-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathcg_fit_tdcc.py
46 lines (41 loc) · 1.58 KB
/
cg_fit_tdcc.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
#!/Users/kchen/miniconda3/bin/python
# Author: Kai Chen
# Institute: INS, SJTU
# Plot MI vs. connection strength.
import time
import numpy as np
import matplotlib.pyplot as plt
plt.rcParams['font.size']=15
plt.rcParams['axes.labelsize'] = 15
from fcpy.core import EcogTDCC
from fcpy.utils import print_log
from fcpy.plot import gen_mi_s_figure
from argparse import ArgumentParser, ArgumentDefaultsHelpFormatter
arg_default = {'path': 'data_preprocessing_46_region/',
}
parser = ArgumentParser(prog='CG_mi_s',
description = "Generate figure for analysis of causality.",
formatter_class=ArgumentDefaultsHelpFormatter)
parser.add_argument('path', default=arg_default['path'], nargs='?',
type = str,
help = "path of working directory."
)
args = parser.parse_args()
start = time.time()
# Load SC and FC data
# ==================================================
data = EcogTDCC()
data.init_data(args.path, 'snr_th_gauss_tdcc.pkl')
sc, fc = data.get_sc_fc('cg')
# ==================================================
fig = gen_mi_s_figure(fc, sc, is_log=False)
for ax in fig.get_axes():
handles, labels = ax.get_legend_handles_labels()
labels = [item.replace('TDMI', 'CC') for item in labels]
ax.legend(handles, labels)
[fig.get_axes()[i].set_ylabel(r'$log_{10}\left((CC)\right)$') for i in (0,4)]
[fig.get_axes()[i].set_xlabel('Weight') for i in (4,5,6)]
plt.tight_layout()
fname = f'cg_tdcc-s.png'
fig.savefig(args.path + fname)
print_log(f'Figure save to {args.path+fname:s}.', start)