-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtest.py
180 lines (145 loc) · 6.16 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
# System libs
import os
import argparse
from distutils.version import LooseVersion
# Numerical libs
import numpy as np
import torch
import torch.nn as nn
from scipy.io import loadmat
# Our libs
from dataset import TestDataset
from models import ModelBuilder, SegmentationModule
from utils import colorEncode
from lib.nn import user_scattered_collate, async_copy_to
from lib.utils import as_numpy
import lib.utils.data as torchdata
import cv2
from tqdm import tqdm
colors = loadmat('data/color150.mat')['colors']
def visualize_result(data, pred, args):
(img, info) = data
# prediction
pred_color = colorEncode(pred, colors)
# aggregate images and save
im_vis = np.concatenate((img, pred_color),
axis=1).astype(np.uint8)
img_name = info.split('/')[-1]
cv2.imwrite(os.path.join(args.result,
img_name.replace('.jpg', '.png')), im_vis)
def test(segmentation_module, loader, args):
segmentation_module.eval()
pbar = tqdm(total=len(loader))
for batch_data in loader:
# process data
batch_data = batch_data[0]
segSize = (batch_data['img_ori'].shape[0],
batch_data['img_ori'].shape[1])
img_resized_list = batch_data['img_data']
with torch.no_grad():
scores = torch.zeros(1, args.num_class, segSize[0], segSize[1])
scores = async_copy_to(scores, args.gpu)
for img in img_resized_list:
feed_dict = batch_data.copy()
feed_dict['img_data'] = img
del feed_dict['img_ori']
del feed_dict['info']
feed_dict = async_copy_to(feed_dict, args.gpu)
# forward pass
pred_tmp = segmentation_module(feed_dict, segSize=segSize)
scores = scores + pred_tmp / len(args.imgSize)
_, pred = torch.max(scores, dim=1)
pred = as_numpy(pred.squeeze(0).cpu())
# visualization
visualize_result(
(batch_data['img_ori'], batch_data['info']),
pred, args)
pbar.update(1)
def main(args):
torch.cuda.set_device(args.gpu)
# Network Builders
builder = ModelBuilder()
net_encoder = builder.build_encoder(
arch=args.arch_encoder,
fc_dim=args.fc_dim,
weights=args.weights_encoder)
net_decoder = builder.build_decoder(
arch=args.arch_decoder,
fc_dim=args.fc_dim,
num_class=args.num_class,
weights=args.weights_decoder,
use_softmax=True)
crit = nn.NLLLoss(ignore_index=-1)
segmentation_module = SegmentationModule(net_encoder, net_decoder, crit)
# Dataset and Loader
# list_test = [{'fpath_img': args.test_img}]
list_test = [{'fpath_img': x} for x in args.test_imgs]
dataset_test = TestDataset(
list_test, args, max_sample=args.num_val)
loader_test = torchdata.DataLoader(
dataset_test,
batch_size=args.batch_size,
shuffle=False,
collate_fn=user_scattered_collate,
num_workers=5,
drop_last=True)
segmentation_module.cuda()
# Main loop
test(segmentation_module, loader_test, args)
print('Inference done!')
if __name__ == '__main__':
assert LooseVersion(torch.__version__) >= LooseVersion('0.4.0'), \
'PyTorch>=0.4.0 is required'
parser = argparse.ArgumentParser()
# Path related arguments
parser.add_argument('--test_imgs', required=True, nargs='+', type=str,
help='a list of image paths that needs to be tested')
parser.add_argument('--model_path', required=True,
help='folder to model path')
parser.add_argument('--suffix', default='_epoch_20.pth',
help="which snapshot to load")
# Model related arguments
parser.add_argument('--arch_encoder', default='resnet50dilated',
help="architecture of net_encoder")
parser.add_argument('--arch_decoder', default='ppm_deepsup',
help="architecture of net_decoder")
parser.add_argument('--fc_dim', default=2048, type=int,
help='number of features between encoder and decoder')
# Data related arguments
parser.add_argument('--num_val', default=-1, type=int,
help='number of images to evalutate')
parser.add_argument('--num_class', default=150, type=int,
help='number of classes')
parser.add_argument('--batch_size', default=1, type=int,
help='batchsize. current only supports 1')
parser.add_argument('--imgSize', default=[300, 400, 500, 600],
nargs='+', type=int,
help='list of input image sizes.'
'for multiscale testing, e.g. 300 400 500')
parser.add_argument('--imgMaxSize', default=1000, type=int,
help='maximum input image size of long edge')
parser.add_argument('--padding_constant', default=8, type=int,
help='maxmimum downsampling rate of the network')
parser.add_argument('--segm_downsampling_rate', default=8, type=int,
help='downsampling rate of the segmentation label')
# Misc arguments
parser.add_argument('--result', default='.',
help='folder to output visualization results')
parser.add_argument('--gpu', default=0, type=int,
help='gpu id for evaluation')
args = parser.parse_args()
args.arch_encoder = args.arch_encoder.lower()
args.arch_decoder = args.arch_decoder.lower()
print("Input arguments:")
for key, val in vars(args).items():
print("{:16} {}".format(key, val))
# absolute paths of model weights
args.weights_encoder = os.path.join(args.model_path,
'encoder' + args.suffix)
args.weights_decoder = os.path.join(args.model_path,
'decoder' + args.suffix)
assert os.path.exists(args.weights_encoder) and \
os.path.exists(args.weights_encoder), 'checkpoint does not exitst!'
if not os.path.isdir(args.result):
os.makedirs(args.result)
main(args)