-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathrun_train.py
224 lines (215 loc) · 7.11 KB
/
run_train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
import argparse
from online_lru.utils.util import str2bool
from online_lru.train import train
from online_lru.dataloading import Datasets
import os
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--gpu", type=str, default="-1", help="which gpu to use")
parser.add_argument("--USE_WANDB", type=str2bool, default=True, help="log with wandb?")
parser.add_argument("--wandb_project", type=str, default="S5", help="wandb project name")
parser.add_argument(
"--wandb_entity",
type=str,
default="ethz_joao",
help="wandb entity name, e.g. username",
)
parser.add_argument(
"--dir_name",
type=str,
default="./cache_dir",
help="name of directory where data is cached",
)
parser.add_argument(
"--advanced_log",
type=bool,
default=False,
help="Whether to aggregate more logging information (e.g. lambda trajs) accross training",
)
parser.add_argument(
"--dataset",
type=str,
choices=Datasets.keys(),
default="mnist-classification",
help="dataset name",
)
parser.add_argument(
"--copy_pattern_length",
type=int,
default=10,
help="which length for the copy task pattern to use",
)
parser.add_argument(
"--copy_train_samples",
type=int,
default=100000,
help="How many train samples to generate for the copy task",
)
parser.add_argument("--jax_seed", type=int, default=1919, help="seed randomness")
# Model Parameters
parser.add_argument(
"--layer_cls",
type=str,
default="LRU",
choices=["LRU", "RNN", "GRU"],
help="What layer to use inside each block",
)
parser.add_argument("--n_layers", type=int, default=6, help="Number of layers in the network")
parser.add_argument(
"--d_model",
type=int,
default=128,
help="Number of features, i.e. H, " "dimension of layer inputs/outputs",
)
parser.add_argument(
"--d_hidden", type=int, default=256, help="Latent size of recurent unit, called H before"
)
parser.add_argument(
"--mode",
type=str,
default="none",
choices=["pool", "pool_st", "last", "none"],
help="options: (for classification tasks) \\"
"pool: mean pooling \\"
"pool_st: cumulative mean pooling (with stop grad)"
"last: take last element \\"
"none: no pooling",
)
parser.add_argument(
"--activation_fn",
default="full_glu",
type=str,
choices=["full_glu", "half_glu1", "half_glu2", "gelu", "none"],
)
parser.add_argument(
"--readout",
default=0,
type=int,
help="Non zero to add a dense non linear layer after the encoder",
)
parser.add_argument(
"--rnn_activation_fn",
default="tanh",
type=str,
choices=["linear", "tanh", "relu"],
)
parser.add_argument(
"--rnn_scaling_hidden",
default=1.0,
type=float,
help="Additional normalization for th A matrix params to avoid explosion",
)
parser.add_argument(
"--prenorm",
type=str2bool,
default=True,
help="True: use prenorm, False: use postnorm",
)
parser.add_argument(
"--training_mode",
type=str,
default="bptt",
choices=[
"bptt",
"online_full",
"online_full_rec",
"online_full_rec_simpleB",
"online_spatial",
"online_1truncated",
"online_snap1",
"online_reservoir",
],
help="training mode",
)
parser.add_argument("--r_min", type=float, default=0.0, help="r_min for LRU")
parser.add_argument("--r_max", type=float, default=1.0, help="r_max for LRU")
# Optimization Parameters
parser.add_argument("--bsz", type=int, default=64, help="batch size")
parser.add_argument(
"--n_accumulation_steps",
type=int,
default=1,
help="number of batches over which gradients are accumulated",
)
parser.add_argument("--epochs", type=int, default=100, help="max number of epochs")
parser.add_argument(
"--early_stop_patience",
type=int,
default=1000,
help="number of epochs to continue training when val loss plateaus",
)
parser.add_argument("--lr_base", type=float, default=1e-3, help="initial learning rate")
parser.add_argument(
"--lr_factor",
type=float,
default=1,
help="rec learning rate = lr_factor * lr_base",
)
parser.add_argument("--lr_min", type=float, default=0, help="minimum learning rate")
parser.add_argument(
"--cosine_anneal",
type=str2bool,
default=True,
help="whether to use cosine annealing schedule",
)
parser.add_argument("--warmup_end", type=int, default=1, help="epoch to end linear warmup")
parser.add_argument(
"--lr_patience",
type=int,
default=1000000,
help="patience before decaying learning rate for lr_decay_on_val_plateau",
)
parser.add_argument(
"--reduce_factor",
type=float,
default=1.0,
help="factor to decay learning rate for lr_decay_on_val_plateau",
)
parser.add_argument("--p_dropout", type=float, default=0.1, help="probability of dropout")
parser.add_argument("--weight_decay", type=float, default=0.05, help="weight decay value")
parser.add_argument(
"--opt_config",
type=str,
default="standard",
choices=["standard", "Bdecay", "Bfast_and_decay", "C_slow_and_nodecay"],
help="Opt configurations: \\ "
"standard: no weight decay on B (rec lr), weight decay on C (global lr) \\"
"Bdecay: weight decay on B (rec lr), weight decay on C (global lr) \\"
"Bfast_and_decay: weight decay on B (global lr), weight decay on C (global lr) \\"
"Cslow_and_nodecay: no weight decay on B (rec lr), no weight decay on C (rec lr) \\",
)
# Logging parameters
parser.add_argument(
"--log_n_batches",
type=int,
default=20,
help="number of batches per epoch to use to log gradient metrics",
)
parser.add_argument(
"--log_loss_every",
type=int,
default=0,
help="Log train loss every log_loss_every batches",
)
parser.add_argument(
"--log_loss_at_time_steps",
type=bool,
default=False,
help="Whether to log loss values at intermediate time steps",
)
parser.add_argument(
"--enwik9_seq_len",
type=int,
default=1024,
help="Sequence length of enwik9 task",
)
parser.add_argument(
"--enwik9_train_samples",
type=int,
default=100000,
help="How many train samples to generate for the enwik9 task",
)
# os.environ["CUDA_VISIBLE_DEVICES"] = parser.parse_args().gpu
os.environ["XLA_PYTHON_CLIENT_PREALLOCATE"] = "true"
os.environ["XLA_PYTHON_CLIENT_MEM_FRACTION"] = ".95"
train(parser.parse_args())