forked from Ermentrout/xppaut
-
Notifications
You must be signed in to change notification settings - Fork 0
/
autlib4.c
executable file
·720 lines (543 loc) · 21.2 KB
/
autlib4.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
/* autlib4.f -- translated by f2c (version 19970805).
You must link the resulting object file with the libraries:
-lf2c -lm (in that order)
*/
#include "auto_f2c.h"
#include "auto_c.h"
/* ----------------------------------------------------------------------- */
/* ----------------------------------------------------------------------- */
/* Floquet Multiplier Computation (Tom Fairgrieve, U. of Toronto) */
/* ----------------------------------------------------------------------- */
/* ----------------------------------------------------------------------- */
/* References: */
/* T. F. Fairgrieve, PhD Thesis, University of Toronto, 1994. */
/* T. F. Fairgrieve, A. D. Jepson, O.K. Floquet multipliers, */
/* SIAM J. Numer. Anal. 28. No. 5, 1991, 1446-1462. */
/* Please inform Tom Fairgrieve (tff@na.utoronto.ca) of any */
/* modifications to or errors in these routines. */
/* Mailing Address: T.F. Fairgrieve, Department of Computer Science, */
/* University of Toronto, Toronto, Ontario, CANADA M5S 1A4C */
/* ----------------------------------------------------------------------- */
/* ----------------------------------------------------------------------- */
/* Routines included in this file: */
/* subroutine flowkm : new routine to compute floquet multipliers */
/* subroutine dhhpr : compute a Householder matrix */
/* subroutine dhhap : appy a Householder matrix */
/* ----------------------------------------------------------------------- */
/* ----------------------------------------------------------------------- */
/* Required library routines (included in the file eispack.f) : */
/* subroutine qzhes : QZ reduction to Hessenberg form (EISPACK)*/
/* subroutine qzit : QZ reduction to quasi-upper triangular form (EISPACK)*/
/* subroutine qzval : QZ calculation of eigenvalues (EISPACK)*/
/* function epslon : machine constant routine (EISPACK)*/
/* ----------------------------------------------------------------------- */
/* ----------------------------------------------------------------------- */
/* function dnrm2 : compute l2-norm of a vector (BLAS-1)*/
/* function ddot : dot product of two vectors (BLAS-1)*/
/* subroutine dscal : scale a vector by a constant (BLAS-1)*/
/* function idamax : find index of element with max abs value (BLAS-1)*/
/* subroutine daxpy : constant times a vector plus a vector (BLAS-1)*/
/* subroutine drot : apply a plane rotation (BLAS-1)*/
/* subroutine dswap : swap two vectors (BLAS-1)*/
/* ----------------------------------------------------------------------- */
/* ----------------------------------------------------------------------- */
/* subroutine dgemc : matrix-matrix copy */
/* subroutine xerbla : BLAS error handling routine (BLAS-2)*/
/* function lsame : compare character strings (BLAS-2)*/
/* ----------------------------------------------------------------------- */
/* ----------------------------------------------------------------------- */
/* subroutine dgemm : matrix-matrix multiply (BLAS-3)*/
/* ----------------------------------------------------------------------- */
/* ----------------------------------------------------------------------- */
/* subroutines ezsvd, ndrotg, ndsvd, prse, sig22, sigmin, sndrtg : */
/* Demmel-Kahan svd routines */
/* ----------------------------------------------------------------------- */
/* ----------------------------------------------------------------------- */
/* Subroutine */ int
flowkm(integer *ndim, doublereal *c0, doublereal *c1, integer *iid, doublereal *rwork, doublecomplex *ev)
{
/* System generated locals */
integer c0_dim1, c1_dim1, rwork_dim1;
/* Local variables */
doublereal beta, *svde, *svds, svdu[1], *svdv;
integer i, j;
doublereal *v, *x;
logical infev;
doublereal const__;
integer ndimm1;
doublereal nrmc0x, nrmc1x, *qzalfi, *qzbeta;
integer svdinf;
doublereal *qzalfr;
integer qzierr;
doublereal *svdwrk, qzz[1];
svde = (doublereal *)malloc(sizeof(doublereal)*(*ndim));
svds = (doublereal *)malloc(sizeof(doublereal)*(*ndim+1));
svdv = (doublereal *)malloc(sizeof(doublereal)*(*ndim)*(*ndim));
v = (doublereal *)malloc(sizeof(doublereal)*(*ndim));
x = (doublereal *)malloc(sizeof(doublereal)*(*ndim));
qzalfi = (doublereal *)malloc(sizeof(doublereal)*(*ndim));
qzbeta = (doublereal *)malloc(sizeof(doublereal)*(*ndim));
qzalfr = (doublereal *)malloc(sizeof(doublereal)*(*ndim));
svdwrk = (doublereal *)malloc(sizeof(doublereal)*(*ndim));
/* Subroutine to compute Floquet multipliers via the "deflated circuit */
/* pencil" method. This routine is called by the AUTO routine FNSPBV */
/* storage for SVD computations */
/* compute right singular vectors only */
/* storage for generalized eigenvalue computations */
/* LOGICAL QZMATZ */
/* don't want to accumulate the transforms --- vectors not needed */
/* BLAS routines */
/* routines from EISPACK */
/* own routines */
/* Jim Demmel's svd routine (demmel@nyu.edu) */
/* builtin F77 functions */
/* xx DOUBLE COMPLEX DCMPLX */
/* Make sure that you have enough local storage. */
/* Parameter adjustments */
/*--ev;*/
rwork_dim1 = *ndim;
c1_dim1 = *ndim;
c0_dim1 = *ndim;
/* Change sign of P1 so that we get the sign of the multipliers right. */
for (j = 0; j < *ndim; ++j) {
for (i = 0; i < *ndim; ++i) {
ARRAY2D(c1, i, j) = -ARRAY2D(c1, i, j);
}
}
/* Print the undeflated circuit pencil (C0, C1). */
if (*iid > 4) {
fprintf(fp9," Undeflated circuit pencil (C0, C1) \n");
fprintf(fp9," C0 : \n");
for (i = 0; i < *ndim; ++i) {
for (j = 0; j < *ndim; ++j) {
fprintf(fp9," %23.16f",ARRAY2D(c0, i, j));
}
fprintf(fp9,"\n");
}
fprintf(fp9," C1 : \n");
for (i = 0; i < *ndim; ++i) {
for (j = 0; j < *ndim; ++j) {
fprintf(fp9," %23.16f",ARRAY2D(c1, i, j));
}
fprintf(fp9,"\n");
}
}
/* PART I: */
/* ======= */
/* Deflate the Floquet multiplier at +1.0 so that the deflated */
/* circuit pencil is not defective at periodic branch turning points. */
/* The matrix (C0 - C1) should be (nearly) singular. Find an approximatio
n*/
/* to the right null vector (call it X). This will be our approximation
*/
/* to the eigenvector corresponding to the fixed multiplier at +1.0. */
/* There are many ways to get this approximation. We could use */
/* 1) p'(0) = f(p(0)) */
/* 2) AUTO'86 routine NLVC applied to C0-C1 */
/* 3) the right singular vector corresponding to the smallest */
/* singular value of C0-C1 */
/* I've chosen option 3) because it should introduce as little roundoff
*/
/* error as possible. Although it is more expensive, this is insignifican
t*/
/* relative to the rest of the AUTO computations. Also, the SVD does give
a*/
/* version of the Householder matrix which we would have to compute */
/* anyways. But note that it gives V = ( X perp | X ) and not (X | Xperp)
,*/
/* which the Householder routine would give. This will permute the deflat
ed*/
/* circuit pencil, so that the part to be deflated is in the last column,
*/
/* not it the first column, as was shown in the paper. */
for (j = 0; j < *ndim; ++j) {
for (i = 0; i < *ndim; ++i) {
ARRAY2D(rwork, i, j) = ARRAY2D(c0, i, j) - ARRAY2D(c1, i, j);
}
}
{
/* This is here since I don't want to change the calling sequence of the
BLAS routines. */
integer tmp = 1;
doublereal tmp_tol = 1.0E-16;
ezsvd(rwork, ndim, ndim, ndim, svds, svde, svdu, &tmp,
svdv, ndim, svdwrk, &tmp, &svdinf, &tmp_tol);
}
if (svdinf != 0) {
fprintf(fp9," NOTE : Warning from subroutine FLOWKM SVD routine returned SVDINF = %4ld Floquet multiplier calculations may be wrong\n",svdinf);
}
/* Apply a Householder matrix (call it H1) based on the null vector */
/* to (C0, C1) from the right. H1 = SVDV = ( Xperp | X ), where X */
/* is the null vector. */
{
/* This is here since I don't want to change the calling sequence of the
BLAS routines. */
doublereal tmp1 = 1.0;
doublereal tmp0 = 0.0;
logical tmp_false = FALSE_;
dgemm("n", "n", ndim, ndim, ndim, &tmp1, c0, ndim, svdv,
ndim, &tmp0, rwork, ndim, 1L, 1L);
dgemc(ndim, ndim, rwork, ndim, c0, ndim, &tmp_false);
dgemm("n", "n", ndim, ndim, ndim, &tmp1, c1, ndim, svdv,
ndim, &tmp0, rwork, ndim, 1L, 1L);
dgemc(ndim, ndim, rwork, ndim, c1, ndim, &tmp_false);
}
/* Apply a Householder matrix (call it H2) based on */
/* (C0*X/||C0*X|| + C1*X/||C1*X||) / 2 */
/* to (C0*H1, C1*H1) from the left. */
{
/* This is here since I don't want to change the calling sequence of the
BLAS routines. */
integer tmp = 1;
nrmc0x = dnrm2(ndim, &ARRAY2D(c0, 0, (*ndim - 1)), &tmp);
nrmc1x = dnrm2(ndim, &ARRAY2D(c1, 0, (*ndim - 1)), &tmp);
}
for (i = 0; i < *ndim; ++i) {
x[i] = (ARRAY2D(c0, i, (*ndim - 1)) / nrmc0x + ARRAY2D(c1, i, (*ndim - 1)) / nrmc1x) / 2.;
}
{
/* This is here since I don't want to change the calling sequence of the
BLAS routines. */
integer tmp = 1;
integer tmp_left = LEFT;
dhhpr(&tmp, ndim, ndim, x, &tmp, &beta, v);
dhhap(&tmp, ndim, ndim, ndim, &beta, v, &tmp_left, c0, ndim);
dhhap(&tmp, ndim, ndim, ndim, &beta, v, &tmp_left, c1, ndim);
}
/* Rescale so that (H2^T)*C0*(H1)(1,NDIM) ~= (H2^T)*C1*(H1)(1,NDIM) ~= 1.0
*/
/* Computing MAX */
const__ = max(fabs(ARRAY2D(c0, 0, (*ndim - 1))),fabs(ARRAY2D(c1, 0, (*ndim - 1))));
for (j = 0; j < *ndim; ++j) {
for (i = 0; i < *ndim; ++i) {
ARRAY2D(c0, i, j) /= const__;
ARRAY2D(c1, i, j) /= const__;
}
}
/* Finished the deflation process! Print the deflated circuit pencil. */
if (*iid > 4) {
fprintf(fp9," Deflated cicuit pencil (H2^T)*(C0, C1)*(H1) \n");
fprintf(fp9," (H2^T)*C0*(H1) : \n");
for (i = 0; i < *ndim; ++i) {
for (j = 0; j < *ndim; ++j) {
fprintf(fp9," %23.16f",ARRAY2D(c0, i, j));
}
fprintf(fp9,"\n");
}
fprintf(fp9," (H2^T)*C1*(H1) : \n");
for (i = 0; i < *ndim; ++i) {
for (j = 0; j < *ndim; ++j) {
fprintf(fp9," %23.16f",ARRAY2D(c1, i, j));
}
fprintf(fp9,"\n");
}
}
/* At this point we have */
/* (C0Bar, C1Bar) */
/* ::= (H2^T)*(C0, C1)*(H1). */
/* (( B0^T | Beta0 ) ( B1^T | Beta1 )) 1 */
/* = (( ----------------- ), ( ----------------- )) */
/* (( C0BarDef | Delta0 ) ( C1BarDef | Delta1 )) NDIM-1 */
/* NDIM-1 1 NDIM-1 1 */
/* and approximations to the Floquet multipliers are */
/* (Beta0/Beta1) union the eigenvalues of the deflated pencil */
/* (C0BarDef, C1BarDef). */
/* PART II: */
/* ======== */
/* Compute the eigenvalues of the deflated circuit pencil */
/* (C0BarDef, C1BarDef) */
/* by using the QZ routines from EISPACK. */
ndimm1 = *ndim - 1;
/* reduce the generalized eigenvalue problem to a simpler form */
/* (C0BarDef,C1BarDef) = (upper hessenberg, upper triangular) */
qzhes(*ndim, ndimm1, &c0[1], &c1[1], FALSE_ , qzz);
/* now reduce to an even simpler form */
/* (C0BarDef,C1BarDef) = (quasi-upper triangular, upper triangular) */
qzit(*ndim, ndimm1, &c0[1], &c1[1], QZEPS1, FALSE_ ,
qzz, &qzierr);
if (qzierr != 0) {
fprintf(fp9," NOTE : Warning from subroutine FLOWKM : QZ routine returned QZIERR = %4ld Floquet multiplier calculations may be wrong \n",qzierr);
}
/* compute the generalized eigenvalues */
qzval(*ndim, ndimm1, &c0[1], &c1[1], qzalfr, qzalfi,
qzbeta, FALSE_, qzz);
/* Pack the eigenvalues into complex form. */
ev[0].r = ARRAY2D(c0, 0, (*ndim - 1)) / ARRAY2D(c1, 0, (*ndim - 1));
ev[0].i = 0.;
infev = FALSE_;
for (j = 0; j < ndimm1; ++j) {
if (qzbeta[j] != 0.) {
ev[j + 1].r = qzalfr[j] / qzbeta[j];
ev[j + 1].i = qzalfi[j] / qzbeta[j];
} else {
ev[j + 1].r = 1e30, ev[j + 1].i = 1e30;
infev = TRUE_;
}
}
if (infev) {
fprintf(fp9," NOTE : Warning from subroutine FLOWKM : Infinite Floquet multiplier represented by CMPLX( 1.0D+30, 1.0D+30 )\n");
}
free(svde);
free(svds);
free(svdv);
free(v);
free(x);
free(qzalfi);
free(qzbeta);
free(qzalfr);
free(svdwrk);
return 0;
} /* flowkm_ */
/* ************************** */
/* * Householder routines * */
/* ************************** */
/* Subroutines for performing Householder plane rotations. */
/* DHHPR: for computing Householder transformations and */
/* DHHAP: for applying them. */
/* Ref: Golub and van Loan, Matrix Calcualtions, */
/* First Edition, Pages 38-43 */
/* Subroutine */ int
dhhpr(integer *k, integer *j, integer *n, doublereal *x, integer *incx, doublereal *beta, doublereal *v)
{
/* Local variables */
static integer iend, jmkp1;
static integer i, l;
static doublereal m, alpha;
static integer istart;
/* IMPLICIT UNDEFINED (A-Z,a-z) */
/* .. Scalar Arguments .. */
/* .. Array Arguments .. */
/* .. */
/* Purpose */
/* ======= */
/* DHHPR computes a Householder Plane Rotation (G&vL Alg. 3.3-1) */
/* defined by v and beta. */
/* (I - beta v vt) * x is such that x_i = 0 for i=k+1 to j. */
/* Parameters */
/* ========== */
/* K - INTEGER. */
/* On entry, K specifies that the K+1st entry of X */
/* be the first to be zeroed. */
/* K must be at least one. */
/* Unchanged on exit. */
/* J - INTEGER. */
/* On entry, J specifies the last entry of X to be zeroed. */
/* J must be >= K and <= N. */
/* Unchanged on exit. */
/* N - INTEGER. */
/* On entry, N specifies the (logical) length of X. */
/* Unchanged on exit. */
/* X - DOUBLE PRECISION array of DIMENSION at least */
/* ( 1 + ( N - 1 )*abs( INCX ) ). */
/* On entry, X specifies the vector to be (partially) zeroed. */
/* Unchanged on exit. */
/* INCX - INTEGER. */
/* On entry, INCX specifies the increment for the elements of */
/* X. INCX must be > zero. If X represents part of a matrix, */
/* then use INCX = 1 if a column vector is being zeroed and */
/* INCX = NDIM if a row vector is being zeroed. */
/* Unchanged on exit. */
/* BETA - DOUBLE PRECISION. */
/* BETA specifies the scalar beta. (see pg. 40 of G and v.L.) */
/* V - DOUBLE PRECISION array of DIMENSION at least n. */
/* Is updated to be the appropriate Householder vector for */
/* the given problem. (Note: space for the implicit zeroes is */
/* assumed to be present. Will save on time for index translation
.)*/
/* -- Written by Tom Fairgrieve, */
/* Department of Computer Science, */
/* University of Toronto, */
/* Toronto, Ontario CANADA M5S 1A4 */
/* .. Local Scalars .. */
/* .. External Functions from BLAS .. */
/* .. External Subroutines from BLAS .. */
/* .. Intrinsic Functions .. */
/* .. Executable Statements .. */
/* Test the input parameters. */
/* Parameter adjustments */
/*--v;*/
/*--x;*/
if (*k < 1 || *k > *j) {
fprintf(fp9,"Domain error for K in DHHPR\n");
exit(0);
}
if (*j > *n) {
fprintf(fp9,"Domain error for J in DHHPR\n");
exit(0);
}
if (*incx < 1) {
fprintf(fp9,"Domain error for INCX in DHHPR\n");
exit(0);
}
/* Number of potential non-zero elements in V. */
jmkp1 = *j - *k + 1;
/* Find M := max{ |x_k|, ... , |x_j| } */
m = fabs(x[-1 + idamax(&jmkp1, &x[-1 + *k], incx)]);
/* alpha := 0 */
/* For i = k to j */
/* v_i = x_i / m */
/* alpha := alpha + v_i^2 (i.e. alpha = vtv) */
/* End For */
/* alpha := sqrt( alpha ) */
/* Copy X(K)/M, ... , X(J)/M to V(K), ... , V(J) */
if (*incx == 1) {
for (i = *k - 1; i < *j; ++i) {
v[i] = x[i] / m;
}
} else {
iend = jmkp1 * *incx;
istart = (*k - 1) * *incx + 1;
l = *k;
for (i = istart; *incx < 0 ? i >= iend : i <= iend; i += *incx)
{
v[-1 + l] = x[-1 + i] / m;
++l;
}
}
/* Compute alpha */
{
/* This is here since I don't want to change the calling sequence of the
BLAS routines. */
integer tmp = 1;
alpha = dnrm2(&jmkp1, &v[-1 + *k], &tmp);
}
/* beta := 1/(alpha(alpha + |V_k|)) */
*beta = 1. / (alpha * (alpha + fabs(v[-1 + *k])));
/* v_k := v_k + sign(v_k)*alpha */
v[-1 + *k] += d_sign(1.0, v[-1 + *k]) * alpha;
/* Done ! */
return 0;
/* End of DHHPR. */
} /* dhhpr_ */
/* Subroutine */ int
dhhap(integer *k, integer *j, integer *n, integer *q, doublereal *beta, doublereal *v, integer *job, doublereal *a, integer *lda)
{
/* System generated locals */
integer a_dim1;
/* Local variables */
static integer jmkp1;
static doublereal s;
static integer col, row;
/* IMPLICIT LOGICAL (A-Z) */
/* .. Scalar Arguments .. */
/* .. Array Arguments .. */
/* .. */
/* Purpose */
/* ======= */
/* DHHAP applies a Householder Plane Rotation defined by v and beta */
/* to the matrix A. If JOB = 1 then A := (I - beta*v*vt)A and if */
/* JOB = 2 then A := A(I - beta*v*vt). (See Golub and van Loan */
/* Alg. 3.3-2.) */
/* Parameters */
/* ========== */
/* K - INTEGER. */
/* On entry, K specifies that the V(K) may be the first */
/* non-zero entry of V. */
/* K must be at least one. */
/* Unchanged on exit. */
/* J - INTEGER. */
/* On entry, J specifies the last non-zero entry of V. */
/* J must be >= K and <= N. */
/* Unchanged on exit. */
/* N - INTEGER. */
/* On entry, N specifies the row dimension of A. */
/* Unchanged on exit. */
/* Q - INTEGER. */
/* On entry, Q specifies the column dimension of A. */
/* Unchanged on exit. */
/* BETA - DOUBLE PRECISION. */
/* BETA specifies the scalar beta. (see pg. 40 of G and v.L.) */
/* Unchanged on exit. */
/* V - DOUBLE PRECISION array of DIMENSION at least n. */
/* Householder vector v. */
/* Unchanged on exit. */
/* JOB - INTEGER. */
/* On entry, JOB specifies the order of the Householder applicati
on.*/
/* If JOB = 1 then A := (I - beta*v*vt)A and if JOB = 2 then */
/* A := A(I - beta*v*vt) */
/* Unchanged on exit. */
/* A - DOUBLE PRECISION array of DIMENSION at least */
/* ( LDA, Q ). */
/* On entry, A specifies the matrix to be transformed. */
/* On exit, A specifies the transformed matrix. */
/* LDA - INTEGER. */
/* On entry, LDA specifies the declared leading dimension of A.
*/
/* Unchanged on exit. */
/* -- Written by Tom Fairgrieve, */
/* Department of Computer Science, */
/* University of Toronto, */
/* Toronto, Ontario CANADA M5S 1A4 */
/* .. Local Scalars .. */
/* .. External Functions from BLAS .. */
/* .. Executable Statements .. */
/* Test the input parameters. */
/* Parameter adjustments */
/*--v;*/
a_dim1 = *lda;
if (*job != 1 && *job != 2) {
fprintf(fp9,"Domain error for JOB in DHHAP\n");
exit(0);
}
if (*k < 1 || *k > *j) {
fprintf(fp9,"Domain error for K in DHHAP\n");
exit(0);
}
if (*job == 1) {
if (*j > *n) {
fprintf(fp9,"Domain error for J in DHHAP\n");
exit(0);
}
} else {
if (*j > *q) {
fprintf(fp9,"Domain error for J in DHHAP\n");
exit(0);
}
}
/* Minimum {row,col} dimension of update. */
jmkp1 = *j - *k + 1;
/* If (JOB = 1) then */
/* For p = 1, ... , q */
/* s := beta*(v_k*a_k,p + ... + v_j*a_j,p) */
/* For i = k, ..., j */
/* a_i,p := a_i,p - s*v_i */
/* End For */
/* End For */
/* Else % JOB=2 */
/* For p = 1, ... , n */
/* s := beta*(v_k*a_p,k + ... + v_j*a_p,j) */
/* For i = k, ..., j */
/* a_p,i := a_p,i - s*v_i */
/* End For */
/* End For */
/* End If */
if (*job == 1) {
for (col = 0; col < *q; ++col) {
{
/* This is here since I don't want to change the calling sequence of the
BLAS routines. */
integer tmp = 1;
s = *beta * ddot(&jmkp1, &v[-1 + *k], &tmp, &ARRAY2D(a, -1 + *k, col), &tmp);
}
for (row = *k - 1; row < *j; ++row) {
ARRAY2D(a, row, col) -= s * v[row];
}
}
} else {
for (row = 0; row < *n; ++row) {
{
/* This is here since I don't want to change the calling sequence of the
BLAS routines. */
integer tmp = 1;
s = *beta * ddot(&jmkp1, &v[-1 + *k], &tmp, &ARRAY2D(a, row, (*k - 1)), lda);
}
for (col = *k - 1; col < *j; ++col) {
ARRAY2D(a, row, col) -= s * v[col];
}
}
}
/* Done ! */
return 0;
/* End of DHHAP. */
} /* dhhap_ */