-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathCVPR24_time_eval.py
128 lines (116 loc) · 5.34 KB
/
CVPR24_time_eval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
"""
The code was adapted from the MICCAI FLARE Challenge
https://github.com/JunMa11/FLARE
The testing images will be evaluated one by one.
Folder structure:
CVPR24_time_eval.py
- team_docker
- teamname.tar.gz # submitted docker containers from participants
- test_demo
- imgs
- case1.npz # testing image
- case2.npz
- ...
- demo_seg # segmentation results
- case1.npz # segmentation file name is the same as the testing image name
- case2.npz
- ...
"""
import os
import subprocess
join = os.path.join
import shutil
import time
import argparse
from collections import OrderedDict
import pandas as pd
import statistics
parser = argparse.ArgumentParser('Segmentation efficiency eavluation for docker containers', add_help=False)
parser.add_argument('-i', '--test_img_path', default='./test_demo/imgs', type=str, help='testing data path')
parser.add_argument('-o','--segs_save_path', default='./test_demo/segs', type=str, help='segmentation output path')
parser.add_argument('-t','--timing_save_path', default='./test_demo/', type=str, help='running time data output path')
parser.add_argument('-n','--docker_image_name', type=str, help='File name of the docker image')
parser.add_argument('-r','--repeat', type=int, default=1, help='Amount of times each test case should be run')
args = parser.parse_args()
test_img_path = args.test_img_path
segs_save_path = args.segs_save_path
timing_save_path = args.timing_save_path
docker_image_name = args.docker_image_name
repeat = args.repeat
os.makedirs(segs_save_path, exist_ok=True)
input_temp = './inputs_temp/'
output_temp = './outputs_temp/'
test_cases = sorted(os.listdir(test_img_path))
# Get the root password from stdin since running the docker containers
# may require root permissions
print("If a root password is provided, docker run will be executed with root privileges.")
print("If no password is provided (empty string) then will attempt " +
"to run docker run without root privileges.")
root_pass=input("Enter the root password: ")
try:
# create temp folers for inference one-by-one
if os.path.exists(input_temp):
shutil.rmtree(input_temp)
if os.path.exists(output_temp):
shutil.rmtree(output_temp)
os.makedirs(input_temp)
os.makedirs(output_temp)
# load docker and create a new folder to save segmentation results
teamname = docker_image_name.split('.')[0].lower()
print('Team name: ', teamname)
# os.system('docker image load -i {}'.format(docker_image_name))
team_outpath = segs_save_path
if os.path.exists(team_outpath):
shutil.rmtree(team_outpath)
os.mkdir(team_outpath)
os.system('chmod -R 777 {} {}'.format(input_temp, output_temp))
metric = OrderedDict()
metric['CaseName'] = []
metric['Runs'] = []
metric['InferenceTimeMean'] = []
metric['InferenceTimeStd'] = []
metric['RunningTimeMean'] = []
metric['RunningTimeStd'] = []
# To obtain the running time for each case, testing cases are inferred one-by-one
for case in test_cases:
shutil.copy(join(test_img_path, case), input_temp)
# Run inference on the test case and obtain the running time
cmd = ['sudo', '-S', 'docker', 'container', 'run', '-m', '8G', '--name', teamname, '--rm', '-v', f'{input_temp}:/workspace/inputs/', '-v', f'{output_temp}:/workspace/outputs/', f'{teamname}:latest', '/bin/bash', '-c', 'sh predict.sh']
print(teamname, ' docker command:', " ".join(cmd), '\n', 'testing image name:', case)
inference_times = []
running_times = []
for i in range(0, repeat):
start_time = time.time()
if root_pass:
subprocess.run(cmd, input=root_pass, text=True)
else:
subprocess.run(cmd[2:], input=root_pass, text=True)
real_running_time = time.time() - start_time
running_times.append(real_running_time)
efficiency_df = pd.read_csv(join(output_temp, "efficiency.csv"))
inference_times.append(efficiency_df.iloc[0]['time'])
print(f"{case} run {i+1} finished! Running time: {real_running_time}")
# save metrics
metric['CaseName'].append(case)
metric['Runs'].append(repeat)
metric['InferenceTimeMean'].append(statistics.mean(inference_times))
metric['InferenceTimeStd'].append(statistics.stdev(inference_times))
metric['RunningTimeMean'].append(statistics.mean(running_times))
metric['RunningTimeStd'].append(statistics.stdev(running_times))
os.remove(join(input_temp, case))
seg_name = case
try:
os.rename(join(output_temp, seg_name), join(team_outpath, seg_name))
except:
print(f"{join(output_temp, seg_name)}, {join(team_outpath, seg_name)}")
print("Wrong segmentation name!!! It should be the same as image_name")
metric_df = pd.DataFrame(metric)
metric_df.columns=['Case name', 'Number of runs', 'Inference time (mean)',
'Inference time (stddev)', 'Running time (mean)', 'Running time (stddev)']
running_time_path = join(timing_save_path, 'running_time.csv')
print("Running time data saved to:", running_time_path)
metric_df.to_csv(running_time_path, index=False, float_format='%.3f')
shutil.rmtree(input_temp)
shutil.rmtree(output_temp)
except Exception as e:
print(e)