-
Notifications
You must be signed in to change notification settings - Fork 142
/
Copy pathsimulate_agent.py
238 lines (189 loc) · 8.91 KB
/
simulate_agent.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
import tempfile
from pyvis.network import Network
import streamlit as st
import streamlit.components.v1 as components
from functions_for_pipeline import *
def create_network_graph(current_state):
"""
Create a network graph visualization of the agent's current state.
Args:
current_state (str): The current state of the agent.
Returns:
Network: The network graph visualization.
"""
net = Network(directed=True, notebook=True, height="250px", width="100%")
net.toggle_physics(False) # Disable physics simulation
nodes = [
{"id": "anonymize_question", "label": "anonymize_question", "x": 0, "y": 0},
{"id": "planner", "label": "planner", "x": 175*1.75, "y": -100},
{"id": "de_anonymize_plan", "label": "de_anonymize_plan", "x": 350*1.75, "y": -100},
{"id": "break_down_plan", "label": "break_down_plan", "x": 525*1.75, "y": -100},
{"id": "task_handler", "label": "task_handler", "x": 700*1.75, "y": 0},
{"id": "retrieve_chunks", "label": "retrieve_chunks", "x": 875*1.75, "y": +200},
{"id": "retrieve_summaries", "label": "retrieve_summaries", "x": 875*1.75, "y": +100},
{"id": "retrieve_book_quotes", "label": "retrieve_book_quotes", "x": 875*1.75, "y": 0},
{"id": "answer", "label": "answer", "x": 875*1.75, "y": -100},
{"id": "replan", "label": "replan", "x": 1050*1.75, "y": 0},
{"id": "can_be_answered_already", "label": "can_be_answered_already", "x": 1225*1.75, "y": 0},
{"id": "get_final_answer", "label": "get_final_answer", "x": 1400*1.75, "y": 0}
]
edges = [
("anonymize_question", "planner"),
("planner", "de_anonymize_plan"),
("de_anonymize_plan", "break_down_plan"),
("break_down_plan", "task_handler"),
("task_handler", "retrieve_chunks"),
("task_handler", "retrieve_summaries"),
("task_handler", "retrieve_book_quotes"),
("task_handler", "answer"),
("retrieve_chunks", "replan"),
("retrieve_summaries", "replan"),
("retrieve_book_quotes", "replan"),
("answer", "replan"),
("replan", "can_be_answered_already"),
("replan", "break_down_plan"),
("can_be_answered_already", "get_final_answer")
]
# Add nodes with conditional coloring
for node in nodes:
color = "#00FF00" if node["id"] == current_state else "#FF69B4" # Green if current, else pink
net.add_node(node["id"], label=node["label"], x=node["x"], y=node["y"], color=color, physics=False, font={'size': 22})
# Add edges with a default color
for edge in edges:
net.add_edge(edge[0], edge[1], color="#808080") # Set edge color to gray
# Customize other visual aspects
net.options.edges.smooth.type = "straight" # Make edges straight lines
net.options.edges.width = 1.5 # Set edge width
return net
def compute_initial_positions(net):
"""
Compute the initial positions of the nodes in the network graph.
Args:
net (Network): The network graph.
Returns:
dict: The initial positions of the nodes.
"""
net.barnes_hut()
return {node['id']: (node['x'], node['y']) for node in net.nodes}
def save_and_display_graph(net):
"""
Save the network graph to an HTML file and display it in Streamlit.
Args:
net (Network): The network graph.
Returns:
str: The HTML content of the network graph.
"""
with tempfile.NamedTemporaryFile(mode="w", delete=False, suffix=".html") as tmp_file:
net.write_html(tmp_file.name, notebook=True)
tmp_file.flush()
with open(tmp_file.name, "r", encoding="utf-8") as f:
return f.read()
def update_placeholders_and_graph(agent_state_value, placeholders, graph_placeholder, previous_values, previous_state):
"""
Update the placeholders and graph in the Streamlit app based on the current state.
Args:
agent_state_value (dict): The current state value of the agent.
placeholders (dict): The placeholders to display the steps.
graph_placeholder (Streamlit.placeholder): The placeholder to display the network graph.
previous_values (dict): The previous values of the placeholders.
previous_state: The previous state of the agent.
Returns:
tuple: Updated previous_values and previous_state.
"""
current_state = agent_state_value.get("curr_state")
# Update graph
if current_state:
net = create_network_graph(current_state)
graph_html = save_and_display_graph(net)
graph_placeholder.empty()
with graph_placeholder.container():
components.html(graph_html, height=400, scrolling=True)
# Update placeholders only if the state has changed (i.e., we've finished visiting the previous node)
if current_state != previous_state and previous_state is not None:
for key, placeholder in placeholders.items():
if key in previous_values and previous_values[key] is not None:
if isinstance(previous_values[key], list):
formatted_value = "\n".join([f"{i+1}. {item}" for i, item in enumerate(previous_values[key])])
else:
formatted_value = previous_values[key]
placeholder.markdown(f"{formatted_value}")
# Store current values for the next iteration
for key in placeholders:
if key in agent_state_value:
previous_values[key] = agent_state_value[key]
return previous_values, current_state
def execute_plan_and_print_steps(inputs, plan_and_execute_app, placeholders, graph_placeholder, recursion_limit=25):
"""
Execute the plan and print the steps in the Streamlit app.
Args:
inputs (dict): The inputs to the plan.
plan_and_execute_app (StateGraph): The compiled plan and execute app.
placeholders (dict): The placeholders to display the steps.
graph_placeholder (Streamlit.placeholder): The placeholder to display the network graph.
recursion_limit (int): The recursion limit for the plan execution.
Returns:
str: The final response from the agent.
"""
config = {"recursion_limit": recursion_limit}
agent_state_value = None
progress_bar = st.progress(0)
step = 0
previous_state = None
previous_values = {key: None for key in placeholders}
try:
for plan_output in plan_and_execute_app.stream(inputs, config=config):
step += 1
for _, agent_state_value in plan_output.items():
previous_values, previous_state = update_placeholders_and_graph(
agent_state_value, placeholders, graph_placeholder, previous_values, previous_state
)
progress_bar.progress(step / recursion_limit)
if step >= recursion_limit:
break
# After the loop, update placeholders with the final state
for key, placeholder in placeholders.items():
if key in previous_values and previous_values[key] is not None:
if isinstance(previous_values[key], list):
formatted_value = "\n".join([f"{i+1}. {item}" for i, item in enumerate(previous_values[key])])
else:
formatted_value = previous_values[key]
placeholder.markdown(f"{formatted_value}")
response = agent_state_value.get('response', "No response found.") if agent_state_value else "No response found."
except Exception as e:
response = f"An error occurred: {str(e)}"
st.error(f"Error: {e}")
return response
def main():
"""
Main function to run the Streamlit app.
"""
st.set_page_config(layout="wide") # Use wide layout
st.title("Real-Time Agent Execution Visualization")
# Load your existing agent creation function
plan_and_execute_app = create_agent()
# Get the user's question
question = st.text_input("Enter your question:", "what is the class that the proffessor who helped the villain is teaching?")
if st.button("Run Agent"):
inputs = {"question": question}
# Create a row for the graph
st.markdown("**Graph**")
graph_placeholder = st.empty()
# Create three columns for the other variables
col1, col2, col3 = st.columns([1, 1, 4])
with col1:
st.markdown("**Plan**")
with col2:
st.markdown("**Past Steps**")
with col3:
st.markdown("**Aggregated Context**")
# Initialize placeholders for each column
placeholders = {
"plan": col1.empty(),
"past_steps": col2.empty(),
"aggregated_context": col3.empty(),
}
response = execute_plan_and_print_steps(inputs, plan_and_execute_app, placeholders, graph_placeholder, recursion_limit=45)
st.write("Final Answer:")
st.write(response)
if __name__ == "__main__":
main()