-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathhinglish.py
163 lines (157 loc) · 5.17 KB
/
hinglish.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
from fastcore.utils import store_attr
from sklearn.metrics import accuracy_score, precision_recall_fscore_support
from transformers import AdamW
import pandas as pd
from transformers import get_linear_schedule_with_warmup
from hinglishutils import (
add_padding,
check_for_gpu,
create_attention_masks,
evaulate_and_save_prediction_results,
load_lm_model,
load_masks_and_inputs,
load_sentences_and_labels,
make_dataloaders,
modify_transformer_config,
save_model,
set_seed,
tokenize_the_sentences,
train_model,
)
from datetime import datetime
import wandb
class HinglishTrainer:
def __init__(
self,
model_name: str,
batch_size: int = 8,
attention_probs_dropout_prob: float = 0.4,
learning_rate: float = 5e-7,
adam_epsilon: float = 1e-8,
hidden_dropout_prob: float = 0.3,
epochs: int = 3,
lm_model_dir: str = None,
wname=None,
drivepath="../drive/My\ Drive/HinglishNLP/repro",
):
store_attr()
self.timestamp = str(datetime.now().strftime("%d.%m.%y"))
if not self.wname:
self.wname = self.model_name
wandb.init(
project="hinglish",
config={
"model_name": self.model_name,
"batch_size": self.batch_size,
"attention_probs_dropout_prob": self.attention_probs_dropout_prob,
"learning_rate": self.learning_rate,
"adam_epsilon": self.adam_epsilon,
"hidden_dropout_prob": self.hidden_dropout_prob,
"epochs": self.epochs,
},
name=f"{self.wname} {self.timestamp}",
)
print({"Model Info": f"Setup self.model training for {model_name}"})
self.device = check_for_gpu(self.model_name)
if not lm_model_dir:
if self.model_name == "bert":
self.lm_model_dir = "model_save"
elif self.model_name == "distilbert":
self.lm_model_dir = "distilBert6"
elif self.model_name == "roberta":
self.lm_model_dir = "roberta3"
def setup(self):
sentences, labels, self.le = load_sentences_and_labels()
self.tokenizer, input_ids = tokenize_the_sentences(
sentences, self.model_name, self.lm_model_dir
)
input_ids, self.MAX_LEN = add_padding(
self.tokenizer, input_ids, self.model_name
)
attention_masks = create_attention_masks(input_ids)
(
train_inputs,
train_masks,
train_labels,
validation_inputs,
validation_masks,
validation_labels,
) = load_masks_and_inputs(input_ids, labels, attention_masks)
self.config = modify_transformer_config(
"bert",
self.batch_size,
self.attention_probs_dropout_prob,
self.learning_rate,
self.adam_epsilon,
self.hidden_dropout_prob,
self.lm_model_dir,
)
self.train_dataloader, self.validation_dataloader = make_dataloaders(
train_inputs,
train_masks,
train_labels,
self.batch_size,
validation_inputs,
validation_masks,
validation_labels,
)
def train(self):
self.setup()
self.model = load_lm_model(self.config, self.model_name, self.lm_model_dir)
optimizer = AdamW(
self.model.parameters(),
lr=self.learning_rate,
eps=self.adam_epsilon,
)
total_steps = len(self.train_dataloader) * self.epochs
scheduler = get_linear_schedule_with_warmup(
optimizer,
num_warmup_steps=100,
num_training_steps=total_steps,
)
set_seed()
loss_values = []
train_model(
self.epochs,
self.model,
self.train_dataloader,
self.device,
optimizer,
scheduler,
loss_values,
self.model_name,
self.validation_dataloader,
)
def evaluate(
self,
dev_json="test.json",
test_json="final_test.json",
test_labels="test_labels_hinglish.txt",
):
output = evaulate_and_save_prediction_results(
self.tokenizer,
self.MAX_LEN,
self.model,
self.device,
self.le,
final_name=dev_json,
name=self.model_name,
)
full_output = evaulate_and_save_prediction_results(
self.tokenizer,
self.MAX_LEN,
self.model,
self.device,
self.le,
final_name=test_json,
name=self.model_name,
)
l = pd.read_csv(test_labels)
prf = precision_recall_fscore_support(
full_output["Sentiment"], l["Sentiment"], average="macro"
)
wandb.log({"Precision": prf[0], "Recall": prf[1], "F1": prf[2]})
wandb.log(
{"Accuracy": str(accuracy_score(full_output["Sentiment"], l["Sentiment"]))}
)
save_model(full_output, self.model, self.tokenizer, self.model_name)