09-25 19:48:42analysis0.00.0080472.0441362.0503161.963201False
2[12000:17999]212000179992020-09-25 19:50:042020-10-08 02:53:47analysis0.00.0080472.0185322.0503161.963201False
3[18000:23999]318000239992020-10-08 02:57:342020-10-20 15:48:19analysis0.00.0080472.0185422.0503161.963201False
4[24000:29999]424000299992020-10-20 15:49:062020-11-01 22:04:40analysis0.00.0080472.0169322.0503161.963201False
5[30000:35999]530000359992020-11-01 22:04:592020-11-14 03:55:33analysis0.00.0080471.2892142.0503161.963201True
6[36000:41999]636000419992020-11-14 03:55:492020-11-26 09:19:06analysis0.00.0080471.3100692.0503161.963201True
7[42000:47999]742000479992020-11-26 09:19:222020-12-08 14:33:56analysis0.00.0080471.3297242.0503161.963201True
8[48000:53999]848000539992020-12-08 14:34:252020-12-20 18:30:30analysis0.00.0080471.3240452.0503161.963201True
9[54000:59999]954000599992020-12-20 18:31:092021-01-01 22:57:55analysis0.00.0080471.3162352.0503161.963201True
\n", + "
" + ], + "text/plain": [ + " chunk \\\n", + " key chunk_index start_index end_index start_date \n", + "0 [0:5999] 0 0 5999 2020-09-01 03:10:01 \n", + "1 [6000:11999] 1 6000 11999 2020-09-13 16:15:32 \n", + "2 [12000:17999] 2 12000 17999 2020-09-25 19:50:04 \n", + "3 [18000:23999] 3 18000 23999 2020-10-08 02:57:34 \n", + "4 [24000:29999] 4 24000 29999 2020-10-20 15:49:06 \n", + "5 [30000:35999] 5 30000 35999 2020-11-01 22:04:59 \n", + "6 [36000:41999] 6 36000 41999 2020-11-14 03:55:49 \n", + "7 [42000:47999] 7 42000 47999 2020-11-26 09:19:22 \n", + "8 [48000:53999] 8 48000 53999 2020-12-08 14:34:25 \n", + "9 [54000:59999] 9 54000 59999 2020-12-20 18:31:09 \n", + "\n", + " business_value \\\n", + " end_date period targets_missing_rate sampling_error value \n", + "0 2020-09-13 16:15:10 analysis 0.0 0.008047 2.001220 \n", + "1 2020-09-25 19:48:42 analysis 0.0 0.008047 2.044136 \n", + "2 2020-10-08 02:53:47 analysis 0.0 0.008047 2.018532 \n", + "3 2020-10-20 15:48:19 analysis 0.0 0.008047 2.018542 \n", + "4 2020-11-01 22:04:40 analysis 0.0 0.008047 2.016932 \n", + "5 2020-11-14 03:55:33 analysis 0.0 0.008047 1.289214 \n", + "6 2020-11-26 09:19:06 analysis 0.0 0.008047 1.310069 \n", + "7 2020-12-08 14:33:56 analysis 0.0 0.008047 1.329724 \n", + "8 2020-12-20 18:30:30 analysis 0.0 0.008047 1.324045 \n", + "9 2021-01-01 22:57:55 analysis 0.0 0.008047 1.316235 \n", + "\n", + " \n", + " upper_threshold lower_threshold alert \n", + "0 2.050316 1.963201 False \n", + "1 2.050316 1.963201 False \n", + "2 2.050316 1.963201 False \n", + "3 2.050316 1.963201 False \n", + "4 2.050316 1.963201 False \n", + "5 2.050316 1.963201 True \n", + "6 2.050316 1.963201 True \n", + "7 2.050316 1.963201 True \n", + "8 2.050316 1.963201 True \n", + "9 2.050316 1.963201 True " + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "results = calc.calculate(analysis_df)\n", + "display(results.filter(period='analysis').to_df())" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "jupyter": { + "outputs_hidden": true + }, + "tags": [] + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "+----+---------------+-----------------+-----------------+---------------+---------------------+---------------------+------------+--------------------------+--------------------+-----------+---------------------+---------------------+-----------+\n", + "| | | chunk | | | | | | | | | business_value | | | | |\n", + "| | | key | | chunk_index | | start_index | | end_index | | start_date | | end_date | | period | | targets_missing_rate | | sampling_error | | value | | upper_threshold | | lower_threshold | | alert |\n", + "+====+===============+=================+=================+===============+=====================+=====================+============+==========================+====================+===========+=====================+=====================+===========+\n", + "| 0 | [0:5999] | 0 | 0 | 5999 | 2020-09-01 03:10:01 | 2020-09-13 16:15:10 | analysis | 0 | 0.00804747 | 2.00122 | 2.05032 | 1.9632 | False |\n", + "+----+---------------+-----------------+-----------------+---------------+---------------------+---------------------+------------+--------------------------+--------------------+-----------+---------------------+---------------------+-----------+\n", + "| 1 | [6000:11999] | 1 | 6000 | 11999 | 2020-09-13 16:15:32 | 2020-09-25 19:48:42 | analysis | 0 | 0.00804747 | 2.04414 | 2.05032 | 1.9632 | False |\n", + "+----+---------------+-----------------+-----------------+---------------+---------------------+---------------------+------------+--------------------------+--------------------+-----------+---------------------+---------------------+-----------+\n", + "| 2 | [12000:17999] | 2 | 12000 | 17999 | 2020-09-25 19:50:04 | 2020-10-08 02:53:47 | analysis | 0 | 0.00804747 | 2.01853 | 2.05032 | 1.9632 | False |\n", + "+----+---------------+-----------------+-----------------+---------------+---------------------+---------------------+------------+--------------------------+--------------------+-----------+---------------------+---------------------+-----------+\n", + "| 3 | [18000:23999] | 3 | 18000 | 23999 | 2020-10-08 02:57:34 | 2020-10-20 15:48:19 | analysis | 0 | 0.00804747 | 2.01854 | 2.05032 | 1.9632 | False |\n", + "+----+---------------+-----------------+-----------------+---------------+---------------------+---------------------+------------+--------------------------+--------------------+-----------+---------------------+---------------------+-----------+\n", + "| 4 | [24000:29999] | 4 | 24000 | 29999 | 2020-10-20 15:49:06 | 2020-11-01 22:04:40 | analysis | 0 | 0.00804747 | 2.01693 | 2.05032 | 1.9632 | False |\n", + "+----+---------------+-----------------+-----------------+---------------+---------------------+---------------------+------------+--------------------------+--------------------+-----------+---------------------+---------------------+-----------+\n", + "| 5 | [30000:35999] | 5 | 30000 | 35999 | 2020-11-01 22:04:59 | 2020-11-14 03:55:33 | analysis | 0 | 0.00804747 | 1.28921 | 2.05032 | 1.9632 | True |\n", + "+----+---------------+-----------------+-----------------+---------------+---------------------+---------------------+------------+--------------------------+--------------------+-----------+---------------------+---------------------+-----------+\n", + "| 6 | [36000:41999] | 6 | 36000 | 41999 | 2020-11-14 03:55:49 | 2020-11-26 09:19:06 | analysis | 0 | 0.00804747 | 1.31007 | 2.05032 | 1.9632 | True |\n", + "+----+---------------+-----------------+-----------------+---------------+---------------------+---------------------+------------+--------------------------+--------------------+-----------+---------------------+---------------------+-----------+\n", + "| 7 | [42000:47999] | 7 | 42000 | 47999 | 2020-11-26 09:19:22 | 2020-12-08 14:33:56 | analysis | 0 | 0.00804747 | 1.32972 | 2.05032 | 1.9632 | True |\n", + "+----+---------------+-----------------+-----------------+---------------+---------------------+---------------------+------------+--------------------------+--------------------+-----------+---------------------+---------------------+-----------+\n", + "| 8 | [48000:53999] | 8 | 48000 | 53999 | 2020-12-08 14:34:25 | 2020-12-20 18:30:30 | analysis | 0 | 0.00804747 | 1.32404 | 2.05032 | 1.9632 | True |\n", + "+----+---------------+-----------------+-----------------+---------------+---------------------+---------------------+------------+--------------------------+--------------------+-----------+---------------------+---------------------+-----------+\n", + "| 9 | [54000:59999] | 9 | 54000 | 59999 | 2020-12-20 18:31:09 | 2021-01-01 22:57:55 | analysis | 0 | 0.00804747 | 1.31623 | 2.05032 | 1.9632 | True |\n", + "+----+---------------+-----------------+-----------------+---------------+---------------------+---------------------+------------+--------------------------+--------------------+-----------+---------------------+---------------------+-----------+\n" + ] + } + ], + "source": [ + "from docs.utils import print_multi_index_markdown\n", + "print_multi_index_markdown(results.filter(period='analysis').to_df())" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "tags": [] + }, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
chunkbusiness_value
keychunk_indexstart_indexend_indexstart_dateend_dateperiodtargets_missing_ratesampling_errorvalueupper_thresholdlower_thresholdalert
0[0:5999]0059992020-05-02 02:01:302020-05-14 12:25:35reference0.00.0080472.0092582.0503161.963201False
1[6000:11999]16000119992020-05-14 12:29:252020-05-26 18:27:42reference0.00.0080472.0049992.0503161.963201False
2[12000:17999]212000179992020-05-26 18:31:062020-06-07 19:55:45reference0.00.0080472.0147652.0503161.963201False
3[18000:23999]318000239992020-06-07 19:58:392020-06-19 19:42:20reference0.00.0080471.9891842.0503161.963201False
4[24000:29999]424000299992020-06-19 19:44:142020-07-02 01:58:05reference0.00.0080472.0243722.0503161.963201False
5[30000:35999]530000359992020-07-02 02:06:562020-07-14 08:14:04reference0.00.0080471.9909782.0503161.963201False
6[36000:41999]636000419992020-07-14 08:14:082020-07-26 12:55:42reference0.00.0080471.9922582.0503161.963201False
7[42000:47999]742000479992020-07-26 12:57:372020-08-07 16:32:15reference0.00.0080472.0245382.0503161.963201False
8[48000:53999]848000539992020-08-07 16:33:442020-08-20 00:06:08reference0.00.0080471.9908222.0503161.963201False
9[54000:59999]954000599992020-08-20 00:07:582020-09-01 03:03:23reference0.00.0080472.0264092.0503161.963201False
\n", + "
" + ], + "text/plain": [ + " chunk \\\n", + " key chunk_index start_index end_index start_date \n", + "0 [0:5999] 0 0 5999 2020-05-02 02:01:30 \n", + "1 [6000:11999] 1 6000 11999 2020-05-14 12:29:25 \n", + "2 [12000:17999] 2 12000 17999 2020-05-26 18:31:06 \n", + "3 [18000:23999] 3 18000 23999 2020-06-07 19:58:39 \n", + "4 [24000:29999] 4 24000 29999 2020-06-19 19:44:14 \n", + "5 [30000:35999] 5 30000 35999 2020-07-02 02:06:56 \n", + "6 [36000:41999] 6 36000 41999 2020-07-14 08:14:08 \n", + "7 [42000:47999] 7 42000 47999 2020-07-26 12:57:37 \n", + "8 [48000:53999] 8 48000 53999 2020-08-07 16:33:44 \n", + "9 [54000:59999] 9 54000 59999 2020-08-20 00:07:58 \n", + "\n", + " business_value \\\n", + " end_date period targets_missing_rate sampling_error \n", + "0 2020-05-14 12:25:35 reference 0.0 0.008047 \n", + "1 2020-05-26 18:27:42 reference 0.0 0.008047 \n", + "2 2020-06-07 19:55:45 reference 0.0 0.008047 \n", + "3 2020-06-19 19:42:20 reference 0.0 0.008047 \n", + "4 2020-07-02 01:58:05 reference 0.0 0.008047 \n", + "5 2020-07-14 08:14:04 reference 0.0 0.008047 \n", + "6 2020-07-26 12:55:42 reference 0.0 0.008047 \n", + "7 2020-08-07 16:32:15 reference 0.0 0.008047 \n", + "8 2020-08-20 00:06:08 reference 0.0 0.008047 \n", + "9 2020-09-01 03:03:23 reference 0.0 0.008047 \n", + "\n", + " \n", + " value upper_threshold lower_threshold alert \n", + "0 2.009258 2.050316 1.963201 False \n", + "1 2.004999 2.050316 1.963201 False \n", + "2 2.014765 2.050316 1.963201 False \n", + "3 1.989184 2.050316 1.963201 False \n", + "4 2.024372 2.050316 1.963201 False \n", + "5 1.990978 2.050316 1.963201 False \n", + "6 1.992258 2.050316 1.963201 False \n", + "7 2.024538 2.050316 1.963201 False \n", + "8 1.990822 2.050316 1.963201 False \n", + "9 2.026409 2.050316 1.963201 False " + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "display(results.filter(period='reference').to_df())" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "jupyter": { + "outputs_hidden": true + }, + "tags": [] + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "+----+---------------+-----------------+-----------------+---------------+---------------------+---------------------+------------+--------------------------+--------------------+-----------+---------------------+---------------------+-----------+\n", + "| | | chunk | | | | | | | | | business_value | | | | |\n", + "| | | key | | chunk_index | | start_index | | end_index | | start_date | | end_date | | period | | targets_missing_rate | | sampling_error | | value | | upper_threshold | | lower_threshold | | alert |\n", + "+====+===============+=================+=================+===============+=====================+=====================+============+==========================+====================+===========+=====================+=====================+===========+\n", + "| 0 | [0:5999] | 0 | 0 | 5999 | 2020-05-02 02:01:30 | 2020-05-14 12:25:35 | reference | 0 | 0.00804747 | 2.00926 | 2.05032 | 1.9632 | False |\n", + "+----+---------------+-----------------+-----------------+---------------+---------------------+---------------------+------------+--------------------------+--------------------+-----------+---------------------+---------------------+-----------+\n", + "| 1 | [6000:11999] | 1 | 6000 | 11999 | 2020-05-14 12:29:25 | 2020-05-26 18:27:42 | reference | 0 | 0.00804747 | 2.005 | 2.05032 | 1.9632 | False |\n", + "+----+---------------+-----------------+-----------------+---------------+---------------------+---------------------+------------+--------------------------+--------------------+-----------+---------------------+---------------------+-----------+\n", + "| 2 | [12000:17999] | 2 | 12000 | 17999 | 2020-05-26 18:31:06 | 2020-06-07 19:55:45 | reference | 0 | 0.00804747 | 2.01476 | 2.05032 | 1.9632 | False |\n", + "+----+---------------+-----------------+-----------------+---------------+---------------------+---------------------+------------+--------------------------+--------------------+-----------+---------------------+---------------------+-----------+\n", + "| 3 | [18000:23999] | 3 | 18000 | 23999 | 2020-06-07 19:58:39 | 2020-06-19 19:42:20 | reference | 0 | 0.00804747 | 1.98918 | 2.05032 | 1.9632 | False |\n", + "+----+---------------+-----------------+-----------------+---------------+---------------------+---------------------+------------+--------------------------+--------------------+-----------+---------------------+---------------------+-----------+\n", + "| 4 | [24000:29999] | 4 | 24000 | 29999 | 2020-06-19 19:44:14 | 2020-07-02 01:58:05 | reference | 0 | 0.00804747 | 2.02437 | 2.05032 | 1.9632 | False |\n", + "+----+---------------+-----------------+-----------------+---------------+---------------------+---------------------+------------+--------------------------+--------------------+-----------+---------------------+---------------------+-----------+\n", + "| 5 | [30000:35999] | 5 | 30000 | 35999 | 2020-07-02 02:06:56 | 2020-07-14 08:14:04 | reference | 0 | 0.00804747 | 1.99098 | 2.05032 | 1.9632 | False |\n", + "+----+---------------+-----------------+-----------------+---------------+---------------------+---------------------+------------+--------------------------+--------------------+-----------+---------------------+---------------------+-----------+\n", + "| 6 | [36000:41999] | 6 | 36000 | 41999 | 2020-07-14 08:14:08 | 2020-07-26 12:55:42 | reference | 0 | 0.00804747 | 1.99226 | 2.05032 | 1.9632 | False |\n", + "+----+---------------+-----------------+-----------------+---------------+---------------------+---------------------+------------+--------------------------+--------------------+-----------+---------------------+---------------------+-----------+\n", + "| 7 | [42000:47999] | 7 | 42000 | 47999 | 2020-07-26 12:57:37 | 2020-08-07 16:32:15 | reference | 0 | 0.00804747 | 2.02454 | 2.05032 | 1.9632 | False |\n", + "+----+---------------+-----------------+-----------------+---------------+---------------------+---------------------+------------+--------------------------+--------------------+-----------+---------------------+---------------------+-----------+\n", + "| 8 | [48000:53999] | 8 | 48000 | 53999 | 2020-08-07 16:33:44 | 2020-08-20 00:06:08 | reference | 0 | 0.00804747 | 1.99082 | 2.05032 | 1.9632 | False |\n", + "+----+---------------+-----------------+-----------------+---------------+---------------------+---------------------+------------+--------------------------+--------------------+-----------+---------------------+---------------------+-----------+\n", + "| 9 | [54000:59999] | 9 | 54000 | 59999 | 2020-08-20 00:07:58 | 2020-09-01 03:03:23 | reference | 0 | 0.00804747 | 2.02641 | 2.05032 | 1.9632 | False |\n", + "+----+---------------+-----------------+-----------------+---------------+---------------------+---------------------+------------+--------------------------+--------------------+-----------+---------------------+---------------------+-----------+\n" + ] + } + ], + "source": [ + "print_multi_index_markdown(results.filter(period='reference').to_df())" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "tags": [] + }, + "outputs": [], + "source": [ + "figure = results.plot()\n", + "figure.show()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "figure = results.plot()\n", + "figure.write_image(f'../_static/tutorials/performance_calculation/multiclass/business_value.svg')\n", + "\n", + "# tutorial-perf-est-guide-binary-class-car-loan-analysis" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.11.9" + } + }, + "nbformat": 4, + "nbformat_minor": 4 +} diff --git a/docs/example_notebooks/Tutorial - Estimating Business Value - Binary Classification.ipynb b/docs/example_notebooks/Tutorial - Estimating Business Value - Binary Classification.ipynb index 244d2529a..f4912c9f4 100644 --- a/docs/example_notebooks/Tutorial - Estimating Business Value - Binary Classification.ipynb +++ b/docs/example_notebooks/Tutorial - Estimating Business Value - Binary Classification.ipynb @@ -127,6 +127,7 @@ "execution_count": null, "id": "16b16c8b", "metadata": { + "collapsed": false, "jupyter": { "outputs_hidden": false } @@ -541,6 +542,7 @@ "execution_count": null, "id": "0c5e9902", "metadata": { + "collapsed": false, "jupyter": { "outputs_hidden": false } @@ -570,7 +572,7 @@ ], "metadata": { "kernelspec": { - "display_name": "EMD", + "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, @@ -584,7 +586,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.8.8" + "version": "3.11.9" }, "vscode": { "interpreter": { diff --git a/docs/example_notebooks/Tutorial - Estimating Business Value - Multiclass Classification.ipynb b/docs/example_notebooks/Tutorial - Estimating Business Value - Multiclass Classification.ipynb new file mode 100644 index 000000000..fe54e8103 --- /dev/null +++ b/docs/example_notebooks/Tutorial - Estimating Business Value - Multiclass Classification.ipynb @@ -0,0 +1,587 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
idacq_channelapp_behavioral_scorerequested_credit_limitapp_channelcredit_bureau_scorestated_incomeis_customertimestampy_pred_proba_prepaid_cardy_pred_proba_highstreet_cardy_pred_proba_upmarket_cardy_predy_true
00Partner31.808232350web30915000True2020-05-02 02:01:300.970.030.00prepaid_cardprepaid_card
11Partner24.382568500mobile41823000True2020-05-02 02:03:330.870.130.00prepaid_cardprepaid_card
22Partner2-0.787575400web50724000False2020-05-02 02:04:490.470.350.18prepaid_cardupmarket_card
\n", + "
" + ], + "text/plain": [ + " id acq_channel app_behavioral_score requested_credit_limit app_channel \\\n", + "0 0 Partner3 1.808232 350 web \n", + "1 1 Partner2 4.382568 500 mobile \n", + "2 2 Partner2 -0.787575 400 web \n", + "\n", + " credit_bureau_score stated_income is_customer timestamp \\\n", + "0 309 15000 True 2020-05-02 02:01:30 \n", + "1 418 23000 True 2020-05-02 02:03:33 \n", + "2 507 24000 False 2020-05-02 02:04:49 \n", + "\n", + " y_pred_proba_prepaid_card y_pred_proba_highstreet_card \\\n", + "0 0.97 0.03 \n", + "1 0.87 0.13 \n", + "2 0.47 0.35 \n", + "\n", + " y_pred_proba_upmarket_card y_pred y_true \n", + "0 0.00 prepaid_card prepaid_card \n", + "1 0.00 prepaid_card prepaid_card \n", + "2 0.18 prepaid_card upmarket_card " + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "import nannyml as nml\n", + "from IPython.display import display\n", + "\n", + "reference_df, analysis_df, _ = nml.load_synthetic_multiclass_classification_dataset()\n", + "\n", + "display(reference_df.head(3))" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "jupyter": { + "outputs_hidden": true + }, + "tags": [] + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "+----+------+---------------+------------------------+--------------------------+---------------+-----------------------+-----------------+---------------+---------------------+-----------------------------+--------------------------------+------------------------------+--------------+---------------+\n", + "| | id | acq_channel | app_behavioral_score | requested_credit_limit | app_channel | credit_bureau_score | stated_income | is_customer | timestamp | y_pred_proba_prepaid_card | y_pred_proba_highstreet_card | y_pred_proba_upmarket_card | y_pred | y_true |\n", + "+====+======+===============+========================+==========================+===============+=======================+=================+===============+=====================+=============================+================================+==============================+==============+===============+\n", + "| 0 | 0 | Partner3 | 1.80823 | 350 | web | 309 | 15000 | True | 2020-05-02 02:01:30 | 0.97 | 0.03 | 0 | prepaid_card | prepaid_card |\n", + "+----+------+---------------+------------------------+--------------------------+---------------+-----------------------+-----------------+---------------+---------------------+-----------------------------+--------------------------------+------------------------------+--------------+---------------+\n", + "| 1 | 1 | Partner2 | 4.38257 | 500 | mobile | 418 | 23000 | True | 2020-05-02 02:03:33 | 0.87 | 0.13 | 0 | prepaid_card | prepaid_card |\n", + "+----+------+---------------+------------------------+--------------------------+---------------+-----------------------+-----------------+---------------+---------------------+-----------------------------+--------------------------------+------------------------------+--------------+---------------+\n", + "| 2 | 2 | Partner2 | -0.787575 | 400 | web | 507 | 24000 | False | 2020-05-02 02:04:49 | 0.47 | 0.35 | 0.18 | prepaid_card | upmarket_card |\n", + "+----+------+---------------+------------------------+--------------------------+---------------+-----------------------+-----------------+---------------+---------------------+-----------------------------+--------------------------------+------------------------------+--------------+---------------+\n" + ] + } + ], + "source": [ + "print(reference_df.head(3).to_markdown(tablefmt=\"grid\"))" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# matrix can be provided as a list of lists or a numpy array\n", + "business_value_matrix = [\n", + " [1, 0, -1],\n", + " [0, 1, 0],\n", + " [-1, 0, 1]\n", + "]\n", + "estimator = nml.CBPE(\n", + " y_pred_proba={\n", + " 'prepaid_card': 'y_pred_proba_prepaid_card',\n", + " 'highstreet_card': 'y_pred_proba_highstreet_card',\n", + " 'upmarket_card': 'y_pred_proba_upmarket_card'},\n", + " y_pred='y_pred',\n", + " y_true='y_true',\n", + " timestamp_column_name='timestamp',\n", + " problem_type='classification_multiclass',\n", + " metrics=['business_value'],\n", + " business_value_matrix=business_value_matrix,\n", + " normalize_business_value=\"per_prediction\",\n", + " chunk_size=6000,\n", + ")" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "estimator.fit(reference_df)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
chunkbusiness_value
keychunk_indexstart_indexend_indexstart_dateend_dateperiodvaluesampling_errorrealizedupper_confidence_boundarylower_confidence_boundaryupper_thresholdlower_thresholdalert
0[0:5999]0059992020-09-01 03:10:012020-09-13 16:15:10analysis2.0086170.008047NaN2.0327601.9844752.0503161.963201False
1[6000:11999]16000119992020-09-13 16:15:322020-09-25 19:48:42analysis2.0167090.008047NaN2.0408511.9925662.0503161.963201False
2[12000:17999]212000179992020-09-25 19:50:042020-10-08 02:53:47analysis2.0251520.008047NaN2.0492942.0010102.0503161.963201False
3[18000:23999]318000239992020-10-08 02:57:342020-10-20 15:48:19analysis2.0189280.008047NaN2.0430701.9947862.0503161.963201False
4[24000:29999]424000299992020-10-20 15:49:062020-11-01 22:04:40analysis2.0065210.008047NaN2.0306641.9823792.0503161.963201False
5[30000:35999]530000359992020-11-01 22:04:592020-11-14 03:55:33analysis1.5644430.008047NaN1.5885851.5403002.0503161.963201True
6[36000:41999]636000419992020-11-14 03:55:492020-11-26 09:19:06analysis1.5684600.008047NaN1.5926031.5443182.0503161.963201True
7[42000:47999]742000479992020-11-26 09:19:222020-12-08 14:33:56analysis1.5620410.008047NaN1.5861831.5378982.0503161.963201True
8[48000:53999]848000539992020-12-08 14:34:252020-12-20 18:30:30analysis1.5668660.008047NaN1.5910091.5427242.0503161.963201True
9[54000:59999]954000599992020-12-20 18:31:092021-01-01 22:57:55analysis1.5742500.008047NaN1.5983921.5501072.0503161.963201True
\n", + "
" + ], + "text/plain": [ + " chunk \\\n", + " key chunk_index start_index end_index start_date \n", + "0 [0:5999] 0 0 5999 2020-09-01 03:10:01 \n", + "1 [6000:11999] 1 6000 11999 2020-09-13 16:15:32 \n", + "2 [12000:17999] 2 12000 17999 2020-09-25 19:50:04 \n", + "3 [18000:23999] 3 18000 23999 2020-10-08 02:57:34 \n", + "4 [24000:29999] 4 24000 29999 2020-10-20 15:49:06 \n", + "5 [30000:35999] 5 30000 35999 2020-11-01 22:04:59 \n", + "6 [36000:41999] 6 36000 41999 2020-11-14 03:55:49 \n", + "7 [42000:47999] 7 42000 47999 2020-11-26 09:19:22 \n", + "8 [48000:53999] 8 48000 53999 2020-12-08 14:34:25 \n", + "9 [54000:59999] 9 54000 59999 2020-12-20 18:31:09 \n", + "\n", + " business_value \\\n", + " end_date period value sampling_error realized \n", + "0 2020-09-13 16:15:10 analysis 2.008617 0.008047 NaN \n", + "1 2020-09-25 19:48:42 analysis 2.016709 0.008047 NaN \n", + "2 2020-10-08 02:53:47 analysis 2.025152 0.008047 NaN \n", + "3 2020-10-20 15:48:19 analysis 2.018928 0.008047 NaN \n", + "4 2020-11-01 22:04:40 analysis 2.006521 0.008047 NaN \n", + "5 2020-11-14 03:55:33 analysis 1.564443 0.008047 NaN \n", + "6 2020-11-26 09:19:06 analysis 1.568460 0.008047 NaN \n", + "7 2020-12-08 14:33:56 analysis 1.562041 0.008047 NaN \n", + "8 2020-12-20 18:30:30 analysis 1.566866 0.008047 NaN \n", + "9 2021-01-01 22:57:55 analysis 1.574250 0.008047 NaN \n", + "\n", + " \\\n", + " upper_confidence_boundary lower_confidence_boundary upper_threshold \n", + "0 2.032760 1.984475 2.050316 \n", + "1 2.040851 1.992566 2.050316 \n", + "2 2.049294 2.001010 2.050316 \n", + "3 2.043070 1.994786 2.050316 \n", + "4 2.030664 1.982379 2.050316 \n", + "5 1.588585 1.540300 2.050316 \n", + "6 1.592603 1.544318 2.050316 \n", + "7 1.586183 1.537898 2.050316 \n", + "8 1.591009 1.542724 2.050316 \n", + "9 1.598392 1.550107 2.050316 \n", + "\n", + " \n", + " lower_threshold alert \n", + "0 1.963201 False \n", + "1 1.963201 False \n", + "2 1.963201 False \n", + "3 1.963201 False \n", + "4 1.963201 False \n", + "5 1.963201 True \n", + "6 1.963201 True \n", + "7 1.963201 True \n", + "8 1.963201 True \n", + "9 1.963201 True " + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "results = estimator.estimate(analysis_df)\n", + "display(results.filter(period='analysis').to_df())" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "jupyter": { + "outputs_hidden": true + }, + "tags": [] + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "+----+---------------+-----------------+-----------------+---------------+---------------------+---------------------+------------+--------------------+--------------------+--------------+-------------------------------+-------------------------------+---------------------+---------------------+-----------+\n", + "| | | chunk | | | | | | | | business_value | | | | | | | |\n", + "| | | key | | chunk_index | | start_index | | end_index | | start_date | | end_date | | period | | value | | sampling_error | | realized | | upper_confidence_boundary | | lower_confidence_boundary | | upper_threshold | | lower_threshold | | alert |\n", + "+====+===============+=================+=================+===============+=====================+=====================+============+====================+====================+==============+===============================+===============================+=====================+=====================+===========+\n", + "| 0 | [0:5999] | 0 | 0 | 5999 | 2020-09-01 03:10:01 | 2020-09-13 16:15:10 | analysis | 2.00862 | 0.00804747 | nan | 2.03276 | 1.98448 | 2.05032 | 1.9632 | False |\n", + "+----+---------------+-----------------+-----------------+---------------+---------------------+---------------------+------------+--------------------+--------------------+--------------+-------------------------------+-------------------------------+---------------------+---------------------+-----------+\n", + "| 1 | [6000:11999] | 1 | 6000 | 11999 | 2020-09-13 16:15:32 | 2020-09-25 19:48:42 | analysis | 2.01671 | 0.00804747 | nan | 2.04085 | 1.99257 | 2.05032 | 1.9632 | False |\n", + "+----+---------------+-----------------+-----------------+---------------+---------------------+---------------------+------------+--------------------+--------------------+--------------+-------------------------------+-------------------------------+---------------------+---------------------+-----------+\n", + "| 2 | [12000:17999] | 2 | 12000 | 17999 | 2020-09-25 19:50:04 | 2020-10-08 02:53:47 | analysis | 2.02515 | 0.00804747 | nan | 2.04929 | 2.00101 | 2.05032 | 1.9632 | False |\n", + "+----+---------------+-----------------+-----------------+---------------+---------------------+---------------------+------------+--------------------+--------------------+--------------+-------------------------------+-------------------------------+---------------------+---------------------+-----------+\n", + "| 3 | [18000:23999] | 3 | 18000 | 23999 | 2020-10-08 02:57:34 | 2020-10-20 15:48:19 | analysis | 2.01893 | 0.00804747 | nan | 2.04307 | 1.99479 | 2.05032 | 1.9632 | False |\n", + "+----+---------------+-----------------+-----------------+---------------+---------------------+---------------------+------------+--------------------+--------------------+--------------+-------------------------------+-------------------------------+---------------------+---------------------+-----------+\n", + "| 4 | [24000:29999] | 4 | 24000 | 29999 | 2020-10-20 15:49:06 | 2020-11-01 22:04:40 | analysis | 2.00652 | 0.00804747 | nan | 2.03066 | 1.98238 | 2.05032 | 1.9632 | False |\n", + "+----+---------------+-----------------+-----------------+---------------+---------------------+---------------------+------------+--------------------+--------------------+--------------+-------------------------------+-------------------------------+---------------------+---------------------+-----------+\n", + "| 5 | [30000:35999] | 5 | 30000 | 35999 | 2020-11-01 22:04:59 | 2020-11-14 03:55:33 | analysis | 1.56444 | 0.00804747 | nan | 1.58858 | 1.5403 | 2.05032 | 1.9632 | True |\n", + "+----+---------------+-----------------+-----------------+---------------+---------------------+---------------------+------------+--------------------+--------------------+--------------+-------------------------------+-------------------------------+---------------------+---------------------+-----------+\n", + "| 6 | [36000:41999] | 6 | 36000 | 41999 | 2020-11-14 03:55:49 | 2020-11-26 09:19:06 | analysis | 1.56846 | 0.00804747 | nan | 1.5926 | 1.54432 | 2.05032 | 1.9632 | True |\n", + "+----+---------------+-----------------+-----------------+---------------+---------------------+---------------------+------------+--------------------+--------------------+--------------+-------------------------------+-------------------------------+---------------------+---------------------+-----------+\n", + "| 7 | [42000:47999] | 7 | 42000 | 47999 | 2020-11-26 09:19:22 | 2020-12-08 14:33:56 | analysis | 1.56204 | 0.00804747 | nan | 1.58618 | 1.5379 | 2.05032 | 1.9632 | True |\n", + "+----+---------------+-----------------+-----------------+---------------+---------------------+---------------------+------------+--------------------+--------------------+--------------+-------------------------------+-------------------------------+---------------------+---------------------+-----------+\n", + "| 8 | [48000:53999] | 8 | 48000 | 53999 | 2020-12-08 14:34:25 | 2020-12-20 18:30:30 | analysis | 1.56687 | 0.00804747 | nan | 1.59101 | 1.54272 | 2.05032 | 1.9632 | True |\n", + "+----+---------------+-----------------+-----------------+---------------+---------------------+---------------------+------------+--------------------+--------------------+--------------+-------------------------------+-------------------------------+---------------------+---------------------+-----------+\n", + "| 9 | [54000:59999] | 9 | 54000 | 59999 | 2020-12-20 18:31:09 | 2021-01-01 22:57:55 | analysis | 1.57425 | 0.00804747 | nan | 1.59839 | 1.55011 | 2.05032 | 1.9632 | True |\n", + "+----+---------------+-----------------+-----------------+---------------+---------------------+---------------------+------------+--------------------+--------------------+--------------+-------------------------------+-------------------------------+---------------------+---------------------+-----------+\n" + ] + } + ], + "source": [ + "from docs.utils import print_multi_index_markdown\n", + "print_multi_index_markdown(results.filter(period='analysis').to_df())" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "metric_fig = results.plot()\n", + "metric_fig.show()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "metric_fig = results.plot()\n", + "metric_fig.write_image(file=f\"../_static/tutorials/performance_estimation/multiclass/business_value.svg\")" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.11.9" + } + }, + "nbformat": 4, + "nbformat_minor": 4 +} diff --git a/docs/glossary.rst b/docs/glossary.rst index 6f664acfb..03b12845e 100644 --- a/docs/glossary.rst +++ b/docs/glossary.rst @@ -16,12 +16,17 @@ Glossary Note that alerts are not raised during the reference :term:`Data Period`. Business Value Matrix - A matrix that is used to calculate the business value of a model. For binary classification, - the matrix is a 2x2 matrix with the following cells: true positive cost, true negative cost, - false positive cost, false negative cost. The business value of a model is calculated as the + A matrix that is used to calculate the business value of a model. The format of the + business value matrix must be specified so that each element represents the business + value of it's respective confusion matrix element. Hence the element on the i-th row and j-column of the + business value matrix tells us the value of the i-th target when we have predicted the j-th value. + It can be provided as a list of lists or a numpy array. The business value of a model is calculated as the sum of the products of the values in the matrix and the corresponding cells in the confusion matrix. + For more information about the business value matrix, + check out the :ref:`Business Value "How it Works" page`. + Butterfly dataset A dataset used in :ref:`how-multiv-drift` to give an example where univariate drift statistics are insufficient in detecting complex data drifts in multidimensional @@ -96,7 +101,7 @@ Glossary periods - they contain all the observations and predictions from a single hour, day, month etc. depending on the selected interval. They can also be size-based so that each chunk contains *n* observations or number-based so the whole data is split into *k* chunks. In each case chronology of data between chunks is - maintained. + maintained. To better understand how to create chunks with NannyML check out the :ref:`chunking tutorial`. Data Period A data period is a subset of the data used to monitor a model. NannyML expects the provided data to be in one of two data periods. diff --git a/docs/how_it_works/business_value.rst b/docs/how_it_works/business_value.rst index 2f590b2f5..35d4d9eae 100644 --- a/docs/how_it_works/business_value.rst +++ b/docs/how_it_works/business_value.rst @@ -9,15 +9,14 @@ monetary or business oriented outcomes. In this page, we will discuss how the **business_value** metric works under the hood. Introduction to Business Value --------------------------------------- +------------------------------ -The **business_value** metric offers a way to quantify -the value of a model in terms of the +The **business_value** metric offers a way to quantify the value of a model in terms of the business's own metrics. At the core, if the business value (or cost) of each outcome in the :term:`confusion matrix` is known, then the business value of a -model can either be *calculated* using the realized :term:`confusion matrix` if -the ground truth labels are available or *estimated* using the -estimated :term:`confusion matrix` if the ground truth labels are not available. +model can either be *calculated* using the :ref:`realized Performance Calculator` if +the ground truth labels are available or *estimated* using :ref:`Performance Estimation` +if the ground truth labels are not available. More specifically, we know that each prediction made by a binary classification models can be one of four outcomes: @@ -50,10 +49,16 @@ We can formalize the intuition above as follows: \text{business value} = \sum_{i=1}^{n} \sum_{j=1}^{n} \text{business_value}_{i,j} \times \text{confusion_matrix}_{i,j} -where :math:`\text{business_value}_{i,j}` is the business value of a cell in the :term:`confusion matrix`, and :math:`\text{confusion_matrix}_{i,j}` is the count of observations -in that cell of the :term:`confusion matrix`. We use the `sklearn confusion matrix representation`_ that assuming label 0 is negative and label 1 is positive. +where :math:`\text{business_value}_{i,j}` is the business value of a cell in the +:term:`confusion matrix`, and :math:`\text{confusion_matrix}_{i,j}` is the count of +observations in that cell of the :term:`confusion matrix`. Using the confusion +matrix notation the element on the i-th row and j-column of the business value matrix tells us the value +of the i-th target when we have predicted the j-th value. -Since we are in the binary classification case, :math:`n=2`, and the :term:`confusion matrix` is: +For binary classification this formula is easier to manage hence we will use it as an example. Classificatio problems +with more classes follow the same pattern. +Using the `sklearn confusion matrix convention`_ we designate label 0 as negative and label 1 as positive. +Hence we can write the :term:`confusion matrix` as: .. math:: @@ -62,7 +67,10 @@ Since we are in the binary classification case, :math:`n=2`, and the :term:`conf \text{# of false negatives} & \text{# of true positives} \end{bmatrix} -And the :term:`business value matrix` is: +Note that target values are represented by rows and predicted values are represented by columns. +This means that the first row contains values that have resulted in the negative outcome +while the first column contains values that were predicted with negative label. +The correspondings :term:`business value matrix` is: .. math:: @@ -80,22 +88,27 @@ The business value of a binary classification model can thus be generally expres + (\text{value of a false negative}) \cdot (\text{# of false negatives}) \\ + (\text{value of a true positive}) \cdot (\text{# of true positives}) -Calculation of Business Value For Binary Classification -------------------------------------------------------- +Calculation of Business Value For Classification +------------------------------------------------ When the ground truth labels are available, the business value of a model can be calculated by using the -values from the realized :term:`confusion matrix`, and then using the business value formula above to calculate -the business value. +values from the realized :term:`confusion matrix`, +and then using the business value formula above to calculate the business value. -For a tutorial on how to calculate the business value of a model, see our :ref:`business-value-calculation` tutorial. +For a tutorial on how to calculate the business value of a model, +see our :ref:`business-value-calculation` and :ref:`multiclass-business-value-calculation` tutorials. -Estimation of Business Value For Binary Classification ------------------------------------------------------- -In cases where ground truth labels of the data are unavailable, we can still estimate the business value of a model. This is done by using the -:term:`CBPE (Confidence-Based Performance Estimation)` algorithm to estimate the :term:`confusion matrix`, and then using the business value formula above to obtain a business value estimate. -To read more about the :term:`CBPE (Confidence-Based Performance Estimation)` algorithm, see our :ref:`performance estimation deep dive`. +Estimation of Business Value For Classification +----------------------------------------------- -For a tutorial on how to estimate the business value of a model, see our :ref:`business-value-estimation` tutorial. +In cases where ground truth labels of the data are unavailable, we can still estimate the business value of a model. +This is done by using the :term:`CBPE (Confidence-Based Performance Estimation)` algorithm to estimate the +:term:`confusion matrix`, and then using the business value formula above to obtain a business value estimate. +To read more about the :term:`CBPE (Confidence-Based Performance Estimation)` algorithm, +see our :ref:`performance estimation deep dive`. + +For a tutorial on how to estimate the business value of a model, see our :ref:`business-value-estimation` +and :ref:`multiclasss-business-value-estimation` tutorials. Normalization ------------- @@ -113,4 +126,4 @@ Check out the :ref:`business-value-calculation` tutorial and the :ref:`business- for examples of how to normalize the business value metric. -.. _`sklearn confusion matrix representation`: https://scikit-learn.org/stable/modules/generated/sklearn.metrics.confusion_matrix.html +.. _`sklearn confusion matrix convention`: https://scikit-learn.org/stable/modules/generated/sklearn.metrics.confusion_matrix.html diff --git a/docs/tutorials/performance_calculation/binary_performance_calculation/business_value_calculation.rst b/docs/tutorials/performance_calculation/binary_performance_calculation/business_value_calculation.rst index 3d989554f..856a08922 100644 --- a/docs/tutorials/performance_calculation/binary_performance_calculation/business_value_calculation.rst +++ b/docs/tutorials/performance_calculation/binary_performance_calculation/business_value_calculation.rst @@ -1,8 +1,9 @@ .. _business-value-calculation: -======================================================================================== +==================================================== Calculating Business Value for Binary Classification -======================================================================================== +==================================================== + This tutorial explains how to use NannyML to calculate business value for binary classification models. @@ -14,7 +15,7 @@ models. .. _business-value-calculation-binary-just-the-code: Just The Code ----------------- +------------- .. nbimport:: :path: ./example_notebooks/Tutorial - Calculating Business Value - Binary Classification.ipynb @@ -22,7 +23,7 @@ Just The Code Walkthrough --------------- +----------- For simplicity this guide is based on a synthetic dataset included in the library, where the monitored model predicts whether a customer will repay a loan to buy a car. @@ -132,17 +133,16 @@ calculated metric. The results can be plotted for visual inspection. Our plot contains several key elements. -* *The purple step plot* shows the performance in each chunk of the analysis period. Thick squared point - markers indicate the middle of these chunks. - -* *The blue step plot* shows the performance in each chunk of the reference period. Thick squared point markers indicate +* *The blue step plot* shows the performance in each chunk of the provided data. Thick squared point markers indicate the middle of these chunks. -* *The gray vertical line* splits the reference and analysis periods. +* *The gray vertical line* splits the reference and analysis data periods. -* *The red horizontal dashed lines* show upper and lower thresholds for alerting purposes. +* *The red horizontal dashed lines* show upper and lower thresholds that indicate the range of + expected performance values. -* *The red diamond-shaped point markers* in the middle of a chunk indicate that an alert has been raised. Alerts are caused by the performance crossing the upper or lower threshold. +* *The red diamond-shaped point markers* in the middle of a chunk indicate that an alert has been raised. + Alerts are caused by the performance crossing the upper or lower threshold. .. nbimport:: :path: ./example_notebooks/Tutorial - Calculating Business Value - Binary Classification.ipynb diff --git a/docs/tutorials/performance_calculation/binary_performance_calculation/confusion_matrix_calculation.rst b/docs/tutorials/performance_calculation/binary_performance_calculation/confusion_matrix_calculation.rst index 59976015f..e729b8d44 100644 --- a/docs/tutorials/performance_calculation/binary_performance_calculation/confusion_matrix_calculation.rst +++ b/docs/tutorials/performance_calculation/binary_performance_calculation/confusion_matrix_calculation.rst @@ -1,8 +1,8 @@ .. _confusion-matrix-calculation: -======================================================================================== +=============================================================== Calculating Confusion Matrix Elements for Binary Classification -======================================================================================== +=============================================================== This tutorial explains how to use NannyML to calculate the :term:`confusion matrix` for binary classification models. @@ -15,7 +15,7 @@ models. .. _confusion-matrix-calculation-binary-just-the-code: Just The Code ----------------- +------------- .. nbimport:: :path: ./example_notebooks/Tutorial - Calculating Confusion Matrix - Binary Classification.ipynb @@ -23,7 +23,7 @@ Just The Code Walkthrough --------------- +----------- For simplicity this guide is based on a synthetic dataset included in the library, where the monitored model predicts whether a customer will repay a loan to buy a car. @@ -125,17 +125,16 @@ calculated metric. The results can be plotted for visual inspection. Our plot contains several key elements. -* *The purple step plot* shows the performance in each chunk of the analysis period. Thick squared point - markers indicate the middle of these chunks. - -* *The blue step plot* shows the performance in each chunk of the reference period. Thick squared point markers indicate +* *The blue step plot* shows the performance in each chunk of the provided data. Thick squared point markers indicate the middle of these chunks. -* *The gray vertical line* splits the reference and analysis periods. +* *The gray vertical line* splits the reference and analysis data periods. -* *The red horizontal dashed lines* show upper and lower thresholds for alerting purposes. +* *The red horizontal dashed lines* show upper and lower thresholds that indicate the range of + expected performance values. -* *The red diamond-shaped point markers* in the middle of a chunk indicate that an alert has been raised. Alerts are caused by the performance crossing the upper or lower threshold. +* *The red diamond-shaped point markers* in the middle of a chunk indicate that an alert has been raised. + Alerts are caused by the performance crossing the upper or lower threshold. .. nbimport:: :path: ./example_notebooks/Tutorial - Calculating Confusion Matrix - Binary Classification.ipynb diff --git a/docs/tutorials/performance_calculation/binary_performance_calculation/standard_metric_calculation.rst b/docs/tutorials/performance_calculation/binary_performance_calculation/standard_metric_calculation.rst index 9b2ea90c4..d994b86fb 100644 --- a/docs/tutorials/performance_calculation/binary_performance_calculation/standard_metric_calculation.rst +++ b/docs/tutorials/performance_calculation/binary_performance_calculation/standard_metric_calculation.rst @@ -1,8 +1,8 @@ .. _standard-metric-calculation: -======================================================================================== +================================================================== Calculating Standard Performance Metrics for Binary Classification -======================================================================================== +================================================================== This tutorial explains how to use NannyML to calculate standard performance metrics for binary classification models. @@ -15,7 +15,7 @@ models. .. _standard-metric-calculation-binary-just-the-code: Just The Code ----------------- +------------- .. nbimport:: :path: ./example_notebooks/Tutorial - Calculating Standard Metrics - Binary Classification.ipynb @@ -28,7 +28,7 @@ Just The Code - To learn how :class:`~nannyml.thresholds.ConstantThreshold` works and to set up custom threshold check out the :ref:`thresholds tutorial ` Walkthrough --------------- +----------- For simplicity this guide is based on a synthetic dataset included in the library, where the monitored model predicts whether a customer will repay a loan to buy a car. @@ -123,17 +123,16 @@ Apart from chunk-related data, the results data have a set of columns for each c The results can be plotted for visual inspection. Our plot contains several key elements. -* *The purple step plot* shows the performance in each chunk of the analysis period. Thick squared point - markers indicate the middle of these chunks. - -* *The blue step plot* shows the performance in each chunk of the reference period. Thick squared point markers indicate +* *The blue step plot* shows the performance in each chunk of the provided data. Thick squared point markers indicate the middle of these chunks. -* *The gray vertical line* splits the reference and analysis periods. +* *The gray vertical line* splits the reference and analysis data periods. -* *The red horizontal dashed lines* show upper and lower thresholds for alerting purposes. +* *The red horizontal dashed lines* show upper and lower thresholds that indicate the range of + expected performance values. -* *The red diamond-shaped point markers* in the middle of a chunk indicate that an alert has been raised. Alerts are caused by the performance crossing the upper or lower threshold. +* *The red diamond-shaped point markers* in the middle of a chunk indicate that an alert has been raised. + Alerts are caused by the performance crossing the upper or lower threshold. .. nbimport:: :path: ./example_notebooks/Tutorial - Calculating Standard Metrics - Binary Classification.ipynb diff --git a/docs/tutorials/performance_calculation/multiclass_performance_calculation.rst b/docs/tutorials/performance_calculation/multiclass_performance_calculation.rst index 708924365..7b469f0c4 100644 --- a/docs/tutorials/performance_calculation/multiclass_performance_calculation.rst +++ b/docs/tutorials/performance_calculation/multiclass_performance_calculation.rst @@ -12,17 +12,23 @@ We currently support the following **standard** metrics for multiclass classific * **recall** * **specificity** * **accuracy** + * **average_precision** For more information about estimating these metrics, refer to the :ref:`multiclass-standard-metric-calculation` section. We also support the following *complex* metric for multiclass classification performance calculation: * **confusion_matrix** + * **business_value:** a metric that combines the components of the confusion matrix using + user-specified weights for each element, allowing for a connection between model performance and + business results. -For more information about estimating this metrics, refer to the :ref:`multiclass-confusion-matrix-estimation` section. +For more information about calculating these metrics, refer to the :ref:`multiclass-confusion-matrix-calculation` +and :ref:`multiclass-business-value-calculation` sections. .. toctree:: :maxdepth: 2 multiclass_performance_calculation/standard_metric_calculation multiclass_performance_calculation/confusion_matrix_calculation + multiclass_performance_calculation/business_value_calculation diff --git a/docs/tutorials/performance_calculation/multiclass_performance_calculation/business_value_calculation.rst b/docs/tutorials/performance_calculation/multiclass_performance_calculation/business_value_calculation.rst new file mode 100644 index 000000000..4e085661d --- /dev/null +++ b/docs/tutorials/performance_calculation/multiclass_performance_calculation/business_value_calculation.rst @@ -0,0 +1,172 @@ +.. _multiclass-business-value-calculation: + +======================================================== +Calculating Business Value for Multiclass Classification +======================================================== + +This tutorial explains how to use NannyML to calculate business value for multiclass classification +models. + +.. note:: + The following example uses :term:`timestamps`. + These are optional but have an impact on the way data is chunked and results are plotted. + You can read more about them in the :ref:`data requirements`. + +.. _business-value-calculation-multiclass-just-the-code: + +Just The Code +------------- + +.. nbimport:: + :path: ./example_notebooks/Tutorial - Calculating Business Value - Multiclass Classification.ipynb + :cells: 1 3 4 5 7 9 + + +Walkthrough +----------- + +For simplicity this guide is based on a synthetic dataset where the monitored model predicts +which type of credit card product new customers should be assigned to. +Check out :ref:`Credit Card Dataset` to learn more about this dataset. + +In order to monitor a model, NannyML needs to learn about it from a reference dataset. +Then it can monitor the data that is subject to actual analysis, provided as the analysis dataset. +You can read more about this in our section on :ref:`data periods`. + +The ``analysis_targets`` dataframe contains the target results of the analysis period. +This is kept separate in the synthetic data because it is +not used during :ref:`performance estimation`. But it is required to calculate performance, +so the first thing we need to in this case is set up the right data in the right dataframes. + +The analysis target values are joined on the analysis frame by their index. +Your dataset may already contain the **target** column, so you may skip this join. + +.. nbimport:: + :path: ./example_notebooks/Tutorial - Calculating Business Value - Multiclass Classification.ipynb + :cells: 1 + +.. nbtable:: + :path: ./example_notebooks/Tutorial - Calculating Business Value - Multiclass Classification.ipynb + :cell: 2 + +Next a :class:`~nannyml.performance_calculation.calculator.PerformanceCalculator` is created with +the following parameter specifications: + + - **y_pred_proba:** a dictionary that maps the class names to the name of the column in the reference data + that contains the predicted probabilities for that class. + - **y_pred:** the name of the column in the reference data that + contains the predicted classes. + - **y_true:** the name of the column in the reference data that + contains the true classes. + - **timestamp_column_name (Optional):** the name of the column in the reference data that + contains timestamps. + - **problem_type:** the type of problem being monitored. In this example we + will monitor a binary classification problem. + - **metrics:** a list of metrics to calculate. In this example we + will calculate the ``business_value`` metric. + - **business_value_matrix:** A matrix that specifies the value of each corresponding cell in the confusion matrix. + - **normalize_business_value (Optional):** how to normalize the business value. + The normalization options are: + + * **None** : returns the total value per chunk + * **"per_prediction"** : returns the total value for the chunk divided by the number of observations + in a given chunk. + + - **chunk_size (Optional):** the number of observations in each chunk of data + used to calculate performance. For more information about + :term:`chunking` other chunking options check out the :ref:`chunking tutorial`. + - **thresholds (Optional):** the thresholds used to calculate the alert flag. For more information about + thresholds, check out the :ref:`thresholds tutorial`. + +.. nbimport:: + :path: ./example_notebooks/Tutorial - Calculating Business Value - Multiclass Classification.ipynb + :cells: 3 + +.. note:: + When calculating **business_value**, the ``business_value_matrix`` parameter is required. + A :term:`business value matrix` is a nxn matrix that specifies the value of each cell in the confusion matrix. + The format of the business value matrix must be specified so that each element represents the business + value of it's respective confusion matrix element. Hence the element on the i-th row and j-column of the + business value matrix tells us the value of the i-th target when we have predicted the j-th value. + It can be provided as a list of lists or a numpy array. + For more information about the business value matrix, + check out the :ref:`Business Value "How it Works" page`. + +The new :class:`~nannyml.performance_calculation.calculator.PerformanceCalculator` is fitted using the +:meth:`~nannyml.performance_calculation.calculator.PerformanceCalculator.fit` method on the **reference** data. + +.. nbimport:: + :path: ./example_notebooks/Tutorial - Calculating Business Value - Multiclass Classification.ipynb + :cells: 4 + +The fitted :class:`~nannyml.performance_calculation.calculator.PerformanceCalculator` can then be used to calculate +realized performance metrics on all data which has target values available with the +:meth:`~nannyml.performance_calculation.calculator.PerformanceCalculator.calculate` method. +NannyML can output a dataframe that contains all the results of the analysis data. + +.. nbimport:: + :path: ./example_notebooks/Tutorial - Calculating Business Value - Multiclass Classification.ipynb + :cells: 5 + +.. nbtable:: + :path: ./example_notebooks/Tutorial - Calculating Business Value - Multiclass Classification.ipynb + :cell: 6 + +The results from the reference data are also available. + +.. nbimport:: + :path: ./example_notebooks/Tutorial - Calculating Business Value - Multiclass Classification.ipynb + :cells: 7 + +.. nbtable:: + :path: ./example_notebooks/Tutorial - Calculating Business Value - Multiclass Classification.ipynb + :cell: 8 + +Apart from chunk and period-related columns, the results data have a set of columns for each +calculated metric. + + - **targets_missing_rate** - the fraction of missing target data. + - **value** - the realized metric value for a specific chunk. + - **sampling_error** - the estimate of the :term:`Sampling Error`. + - **upper_threshold** and **lower_threshold** - crossing these thresholds will raise an alert on significant + performance change. The thresholds are calculated based on the actual performance of the monitored model on chunks in + the **reference** partition. The thresholds are 3 standard deviations away from the mean performance calculated on + chunks. They are calculated during **fit** phase. + - **alert** - flag indicating potentially significant performance change. ``True`` if estimated performance crosses + upper or lower threshold. + +The results can be plotted for visual inspection. Our plot contains several key elements. + +* *The blue step plot* shows the performance in each chunk of the provided data. Thick squared point markers indicate + the middle of these chunks. + +* *The gray vertical line* splits the reference and analysis data periods. + +* *The red horizontal dashed lines* show upper and lower thresholds that indicate the range of + expected performance values. + +* *The red diamond-shaped point markers* in the middle of a chunk indicate that an alert has been raised. + Alerts are caused by the performance crossing the upper or lower threshold. + +.. nbimport:: + :path: ./example_notebooks/Tutorial - Calculating Business Value - Multiclass Classification.ipynb + :cells: 9 + +.. image:: /_static/tutorials/performance_calculation/multiclass/business_value.svg + +Additional information such as the chunk index range and chunk date range (if timestamps were provided) is shown in the hover for each chunk (these are +interactive plots, though only static views are included here). + +Insights +-------- + +After reviewing the performance calculation results, we should be able to clearly see how the business value +provided by the model while it is in use. Depending on the results we may report them or need to investigate +further. + + +What's Next +----------- + +If we decide further investigation is needed, the :ref:`Data Drift` functionality can help us to see +what feature changes may be contributing to any performance changes. diff --git a/docs/tutorials/performance_calculation/multiclass_performance_calculation/confusion_matrix_calculation.rst b/docs/tutorials/performance_calculation/multiclass_performance_calculation/confusion_matrix_calculation.rst index ea4e6787b..4a11d17f6 100644 --- a/docs/tutorials/performance_calculation/multiclass_performance_calculation/confusion_matrix_calculation.rst +++ b/docs/tutorials/performance_calculation/multiclass_performance_calculation/confusion_matrix_calculation.rst @@ -125,17 +125,16 @@ calculated metric. The results can be plotted for visual inspection. Our plot contains several key elements. -* *The purple step plot* shows the performance in each chunk of the analysis period. Thick squared point - markers indicate the middle of these chunks. - -* *The blue step plot* shows the performance in each chunk of the reference period. Thick squared point markers indicate +* *The blue step plot* shows the performance in each chunk of the provided data. Thick squared point markers indicate the middle of these chunks. -* *The gray vertical line* splits the reference and analysis periods. +* *The gray vertical line* splits the reference and analysis data periods. -* *The red horizontal dashed lines* show upper and lower thresholds for alerting purposes. +* *The red horizontal dashed lines* show upper and lower thresholds that indicate the range of + expected performance values. -* *The red diamond-shaped point markers* in the middle of a chunk indicate that an alert has been raised. Alerts are caused by the performance crossing the upper or lower threshold. +* *The red diamond-shaped point markers* in the middle of a chunk indicate that an alert has been raised. + Alerts are caused by the performance crossing the upper or lower threshold. .. nbimport:: :path: ./example_notebooks/Tutorial - Calculating Confusion Matrix - Multiclass Classification.ipynb diff --git a/docs/tutorials/performance_calculation/multiclass_performance_calculation/standard_metric_calculation.rst b/docs/tutorials/performance_calculation/multiclass_performance_calculation/standard_metric_calculation.rst index d0694874a..eecc411d6 100644 --- a/docs/tutorials/performance_calculation/multiclass_performance_calculation/standard_metric_calculation.rst +++ b/docs/tutorials/performance_calculation/multiclass_performance_calculation/standard_metric_calculation.rst @@ -61,6 +61,7 @@ The following metrics are currently supported: - ``recall`` - macro-averaged - ``specificity`` - macro-averaged - ``accuracy`` +- ``average_precision`` - macro-averaged For more information on metrics, check the :mod:`~nannyml.performance_calculation.metrics` module. @@ -109,7 +110,18 @@ Apart from chunk-related data, the results data have a set of columns for each c - **alert** - flag indicating potentially significant performance change. ``True`` if estimated performance crosses upper or lower threshold. -The results can be plotted for visual inspection: +The results can be plotted for visual inspection. Our plot contains several key elements. + +* *The blue step plot* shows the performance in each chunk of the provided data. Thick squared point markers indicate + the middle of these chunks. + +* *The gray vertical line* splits the reference and analysis data periods. + +* *The red horizontal dashed lines* show upper and lower thresholds that indicate the range of + expected performance values. + +* *The red diamond-shaped point markers* in the middle of a chunk indicate that an alert has been raised. + Alerts are caused by the performance crossing the upper or lower threshold. .. nbimport:: :path: ./example_notebooks/Tutorial - Realized Performance - Multiclass Classification.ipynb diff --git a/docs/tutorials/performance_estimation/binary_performance_estimation/business_value_estimation.rst b/docs/tutorials/performance_estimation/binary_performance_estimation/business_value_estimation.rst index beff3271d..25cb8f34d 100644 --- a/docs/tutorials/performance_estimation/binary_performance_estimation/business_value_estimation.rst +++ b/docs/tutorials/performance_estimation/binary_performance_estimation/business_value_estimation.rst @@ -128,17 +128,20 @@ that was estimated: These results can be also plotted. Our plots contains several key elements. -* *The purple step plot* shows the estimated performance in each chunk of the analysis period. Thick squared point +* The purple dashed step plot shows the estimated performance in each chunk of the provided data. Thick squared point markers indicate the middle of these chunks. -* *The low-saturated purple area* around the estimated performance in the analysis period corresponds to the :term:`confidence band` which is - calculated as the estimated performance +/- 3 times the estimated :term:`Sampling Error`. +* The black vertical line splits the reference and analysis periods. -* *The gray vertical line* splits the reference and analysis periods. +* *The low-saturated purple area* around the estimated performance in the analysis period corresponds to the + :term:`confidence band` which is calculated as the estimated performance +/- 3 times the + estimated :term:`Sampling Error`. -* *The red horizontal dashed lines* show upper and lower thresholds for alerting purposes. +* *The red horizontal dashed lines* show upper and lower thresholds that indicate the range of + expected performance values. -* *The red diamond-shaped point markers* in the middle of a chunk indicate that an alert has been raised. Alerts are caused by the estimated performance crossing the upper or lower threshold. +* *The red diamond-shaped point markers* in the middle of a chunk indicate that an alert has been raised. + Alerts are caused by the estimated performance crossing the upper or lower threshold. .. nbimport:: :path: ./example_notebooks/Tutorial - Estimating Business Value - Binary Classification.ipynb diff --git a/docs/tutorials/performance_estimation/binary_performance_estimation/confusion_matrix_estimation.rst b/docs/tutorials/performance_estimation/binary_performance_estimation/confusion_matrix_estimation.rst index e1d957106..14ffa386d 100644 --- a/docs/tutorials/performance_estimation/binary_performance_estimation/confusion_matrix_estimation.rst +++ b/docs/tutorials/performance_estimation/binary_performance_estimation/confusion_matrix_estimation.rst @@ -129,17 +129,20 @@ that was estimated: These results can be also plotted. Our plot contains several key elements. -* *The purple step plot* shows the estimated performance in each chunk of the analysis period. Thick squared point +* The purple dashed step plot shows the estimated performance in each chunk of the provided data. Thick squared point markers indicate the middle of these chunks. -* *The low-saturated purple area* around the estimated performance in the analysis period corresponds to the :term:`confidence band` which is - calculated as the estimated performance +/- 3 times the estimated :term:`Sampling Error`. +* The black vertical line splits the reference and analysis periods. -* *The gray vertical line* splits the reference and analysis periods. +* *The low-saturated purple area* around the estimated performance in the analysis period corresponds to the + :term:`confidence band` which is calculated as the estimated performance +/- 3 times the + estimated :term:`Sampling Error`. -* *The red horizontal dashed lines* show upper and lower thresholds for alerting purposes. +* *The red horizontal dashed lines* show upper and lower thresholds that indicate the range of + expected performance values. -* *The red diamond-shaped point markers* in the middle of a chunk indicate that an alert has been raised. Alerts are caused by the estimated performance crossing the upper or lower threshold. +* *The red diamond-shaped point markers* in the middle of a chunk indicate that an alert has been raised. + Alerts are caused by the estimated performance crossing the upper or lower threshold. .. nbimport:: :path: ./example_notebooks/Tutorial - Estimating Confusion Matrix - Binary Classification.ipynb diff --git a/docs/tutorials/performance_estimation/binary_performance_estimation/standard_metric_estimation.rst b/docs/tutorials/performance_estimation/binary_performance_estimation/standard_metric_estimation.rst index f6acf359a..031279a1f 100644 --- a/docs/tutorials/performance_estimation/binary_performance_estimation/standard_metric_estimation.rst +++ b/docs/tutorials/performance_estimation/binary_performance_estimation/standard_metric_estimation.rst @@ -125,17 +125,20 @@ that was estimated: These results can be also plotted. Our plot contains several key elements. -* *The purple step plot* shows the estimated performance in each chunk of the analysis period. Thick squared point +* The purple dashed step plot shows the estimated performance in each chunk of the provided data. Thick squared point markers indicate the middle of these chunks. -* *The low-saturated purple area* around the estimated performance in the analysis period corresponds to the :term:`confidence band` which is - calculated as the estimated performance +/- 3 times the estimated :term:`Sampling Error`. +* The black vertical line splits the reference and analysis periods. -* *The gray vertical line* splits the reference and analysis periods. +* *The low-saturated purple area* around the estimated performance in the analysis period corresponds to the + :term:`confidence band` which is calculated as the estimated performance +/- 3 times the + estimated :term:`Sampling Error`. -* *The red horizontal dashed lines* show upper and lower thresholds for alerting purposes. +* *The red horizontal dashed lines* show upper and lower thresholds that indicate the range of + expected performance values. -* *The red diamond-shaped point markers* in the middle of a chunk indicate that an alert has been raised. Alerts are caused by the estimated performance crossing the upper or lower threshold. +* *The red diamond-shaped point markers* in the middle of a chunk indicate that an alert has been raised. + Alerts are caused by the estimated performance crossing the upper or lower threshold. .. nbimport:: :path: ./example_notebooks/Tutorial - Estimating Standard Performance Metrics - Binary Classification.ipynb diff --git a/docs/tutorials/performance_estimation/multiclass_performance_estimation.rst b/docs/tutorials/performance_estimation/multiclass_performance_estimation.rst index 9640c1d40..7c4d28e69 100644 --- a/docs/tutorials/performance_estimation/multiclass_performance_estimation.rst +++ b/docs/tutorials/performance_estimation/multiclass_performance_estimation.rst @@ -27,3 +27,4 @@ refer to the :ref:`multiclass-confusion-matrix-estimation` section. multiclass_performance_estimation/standard_metric_estimation multiclass_performance_estimation/confusion_matrix_estimation + multiclass_performance_estimation/business_value_estimation diff --git a/docs/tutorials/performance_estimation/multiclass_performance_estimation/business_value_estimation.rst b/docs/tutorials/performance_estimation/multiclass_performance_estimation/business_value_estimation.rst new file mode 100644 index 000000000..dae8d3f76 --- /dev/null +++ b/docs/tutorials/performance_estimation/multiclass_performance_estimation/business_value_estimation.rst @@ -0,0 +1,169 @@ +.. _multiclasss-business-value-estimation: + +======================================================= +Estimating Business Value for Multiclass Classification +======================================================= + +This tutorial explains how to use NannyML to estimate business value for multiclass classification +models in the absence of target data. To find out how CBPE estimates performance metrics, +read the :ref:`explanation of Confidence-based Performance Estimation`. + +.. note:: + The following example uses :term:`timestamps`. + These are optional but have an impact on the way data is chunked and results are plotted. + You can read more about them in the :ref:`data requirements`. + +.. _business-value-estimation-multiclass-just-the-code: + +Just The Code +------------- + +.. nbimport:: + :path: ./example_notebooks/Tutorial - Estimating Business Value - Multiclass Classification.ipynb + :cells: 1 3 4 5 7 + + +Walkthrough +----------- + +For simplicity this guide is based on a synthetic dataset where the monitored model predicts +which type of credit card product new customers should be assigned to. +Check out :ref:`Credit Card Dataset` to learn more about this dataset. + +In order to monitor a model, NannyML needs to learn about it from a reference dataset. Then it can monitor the data that is subject to actual analysis, provided as the analysis dataset. +You can read more about this in our section on :ref:`data periods`. + +We start by loading the dataset we'll be using: + +.. nbimport:: + :path: ./example_notebooks/Tutorial - Estimating Business Value - Multiclass Classification.ipynb + :cells: 1 + +.. nbtable:: + :path: ./example_notebooks/Tutorial - Estimating Business Value - Multiclass Classification.ipynb + :cell: 2 + +Next we create the Confidence-based Performance Estimation +(:class:`~nannyml.performance_estimation.confidence_based.cbpe.CBPE`) +estimator. To initialize an estimator that estimates **business_value**, we specify the following +parameters: + + - **y_pred_proba:** the name of the column in the reference data that + contains the predicted probabilities. + - **y_pred:** the name of the column in the reference data that + contains the predicted classes. + - **y_true:** the name of the column in the reference data that + contains the true classes. + - **timestamp_column_name (Optional):** the name of the column in the reference data that + contains timestamps. + - **metrics:** a list of metrics to estimate. In this example we + will estimate the ``business_value`` metric. + - **chunk_size (Optional):** the number of observations in each chunk of data + used to estimate performance. For more information about + :term:`chunking` configurations check out the :ref:`chunking tutorial`. + - **problem_type:** the type of problem being monitored. In this example we + will monitor a multiclass classification problem. + - **business_value_matrix:** A matrix that specifies the value of each corresponding cell in the confusion matrix. + - **normalize_business_value (Optional):** how to normalize the business value. + The normalization options are: + + * **None** : returns the total value per chunk + * **"per_prediction"** : returns the total value for the chunk divided by the number of observations + in a given chunk. + + - **thresholds (Optional):** the thresholds used to calculate the alert flag. For more information about + thresholds, check out the :ref:`thresholds tutorial`. + +.. note:: + When calculating **business_value**, the ``business_value_matrix`` parameter is required. + A :term:`business value matrix` is a nxn matrix that specifies the value of each cell in the confusion matrix. + The format of the business value matrix must be specified so that each element represents the business + value of it's respective confusion matrix element. Hence the element on the i-th row and j-column of the + business value matrix tells us the value of the i-th target when we have predicted the j-th value. + It can be provided as a list of lists or a numpy array. + For more information about the business value matrix, + check out the :ref:`Business Value "How it Works" page`. + +.. nbimport:: + :path: ./example_notebooks/Tutorial - Estimating Business Value - Multiclass Classification.ipynb + :cells: 3 + +The :class:`~nannyml.performance_estimation.confidence_based.cbpe.CBPE` +estimator is then fitted using the +:meth:`~nannyml.performance_estimation.confidence_based.cbpe.CBPE.fit` method on the ``reference`` data. + +.. nbimport:: + :path: ./example_notebooks/Tutorial - Estimating Business Value - Multiclass Classification.ipynb + :cells: 4 + +The fitted ``estimator`` can be used to estimate performance on other data, for which performance cannot be calculated. +Typically, this would be used on the latest production data where target is missing. In our example this is +the ``analysis_df`` data. + +NannyML can then output a dataframe that contains all the results. Let's have a look at the results for analysis period +only. + +.. nbimport:: + :path: ./example_notebooks/Tutorial - Estimating Business Value - Multiclass Classification.ipynb + :cells: 5 + +.. nbtable:: + :path: ./example_notebooks/Tutorial - Estimating Business Value - Multiclass Classification.ipynb + :cell: 6 + +Apart from chunk-related data, the results data have the following columns for each metric +that was estimated: + + - **value** - the estimate of a metric for a specific chunk. + - **sampling_error** - the estimate of the :term:`sampling error`. + - **realized** - when **target** values are available for a chunk, the realized performance metric will also + be calculated and included within the results. + - **upper_confidence_boundary** and **lower_confidence_boundary** - These values show the :term:`confidence band` of the relevant metric + and are equal to estimated value +/- 3 times the estimated :term:`sampling error`. + - **upper_threshold** and **lower_threshold** - crossing these thresholds will raise an alert on significant + performance change. The thresholds are calculated based on the actual performance of the monitored model on chunks in + the **reference** partition. The thresholds are 3 standard deviations away from the mean performance calculated on + the reference chunks. + The thresholds are calculated during **fit** phase. + - **alert** - flag indicating potentially significant performance change. ``True`` if estimated performance crosses + upper or lower threshold. + +These results can be also plotted. Our plots contains several key elements. + +* The purple dashed step plot shows the estimated performance in each chunk of the provided data. Thick squared point + markers indicate the middle of these chunks. + +* The black vertical line splits the reference and analysis periods. + +* *The low-saturated purple area* around the estimated performance in the analysis period corresponds to the + :term:`confidence band` which is calculated as the estimated performance +/- 3 times the + estimated :term:`Sampling Error`. + +* *The red horizontal dashed lines* show upper and lower thresholds that indicate the range of + expected performance values. + +* *The red diamond-shaped point markers* in the middle of a chunk indicate that an alert has been raised. + Alerts are caused by the estimated performance crossing the upper or lower threshold. + +.. nbimport:: + :path: ./example_notebooks/Tutorial - Estimating Business Value - Multiclass Classification.ipynb + :cells: 7 + +.. image:: ../../../_static/tutorials/performance_estimation/multiclass/business_value.svg + +Additional information such as the chunk index range and chunk date range (if timestamps were provided) is shown in the hover for each chunk (these are +interactive plots, though only static views are included here). + +Insights +-------- + +After reviewing the performance estimation results, we should be able to see any indications of performance change that +NannyML has detected based upon the model's inputs and outputs alone. + + +What's next +----------- + +The :ref:`Data Drift` functionality can help us to understand whether data drift is causing the performance problem. +When the target values become available we can +:ref:`compared realized and estimated business value results`. diff --git a/docs/tutorials/performance_estimation/multiclass_performance_estimation/confusion_matrix_estimation.rst b/docs/tutorials/performance_estimation/multiclass_performance_estimation/confusion_matrix_estimation.rst index 571bb1672..faa9b7767 100644 --- a/docs/tutorials/performance_estimation/multiclass_performance_estimation/confusion_matrix_estimation.rst +++ b/docs/tutorials/performance_estimation/multiclass_performance_estimation/confusion_matrix_estimation.rst @@ -131,17 +131,20 @@ that was estimated: These results can be also plotted. Our plot contains several key elements. -* *The purple step plot* shows the estimated performance in each chunk of the analysis period. Thick squared point +* The purple dashed step plot shows the estimated performance in each chunk of the provided data. Thick squared point markers indicate the middle of these chunks. -* *The low-saturated purple area* around the estimated performance in the analysis period corresponds to the :term:`confidence band` which is - calculated as the estimated performance +/- 3 times the estimated :term:`Sampling Error`. +* The black vertical line splits the reference and analysis periods. -* *The gray vertical line* splits the reference and analysis periods. +* *The low-saturated purple area* around the estimated performance in the analysis period corresponds to the + :term:`confidence band` which is calculated as the estimated performance +/- 3 times the + estimated :term:`Sampling Error`. -* *The red horizontal dashed lines* show upper and lower thresholds for alerting purposes. +* *The red horizontal dashed lines* show upper and lower thresholds that indicate the range of + expected performance values. -* *The red diamond-shaped point markers* in the middle of a chunk indicate that an alert has been raised. Alerts are caused by the estimated performance crossing the upper or lower threshold. +* *The red diamond-shaped point markers* in the middle of a chunk indicate that an alert has been raised. + Alerts are caused by the estimated performance crossing the upper or lower threshold. .. nbimport:: :path: ./example_notebooks/Tutorial - Estimating Confusion Matrix - Multiclass Classification.ipynb diff --git a/docs/tutorials/performance_estimation/multiclass_performance_estimation/standard_metric_estimation.rst b/docs/tutorials/performance_estimation/multiclass_performance_estimation/standard_metric_estimation.rst index 75ae505fd..0b2556666 100644 --- a/docs/tutorials/performance_estimation/multiclass_performance_estimation/standard_metric_estimation.rst +++ b/docs/tutorials/performance_estimation/multiclass_performance_estimation/standard_metric_estimation.rst @@ -61,6 +61,7 @@ chunking check out the :ref:`chunking tutorial` and it's :ref:`advance - ``recall`` - macro-averaged - ``specificity`` - macro-averaged - ``accuracy`` + - ``average_precision`` - macro-averaged .. nbimport:: @@ -106,17 +107,20 @@ that was estimated: These results can be also plotted. Our plot contains several key elements. -* The purple dashed step plot shows the estimated performance in each chunk of the analysis period. Thick squared point +* The purple dashed step plot shows the estimated performance in each chunk of the provided data. Thick squared point markers indicate the middle of these chunks. * The black vertical line splits the reference and analysis periods. -* The low-saturated colored area around the estimated performance indicates the :ref:`sampling error`. +* *The low-saturated purple area* around the estimated performance in the analysis period corresponds to the + :term:`confidence band` which is calculated as the estimated performance +/- 3 times the + estimated :term:`Sampling Error`. -* The red horizontal dashed lines show upper and lower thresholds for alerting purposes. +* *The red horizontal dashed lines* show upper and lower thresholds that indicate the range of + expected performance values. -* If the estimated performance crosses the upper or lower threshold an alert is raised which is indicated with a red - diamond-shaped point marker in the middle of the chunk. +* *The red diamond-shaped point markers* in the middle of a chunk indicate that an alert has been raised. + Alerts are caused by the estimated performance crossing the upper or lower threshold. Description of tabular results above explains how the :term:`confidence bands` and thresholds are calculated. Additional information is shown in the hover (these are diff --git a/nannyml/performance_calculation/calculator.py b/nannyml/performance_calculation/calculator.py index ff05da7e6..c9f8e543b 100644 --- a/nannyml/performance_calculation/calculator.py +++ b/nannyml/performance_calculation/calculator.py @@ -165,10 +165,11 @@ def __init__( observations for each true class. If 'predicted', the confusion matrix will be normalized by the total number of observations for each predicted class. business_value_matrix: Optional[Union[List, np.ndarray]], default=None - A matrix containing the business costs for each combination of true and predicted class. - The i-th row and j-th column entry of the matrix contains the business cost for predicting the - i-th class as the j-th class. The matrix must have the same number of rows and columns as the number - of classes in the problem. + A nxn matrix that specifies the value of each cell in the confusion matrix. + The format of the business value matrix must be specified so that each element represents the business + value of it's respective confusion matrix element. Hence the element on the i-th row and j-column of the + business value matrix tells us the value of the i-th target while we predicted the j-th value. + It can be provided as a list of lists or a numpy array. normalize_business_value: str, default=None Determines how the business value will be normalized. Allowed values are None and 'per_prediction'. If None, the business value will not be normalized and the value diff --git a/nannyml/performance_calculation/metrics/multiclass_classification.py b/nannyml/performance_calculation/metrics/multiclass_classification.py index ba98dbb4a..67d91a0da 100644 --- a/nannyml/performance_calculation/metrics/multiclass_classification.py +++ b/nannyml/performance_calculation/metrics/multiclass_classification.py @@ -1055,9 +1055,10 @@ def __init__( The Threshold instance that determines how the lower and upper threshold values will be calculated. business_value_matrix: Union[List, np.ndarray] A nxn matrix that specifies the value of each cell in the confusion matrix. - The format of the business value matrix must be specified as with each element representing the business - value of it's respecitve confusion matrix element. Hence the element on the i-th row and j-column of the - business value when we get the i-th target value while we predicted the j-th value. + The format of the business value matrix must be specified so that each element represents the business + value of it's respective confusion matrix element. Hence the element on the i-th row and j-column of the + business value matrix tells us the value of the i-th target while we predicted the j-th value. + It can be provided as a list of lists or a numpy array. normalize_business_value: Optional[str], default=None Determines how the business value will be normalized. Allowed values are None and 'per_prediction'. y_pred_proba: Optional[str], default=None diff --git a/nannyml/performance_estimation/confidence_based/cbpe.py b/nannyml/performance_estimation/confidence_based/cbpe.py index 243dd69e6..5a74d2477 100644 --- a/nannyml/performance_estimation/confidence_based/cbpe.py +++ b/nannyml/performance_estimation/confidence_based/cbpe.py @@ -171,9 +171,11 @@ def __init__( - 'predicted' - the confusion matrix will be normalized by the total number of observations for each \ predicted class. business_value_matrix: Optional[Union[List, np.ndarray]], default=None - A 2x2 matrix that specifies the value of each cell in the confusion matrix. - The format of the business value matrix must be specified as [[value_of_TN, value_of_FP], \ - [value_of_FN, value_of_TP]]. Required when estimating the 'business_value' metric. + A nxn matrix that specifies the value of each cell in the confusion matrix. + The format of the business value matrix must be specified so that each element represents the business + value of it's respective confusion matrix element. Hence the element on the i-th row and j-column of the + business value matrix tells us the value of the i-th target while we predicted the j-th value. + It can be provided as a list of lists or a numpy array. normalize_business_value: str, default=None Determines how the business value will be normalized. Allowed values are None and 'per_prediction'.