-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathindex.cjs
115 lines (101 loc) · 3.25 KB
/
index.cjs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
const fs = require("fs");
const fetch = require("node-fetch-2");
const FormData = require("form-data");
class ImageClassification {
constructor(apiKey, modelId) {
if (!apiKey || !modelId)
throw new Error(
"NanoNets SDK Image Classification Constructor Error: Insufficient parameters passed."
);
else if (typeof apiKey !== "string" || typeof modelId !== "string")
throw new Error(
`NanoNets SDK Image Classification Constructor Error: Incorrect parameter data type. Expected 'string', got '${typeof apiKey}' and '${typeof modelId}'.`
);
else if (apiKey === "" || modelId === "")
throw new Error(
"NanoNets SDK Image Classification Constructor Error: Invalid API Key or Model ID. Empty string(s) passed."
);
this.apiKey = apiKey;
this.modelId = modelId;
this.authHeaderVal =
"Basic " + Buffer.from(`${this.apiKey}:`).toString("base64");
}
async getModelDetails() {
const response = await fetch(
`https://app.nanonets.com/api/v2/ImageCategorization/Model/?modelId=${this.modelId}`,
{
headers: {
"Authorization": this.authHeaderVal,
"Accept": "application/json"
}
}
);
const data = response.json();
return data;
}
async predictUsingUrls(urlArray) {
if (!urlArray)
throw new Error(
"NanoNets SDK Image Classification predictUsingUrls() Error: URL array parameter not passed."
);
else if (!Array.isArray(urlArray))
throw new Error(
`NanoNets SDK Image Classification predictUsingUrls() Error: Incorrect parameter type. Expected 'array', got '${typeof urlArray}'.`
);
else if (urlArray.length === 0)
throw new Error(
"NanoNets SDK Image Classification predictUsingUrls() Error: Empty URL array passed."
);
let encodedData = new URLSearchParams();
for (let i = 0; i < urlArray.length; i++) {
encodedData.append("urls", urlArray[i]);
}
encodedData.append("modelId", this.modelId);
const response = await fetch(
`https://app.nanonets.com/api/v2/ImageCategorization/LabelUrls`,
{
method: "POST",
headers: {
"Authorization": this.authHeaderVal,
"Content-Type": "application/x-www-form-urlencoded",
"Accept": "application/json"
},
body: encodedData
}
);
const data = response.json();
return data;
}
async predictUsingFile(filePath) {
if (!filePath)
throw new Error(
"NanoNets SDK Image Classification predictUsingFile() Error: File path parameter not passed."
);
else if (typeof filePath !== "string")
throw new Error(
`NanoNets SDK Image Classification predictUsingFile() Error: Incorrect parameter data type. Expected 'string', got '${typeof filePath}'.`
);
else if (filePath === "")
throw new Error(
`NanoNets SDK Image Classification predictUsingFile() Error: Empty file path passed.`
);
const fileStream = fs.createReadStream(filePath);
const formData = new FormData();
formData.append("file", fileStream);
formData.append("modelId", this.modelId);
const response = await fetch(
`https://app.nanonets.com/api/v2/ImageCategorization/LabelFile`,
{
method: "POST",
headers: {
"Authorization": this.authHeaderVal,
"Accept": "application/json"
},
body: formData
}
);
const data = response.json();
return data;
}
}
module.exports = ImageClassification;