-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathpytorchtools.py
44 lines (42 loc) · 1.92 KB
/
pytorchtools.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
import numpy as np
import torch
import os
from datetime import datetime
class EarlyStopping_v2:
"""Early stops the training if validation loss doesn't improve after a given patience."""
def __init__(self, patience=5, verbose=False, delta=0, path='checkpoint.pt', timestamp=0000, trace_func=print):
self.patience = patience
self.verbose = verbose
self.counter = 0
self.timestamp = timestamp
self.best_score = None
self.early_stop = False
self.val_loss_min = np.Inf
self.delta = delta
self.path = path
self.trace_func = trace_func
def __call__(self, val_loss, model, epoch, timestamp, path):
score = -val_loss
if self.best_score is None:
self.best_score = score
self.save_checkpoint(val_loss, model, epoch, timestamp, path)
elif score < self.best_score + self.delta:
self.counter += 1
self.trace_func(f'EarlyStopping counter: {self.counter} out of {self.patience}')
if self.counter >= self.patience:
self.early_stop = True
else:
self.best_score = score
self.save_checkpoint(val_loss, model, epoch, timestamp, path)
self.counter = 0
def save_checkpoint(self, val_loss, model, epoch, timestamp, path):
path_w = f"{path}/model_checkpoints"
if not os.path.exists(os.path.join(os.getcwd(), path_w)):
os.mkdir(os.path.join(os.getcwd(), path_w))
print("\nDirectory for model checkpoints created.")
sav_path = f"{path_w}/Epoch:{epoch}_{timestamp}.dat"
if self.verbose:
self.trace_func(f'Validation loss decreased ({self.val_loss_min:.3f} --> {val_loss:.3f}). \nSaving model to path...{sav_path}')
state_dict = model.state_dict()
torch.save({'model': state_dict}, sav_path)
self.val_loss_min = val_loss