-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathpre_grey_rgb.py
executable file
·413 lines (358 loc) · 15.5 KB
/
pre_grey_rgb.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
from os import makedirs
from os.path import join, basename
from glob import glob
from tqdm import tqdm
from time import time
import numpy as np
import torch
import torch.nn.functional as F
import cv2
import argparse
from collections import OrderedDict
import pandas as pd
from datetime import datetime
import onnxruntime
from src.infer_util import medsam_preprocess
#%% set seeds
torch.set_float32_matmul_precision('high')
torch.manual_seed(2024)
np.random.seed(2024)
parser = argparse.ArgumentParser()
parser.add_argument(
'-i',
'--input_dir',
type=str,
default='test_demo/imgs/',
# required=True,
help='root directory of the data',
)
parser.add_argument(
'-o',
'--output_dir',
type=str,
default='test_demo/segs/',
help='directory to save the prediction',
)
parser.add_argument(
'-model_path',
type=str,
default="work_dir",
help='path to the checkpoint of MedSAM-Lite',
)
parser.add_argument(
'-device',
type=str,
default="cpu",
help='device to run the inference',
)
parser.add_argument(
'-num_workers',
type=int,
default=4,
help='number of workers for inference with multiprocessing',
)
args = parser.parse_args()
data_root = args.input_dir
pred_save_dir = args.output_dir
num_workers = args.num_workers
makedirs(pred_save_dir, exist_ok=True)
device = torch.device(args.device)
def resize_longest_side(image, target_length):
"""
Resize image to target_length while keeping the aspect ratio
Expects a numpy array with shape HxWxC in uint8 format.
"""
oldh, oldw = image.shape[0], image.shape[1]
scale = target_length * 1.0 / max(oldh, oldw)
newh, neww = oldh * scale, oldw * scale
neww, newh = int(neww + 0.5), int(newh + 0.5)
target_size = (neww, newh)
return cv2.resize(image, target_size, interpolation=cv2.INTER_AREA)
def pad_image(image, target_size):
"""
Pad image to target_size
Expects a numpy array with shape HxWxC in uint8 format.
"""
# Pad
h, w = image.shape[0], image.shape[1]
padh = target_size - h
padw = target_size - w
if len(image.shape) == 3: ## Pad image
image_padded = np.pad(image, ((0, padh), (0, padw), (0, 0)))
else: ## Pad gt mask
image_padded = np.pad(image, ((0, padh), (0, padw)))
return image_padded
def postprocess_masks(masks, new_size, original_size):
"""
Do cropping and resizing
Parameters
----------
masks : torch.Tensor
masks predicted by the model
new_size : tuple
the shape of the image after resizing to the longest side of 256
original_size : tuple
the original shape of the image
Returns
-------
torch.Tensor
the upsampled mask to the original size
"""
# Crop
masks = masks[..., :new_size[0], :new_size[1]]
# Resize
masks = F.interpolate(
masks,
size=(original_size[0], original_size[1]),
mode="bilinear",
align_corners=False,
)
return masks
def get_bbox_from_mask(mask_256, bbox_shift=4):
"""
Get the bounding box coordinates from the mask (256x256)
Parameters
----------
mask_256 : numpy.ndarray
the mask of the resized image
bbox_shift : int
Add perturbation to the bounding box coordinates
Returns
-------
numpy.ndarray
bounding box coordinates in the resized image
"""
y_indices, x_indices = np.where(mask_256 > 0)
x_min, x_max = np.min(x_indices), np.max(x_indices)
y_min, y_max = np.min(y_indices), np.max(y_indices)
# add perturbation to bounding box coordinates and test the robustness
# this can be removed if you do not want to test the robustness
H, W = mask_256.shape
x_min = max(0, x_min - bbox_shift)
x_max = min(W, x_max + bbox_shift)
y_min = max(0, y_min - bbox_shift)
y_max = min(H, y_max + bbox_shift)
bboxes256 = np.array([x_min, y_min, x_max, y_max])
return bboxes256
def resize_box_to_image_size(box, original_size, image_size):
"""
the input bounding box is obtained from the original image
here, we rescale it to the coordinates of the resized image
Parameters
----------
box : numpy.ndarray
bounding box coordinates in the original image
original_size : tuple
the original size of the image
Returns
-------
numpy.ndarray
bounding box coordinates in the resized image
"""
new_box = np.zeros_like(box)
ratio = image_size / max(original_size)
for i in range(len(box)):
new_box[i] = int(box[i] * ratio)
return new_box
def medsam_preprocess(img_2d, image_size):
if len(img_2d.shape) == 2:
img_3c = np.repeat(img_2d[:, :, None], 3, axis=-1)
else:
img_3c = img_2d
img_1024 = resize_longest_side(img_3c, image_size)
newh, neww = img_1024.shape[:2]
img_1024_norm = (img_1024 - img_1024.min()) / np.clip(
img_1024.max() - img_1024.min(), a_min=1e-8, a_max=None
)
img_1024_padded = pad_image(img_1024_norm, image_size)
img_1024_tensor = torch.tensor(img_1024_padded).float().permute(2, 0, 1).unsqueeze(0)
return img_1024_tensor, newh, neww
@torch.no_grad()
def onnx_decoder_inference(decoder_session, image_embedding_slice, input_points, input_box, new_size, original_size):
if len(input_points)>0:
input_label = np.array([1])
if input_box is None:
onnx_coord = np.concatenate([input_points[0], np.array([[0.0, 0.0]])], axis=0)[None, :, :]
onnx_label = np.concatenate([input_label, np.array([-1])], axis=0)[None, :].astype(np.float32)
else:
onnx_box_coords = input_box.reshape(2, 2)
onnx_box_labels = np.array([2,3])
if len(input_points) == 0:
onnx_coord = onnx_box_coords[None, :, :].astype(np.float32)
onnx_label = onnx_box_labels[None, :].astype(np.float32)
else:
onnx_coord = np.concatenate([input_points, onnx_box_coords], axis=0)[None, :, :].astype(np.float32)
onnx_label = np.concatenate([input_label, onnx_box_labels], axis=0)[None, :].astype(np.float32)
# onnx_coord = transform.apply_coords(onnx_coord, [stacked_img.shape[0], stacked_img.shape[1]]).astype(np.float32)
onnx_mask_input = np.zeros((1, 1, 256, 256), dtype=np.float32)
onnx_has_mask_input = np.zeros(1, dtype=np.float32)
# print("image_embedding_slice type", image_embedding_slice.type())
decoder_inputs = {
"image_embeddings": np.array(image_embedding_slice),
"point_coords": onnx_coord,
"point_labels": onnx_label,
"mask_input": onnx_mask_input,
"has_mask_input": onnx_has_mask_input,
"orig_im_size": np.array(original_size, dtype=np.float32)
}
masks, scores, low_res_logits = decoder_session.run(None, decoder_inputs)
# if ori_mask:
low_res_logits = torch.tensor(low_res_logits)
low_res_pred = postprocess_masks(low_res_logits, new_size, original_size)
low_res_pred = torch.sigmoid(low_res_pred)
low_res_pred = low_res_pred.squeeze().cpu().numpy()
medsam_seg = (low_res_pred > 0.5).astype(np.uint8)
# else:
# mask = (masks > 0).astype(np.uint8)
return medsam_seg, scores
def majority_voting(npz_name, axial, coronal, sagittal):
# Stack the arrays along a new axis to create a 4D array
stacked_arrays = np.stack((axial, coronal, sagittal), axis=-1)
# Use np.apply_along_axis to apply the majority voting function along the last axis
result = np.apply_along_axis(lambda x: np.bincount(x).argmax(), axis=-1, arr=stacked_arrays)
result = result.astype(np.uint8)
np.savez_compressed(
join(pred_save_dir, npz_name),
segs=result,
)
def MedSAM_infer_npz_2D(img_npz_file, encoder_session, decoder_session, image_size):
# gc.collect()
npz_name = basename(img_npz_file)
npz_data = np.load(img_npz_file, 'r', allow_pickle=True) # (H, W, 3)
img_3c = npz_data['imgs'] # (H, W, 3)
assert np.max(img_3c)<256, f'input data should be in range [0, 255], but got {np.unique(img_3c)}'
H, W = img_3c.shape[:2]
boxes = npz_data['boxes']
segs = np.zeros(img_3c.shape[:2], dtype=np.uint8)
## preprocessing
img_tensor, new_H, new_W = medsam_preprocess(img_3c, image_size)
with torch.no_grad():
image_embedding = encoder_session.run(None, {'input_image': img_tensor.cpu().numpy()})[0]
# image_embedding = medsam_lite_model.image_encoder(img_256_tensor)
for idx, box in enumerate(boxes, start=1):
box_resized = resize_box_to_image_size(box, (H, W), image_size)
box_resized = box_resized[None, ...] # (1, 4)
medsam_mask, iou_pred = onnx_decoder_inference(decoder_session, image_embedding, [], box_resized, (new_H, new_W), [H, W])
segs[medsam_mask>0] = idx
np.savez_compressed(
join(pred_save_dir, npz_name),
segs=segs,
)
def select_middle_slice(box3D, view):
x_min, y_min, z_min, x_max, y_max, z_max = box3D
if view == 'axial':
assert z_min < z_max, f"z_min should be smaller than z_max, but got {z_min=} and {z_max=}"
mid_slice_bbox_2d = np.array([x_min, y_min, x_max, y_max])
z_middle = int((z_max - z_min)/2 + z_min)
return mid_slice_bbox_2d, z_middle, z_min, z_max
if view == 'coronal':
assert y_min < y_max, f"y_min should be smaller than y_max, but got {y_min=} and {y_max=}"
mid_slice_bbox_2d = np.array([x_min, z_min, x_max, z_max])
y_middle = int((y_max - y_min)/2 + y_min)
return mid_slice_bbox_2d, y_middle, y_min, y_max
if view == 'sagittal':
assert x_min < x_max, f"x_min should be smaller than x_max, but got {x_min=} and {x_max=}"
mid_slice_bbox_2d = np.array([y_min, z_min, y_max, z_max])
x_middle = int((x_max - x_min)/2 + x_min)
return mid_slice_bbox_2d, x_middle, x_min, x_max
def get_img_2d(img_3D, i, orientation):
if orientation == 'axial':
return img_3D[i, :, :]
elif orientation == 'coronal':
return img_3D[:, i, :]
elif orientation == 'sagittal':
return img_3D[:, :, i]
def get_pre_seg(segs_3d_temp, i, orientation):
if orientation == 'axial':
return segs_3d_temp[i, :, :]
elif orientation == 'coronal':
return segs_3d_temp[:, i, :]
elif orientation == 'sagittal':
return segs_3d_temp[:, :, i]
def update_segs_3d_temp(segs_3d_temp, img_2d_seg, i, idx, orientation):
if orientation == 'axial':
segs_3d_temp[i,:,:][img_2d_seg>0] = idx
elif orientation == 'coronal':
segs_3d_temp[:,i, :][img_2d_seg>0] = idx
elif orientation == 'sagittal':
segs_3d_temp[:, :, i][img_2d_seg>0] = idx
return segs_3d_temp
def MedSAM_infer_npz_3D(img_npz_file, encoder_session, decoder_session, image_size, view):
npz_name = basename(img_npz_file)
npz_data = np.load(img_npz_file, 'r', allow_pickle=True)
img_3D = npz_data['imgs'] # (D, H, W)
segs = np.zeros_like(img_3D, dtype=np.uint8)
boxes_3D = npz_data['boxes'] # [[x_min, y_min, z_min, x_max, y_max, z_max]]
for idx, box3D in enumerate(boxes_3D, start=1):
segs_3d_temp = np.zeros_like(img_3D, dtype=np.uint8)
mid_slice_bbox_2d, i_middle, i_min, i_max = select_middle_slice(box3D, view)
# infer from middle slice to the z_max
# print(npz_name, 'infer from middle slice to the z_max')
for i in range(i_middle, i_max):
img_2d = get_img_2d(img_3D, i, view)
H, W = img_2d.shape
img_tensor, new_H, new_W = medsam_preprocess(img_2d, image_size)
# get the image embedding
with torch.no_grad():
image_embedding = encoder_session.run(None, {'input_image': img_tensor.cpu().numpy()})[0]
if i == i_middle:
box_resized = resize_box_to_image_size(mid_slice_bbox_2d, (H, W), image_size)
else:
box_resized = resize_box_to_image_size(mid_slice_bbox_2d, (H, W), image_size)
# img_2d_seg, iou_pred = medsam_inference(medsam_lite_model, image_embedding, box_256, [new_H, new_W], [H, W])
img_2d_seg, iou_pred = onnx_decoder_inference(decoder_session, image_embedding, [], box_resized, [new_H, new_W], [H, W])
segs_3d_temp = update_segs_3d_temp(segs_3d_temp, img_2d_seg, i, idx, view)
# infer from middle slice to the z_max
# print(npz_name, 'infer from middle slice to the z_min')
for i in range(i_middle-1, i_min, -1):
img_2d = get_img_2d(img_3D, i, view)
H, W = img_2d.shape
img_tensor, new_H, new_W = medsam_preprocess(img_2d, image_size)
# get the image embedding
with torch.no_grad():
image_embedding = encoder_session.run(None, {'input_image': img_tensor.cpu().numpy()})[0]
box_resized = resize_box_to_image_size(mid_slice_bbox_2d, (H, W), image_size)
# img_2d_seg, iou_pred = medsam_inference(medsam_lite_model, image_embedding, box_resized, [new_H, new_W], [H, W])
img_2d_seg, iou_pred = onnx_decoder_inference(decoder_session, image_embedding, [], box_resized, [new_H, new_W], [H, W])
segs_3d_temp = update_segs_3d_temp(segs_3d_temp, img_2d_seg, i, idx, view)
segs[segs_3d_temp>0] = idx
if "PET" in npz_name:
return segs
else:
np.savez_compressed(
join(pred_save_dir, npz_name),
segs=segs,
)
if __name__ == '__main__':
img_npz_files = sorted(glob(join(data_root, '*.npz'), recursive=True))
efficiency = OrderedDict()
efficiency['case'] = []
efficiency['time'] = []
with torch.no_grad():
encoder_onnx_path = glob(join(args.model_path, '*encoder.onnx'))[0]
decoder_onnx_path = glob(join(args.model_path, '*decoder.onnx'))[0]
options = onnxruntime.SessionOptions()
options.graph_optimization_level = onnxruntime.GraphOptimizationLevel.ORT_DISABLE_ALL
options.intra_op_num_threads = num_workers
options.inter_op_num_threads = 2
encoder_session = onnxruntime.InferenceSession(encoder_onnx_path, sess_options=options, providers=['CPUExecutionProvider'])
decoder_session = onnxruntime.InferenceSession(decoder_onnx_path, sess_options=options, providers=['CPUExecutionProvider'])
image_size = 256
for img_npz_file in tqdm(img_npz_files):
start_time = time()
if basename(img_npz_file).startswith('2D') and "Microscope" in basename(img_npz_file):
MedSAM_infer_npz_2D(img_npz_file, encoder_session, decoder_session, image_size)
elif basename(img_npz_file).startswith('3D') and "PET" in basename(img_npz_file):
axial = MedSAM_infer_npz_3D(img_npz_file, encoder_session, decoder_session, image_size, 'axial')
coronal = MedSAM_infer_npz_3D(img_npz_file, encoder_session, decoder_session, image_size, 'coronal')
sagittal = MedSAM_infer_npz_3D(img_npz_file, encoder_session, decoder_session, image_size, 'sagittal')
majority_voting(basename(img_npz_file), axial, coronal, sagittal)
elif basename(img_npz_file).startswith('3D'):
axial = MedSAM_infer_npz_3D(img_npz_file, encoder_session, decoder_session, image_size, 'axial')
end_time = time()
efficiency['case'].append(basename(img_npz_file))
efficiency['time'].append(end_time - start_time)
current_time = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
print(current_time, 'file name:', basename(img_npz_file), 'time cost:', np.round(end_time - start_time, 4))
efficiency_df = pd.DataFrame(efficiency)
efficiency_df.to_csv(join(pred_save_dir, 'efficiency.csv'), index=False)