-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathproduction_random_sampling_threadpool.py
76 lines (67 loc) · 2.92 KB
/
production_random_sampling_threadpool.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
import requests
import json
import random
import csv
import argparse
from tqdm import tqdm
from concurrent.futures import ThreadPoolExecutor, as_completed
def get_argparser():
parser = argparse.ArgumentParser()
parser.add_argument("--query_url", default='', type=str,
help="Base URL for querying data")
parser.add_argument("--output_file_path", default='/teamspace/studios/production_sampling_1000_itr_3.csv', type=str,
help="Path to the output CSV file")
parser.add_argument("--total_count", default=4000, type=int,
help='Number of samples to get')
parser.add_argument("--total", default=6573422, type=int,
help='Total samples in the production database')
parser.add_argument("--batch_size", default=100, type=int,
help='Batch size for concurrent requests')
return parser
def fetch_image_urls(offsets, query_url):
results = []
for offset in offsets:
try:
response = requests.get(f"{query_url}offset={offset}&limit=1")
json_body = json.loads(response.content)
tree_data = json_body.get('trees', [])
if tree_data:
image_url = tree_data[0].get('image_url')
results.append(image_url)
except Exception as e:
print(f"Error fetching data at offset {offset}: {e}")
return results
def main():
opts = get_argparser().parse_args()
sampled_list = []
count = 0
offsets = set()
with tqdm(total=opts.total_count) as pbar:
while len(sampled_list) < opts.total_count:
# Generate a batch of random offsets
batch_offsets = [random.randint(0, opts.total) for _ in range(opts.batch_size)]
batch_offsets = [offset for offset in batch_offsets if offset not in offsets]
# Use ThreadPoolExecutor to fetch image URLs in parallel
with ThreadPoolExecutor(max_workers=2) as executor:
futures = []
for offset in batch_offsets:
futures.append(executor.submit(fetch_image_urls, [offset], opts.query_url))
for future in as_completed(futures):
results = future.result()
if results:
sampled_list.extend(results)
offsets.update(batch_offsets)
pbar.update(len(results))
if len(sampled_list) >= opts.total_count:
break
# Clear memory of processed batch_offsets
del batch_offsets
# Write the sampled_list to CSV
csv_file = opts.output_file_path
with open(csv_file, mode='w', newline='') as file:
writer = csv.writer(file)
writer.writerow(["image_url"])
for entry in sampled_list:
writer.writerow([entry])
if __name__ == "__main__":
main()