-
Notifications
You must be signed in to change notification settings - Fork 1
/
main.py
97 lines (85 loc) · 3.72 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
import importlib
import os
import sys
conf_path = os.getcwd()
sys.path.append(conf_path)
sys.path.append(conf_path + '/datasets')
sys.path.append(conf_path + '/backbone')
sys.path.append(conf_path + '/models')
from datasets import NAMES as DATASET_NAMES
from models import get_all_models
from argparse import ArgumentParser
from utils.args import add_management_args, add_arguments
from datasets import ContinualDataset
from utils.continual_training import train as ctrain
from datasets import get_dataset
from models import get_model
from utils.training import train
from utils.best_args import best_args
from utils.conf import set_random_seed
from torchsummary import summary
def lecun_fix():
# Yann moved his website to CloudFlare. You need this now
from six.moves import urllib
opener = urllib.request.build_opener()
opener.addheaders = [('User-agent', 'Mozilla/5.0')]
urllib.request.install_opener(opener)
def main():
lecun_fix()
parser = ArgumentParser(description='mammoth', allow_abbrev=False)
parser.add_argument('--model', type=str, required=True,
help='Model name.', choices=get_all_models())
parser.add_argument('--load_best_args', action='store_true',
help='Loads the best arguments for each method, '
'dataset and memory buffer.')
parser.add_argument('--het_drop', type=float, default=1, help='heterogenous dropout weight')
parser.add_argument("--lr_fl", type=float, default=0.0005, help="first loop learning rate")
parser.add_argument("--lr_sl", type=float, default=0.0001, help="second loop learning rate")
parser.add_argument('--use_cl_mask', action='store_true', default=False, help='use CL mask or not')
parser.add_argument("--output_folder", type=str, default="output-ai/temp_results")
parser.add_argument("--use_het_drop", action='store_true', default=False, help='use heterogenous dropout or not')
parser.add_argument("--forget_perc", type=float, default=0.9, help="Epoch to where the model is rewinded")
add_arguments(parser)
add_management_args(parser)
args = parser.parse_known_args()[0]
mod = importlib.import_module('models.' + args.model)
if args.load_best_args:
parser.add_argument('--dataset', type=str, required=True,
choices=DATASET_NAMES,
help='Which dataset to perform experiments on.')
if hasattr(mod, 'Buffer'):
parser.add_argument('--buffer_size', type=int, required=True,
help='The size of the memory buffer.')
args = parser.parse_args()
if args.model == 'joint':
best = best_args[args.dataset]['sgd']
else:
best = best_args[args.dataset][args.model]
if args.model == 'joint' and args.dataset == 'mnist-360':
args.model = 'joint_gcl'
if hasattr(args, 'buffer_size'):
best = best[args.buffer_size]
else:
best = best[-1]
for key, value in best.items():
setattr(args, key, value)
else:
get_parser = getattr(mod, 'get_parser')
parser = get_parser()
add_arguments(parser)
args = parser.parse_args()
if args.seed is not None:
set_random_seed(args.seed)
if args.model == 'mer':
setattr(args, 'batch_size', 1)
dataset = get_dataset(args)
backbone = dataset.get_backbone()
loss = dataset.get_loss()
model = get_model(args, backbone, loss, dataset.get_transform())
if isinstance(dataset, ContinualDataset):
train(model, dataset, args)
else:
assert not hasattr(model, 'end_task') or model.NAME == 'joint_gcl'
ctrain(args)
if __name__ == '__main__':
main()