Skip to content

Commit 2aa55ca

Browse files
committed
Climate Predition Model
1 parent d5cf786 commit 2aa55ca

File tree

3 files changed

+94
-0
lines changed

3 files changed

+94
-0
lines changed

app.py

Lines changed: 84 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,84 @@
1+
import streamlit as st
2+
import numpy as np
3+
import pickle
4+
5+
# Load your pre-trained RandomForestRegressor model
6+
with open("random_forest_model.pkl", "rb") as file:
7+
model = pickle.load(file)
8+
9+
# Set the title of the app
10+
st.title("Predicting Temperature in London")
11+
12+
# header and description
13+
st.header("Predict Weather Conditions Based on Various Features")
14+
15+
# link to the GitHub repository
16+
st.markdown("[GitHub Repo](https://github.com/Netcodez/Climate-Prediction-Pipeline)")
17+
18+
st.write(
19+
"""
20+
This application uses a Random Forest Regression model to predict the mean temperature in London.
21+
Please enter the required features below to get a prediction.
22+
"""
23+
)
24+
feature_names = [
25+
"Cloud Cover (oktas)",
26+
"Sunshine (hrs)",
27+
"Global Radiation (W/m²)",
28+
"Max Temp (°C)",
29+
"Min Temp (°C)",
30+
"Precipitation (mm)",
31+
"Pressure (Pa)",
32+
"Snow Depth (cm)",
33+
"Month",
34+
]
35+
36+
# feature names with units of measurement and short descriptions
37+
feature_info = {
38+
"Cloud Cover (oktas)": {
39+
"range": (0.0, 9.0),
40+
"description": "Measurement of cloud cover in oktas",
41+
},
42+
"Sunshine (hrs)": {
43+
"range": (0.0, 24.0),
44+
"description": "Measurement of sunshine in hours per day",
45+
},
46+
"Global Radiation (W/m²)": {
47+
"range": (0.0, 500.0),
48+
"description": "Measurement of global radiation in Watt per " "square meter",
49+
},
50+
"Max Temp (°C)": {
51+
"range": (-10.0, 40.0),
52+
"description": "Maximum temperature recorded in degrees Celsius",
53+
},
54+
"Min Temp (°C)": {
55+
"range": (-10.0, 40.0),
56+
"description": "Minimum temperature recorded in degrees Celsius",
57+
},
58+
"Precipitation (mm)": {
59+
"range": (0.0, 100.0),
60+
"description": "Measurement of precipitation in millimeters",
61+
},
62+
"Pressure (Pa)": {
63+
"range": (90000.0, 110000.0),
64+
"description": "Measurement of pressure in Pascals",
65+
},
66+
"Snow Depth (cm)": {
67+
"range": (0.0, 50.0),
68+
"description": "Measurement of snow depth in centimeters",
69+
},
70+
"Month": {"range": (1, 12), "description": "Month of observation"},
71+
}
72+
73+
feature_values = []
74+
for feature_name, info in feature_info.items():
75+
min_val, max_val = info["range"]
76+
label = f"{feature_name}: {info['description']}"
77+
feature_values.append(st.slider(label, min_val, max_val, min_val))
78+
79+
80+
# Prediction button
81+
if st.button("Predict"):
82+
input_data = np.array(feature_values).reshape(1, -1)
83+
prediction = model.predict(input_data)
84+
st.write(f"Mean Temperature in London is predicted to be {prediction[0]}°C")

random_forest_model.pkl

10.6 MB
Binary file not shown.

requirements.txt

Lines changed: 10 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,10 @@
1+
streamlit==1.34.0
2+
mlflow==2.13.0
3+
cloudpickle==2.2.1
4+
packaging==24.0
5+
pathlib==1.0.1
6+
psutil==5.9.5
7+
pyyaml==6.0.1
8+
scikit-learn==1.2.2
9+
numpy
10+
pickle-mixin

0 commit comments

Comments
 (0)