-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
147 lines (126 loc) · 5.36 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
# Copyright 2022-present, Lorenzo Bonicelli, Pietro Buzzega, Matteo Boschini, Angelo Porrello, Simone Calderara.
# All rights reserved.
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
import numpy # needed (don't change it)
import importlib
import os
import sys
import socket
mammoth_path = os.path.dirname(os.path.abspath(__file__))
os.chdir(mammoth_path)
sys.path.append(mammoth_path)
sys.path.append(mammoth_path + '/datasets')
sys.path.append(mammoth_path + '/backbone')
sys.path.append(mammoth_path + '/models')
from datasets import NAMES as DATASET_NAMES
from models import get_all_models
from argparse import ArgumentParser
from utils.args import add_management_args, add_gcil_args, add_av_dataset_args
from datasets import ContinualDataset
from utils.continual_training import train as ctrain
from utils.multimodal_training import train as mmtrain
from datasets import get_dataset
from datasets.utils.av_continual_dataset import AVContinualDataset
from models import get_model
from utils.training import train
from utils.best_args import best_args
from utils.conf import set_random_seed
# import setproctitle
import torch
import uuid
import datetime
def lecun_fix():
# Yann moved his website to CloudFlare. You need this now
from six.moves import urllib # pyright: ignore
opener = urllib.request.build_opener()
opener.addheaders = [('User-agent', 'Mozilla/5.0')]
urllib.request.install_opener(opener)
def parse_args():
parser = ArgumentParser(description='mammoth', allow_abbrev=False)
parser.add_argument('--model', type=str, required=True,
help='Model name.', choices=get_all_models())
parser.add_argument('--dataset', type=str, required=True,
choices=DATASET_NAMES,
help='Which dataset to perform experiments on.')
parser.add_argument('--dataset_dir', type=str, default='data',
help='Base directory for datasets.')
parser.add_argument('--output_dir', type=str, default='experiments',
help='Base directory for logging results.')
parser.add_argument('--load_best_args', action='store_true',
help='Loads the best arguments for each method, '
'dataset and memory buffer.')
torch.set_num_threads(4)
add_management_args(parser)
args = parser.parse_known_args()[0]
mod = importlib.import_module('models.' + args.model)
if args.load_best_args:
if args.dataset in ['gcil-cifar100']:
add_gcil_args(parser)
if args.dataset in ['seq_vggsound']:
add_av_dataset_args(parser)
if hasattr(mod, 'Buffer'):
parser.add_argument('--buffer_size', type=int, required=True,
help='The size of the memory buffer.')
args = parser.parse_args()
if args.model == 'joint':
best = best_args[args.dataset]['sgd']
else:
best = best_args[args.dataset][args.model]
if hasattr(mod, 'Buffer'):
best = best[args.buffer_size]
else:
best = best[-1]
get_parser = getattr(mod, 'get_parser')
parser = get_parser()
to_parse = sys.argv[1:] + ['--' + k + '=' + str(v) for k, v in best.items()]
to_parse.remove('--load_best_args')
args = parser.parse_args(to_parse)
if args.model == 'joint' and args.dataset == 'mnist-360':
args.model = 'joint_gcl'
else:
get_parser = getattr(mod, 'get_parser')
parser = get_parser()
if args.dataset in ['gcil-cifar100']:
add_gcil_args(parser)
if args.dataset in ['seq_vggsound', 'domain_vggsound', 'gcil_vggsound']:
print('Added AV args')
add_av_dataset_args(parser)
args = parser.parse_args()
if args.seed is not None:
set_random_seed(args.seed)
return args
def main(args=None):
lecun_fix()
if args is None:
args = parse_args()
os.putenv("MKL_SERVICE_FORCE_INTEL", "1")
os.putenv("NPY_MKL_FORCE_INTEL", "1")
# Add uuid, timestamp and hostname for logging
args.conf_jobnum = str(uuid.uuid4())
args.conf_timestamp = str(datetime.datetime.now())
args.conf_host = socket.gethostname()
dataset = get_dataset(args)
if args.n_epochs is None and isinstance(dataset, ContinualDataset):
args.n_epochs = dataset.get_epochs()
if args.batch_size is None:
args.batch_size = dataset.get_batch_size()
if hasattr(importlib.import_module('models.' + args.model), 'Buffer') and args.minibatch_size is None:
args.minibatch_size = dataset.get_minibatch_size()
backbone = dataset.get_backbone()
loss = dataset.get_loss()
model = get_model(args, backbone, loss, dataset.get_transform())
if args.debug_mode:
args.nowand = 1
# set job name
# setproctitle.setproctitle('{}_{}_{}'.format(args.model, args.buffer_size if 'buffer_size' in args else 0, args.dataset))
if isinstance(dataset, ContinualDataset):
train(model, dataset, args)
elif isinstance(dataset, AVContinualDataset):
mmtrain(model, dataset, args)
else:
# assert not hasattr(model, 'end_task') or model.NAME == 'joint_gcl'
if "general-continual" in model.COMPATIBILITY:
ctrain(args)
if __name__ == '__main__':
main()