-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathapp.py
69 lines (52 loc) · 1.74 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
from __future__ import division, print_function
# coding=utf-8
import sys
import os
import glob
import re
from pathlib import Path
# Import fast.ai Library
from fastai import *
from fastai.vision import *
# Flask utils
from flask import Flask, redirect, url_for, request, render_template
from werkzeug.utils import secure_filename
import json
# from gevent.pywsgi import WSGIServer
# Define a flask app
app = Flask(__name__)
# Model saved with Keras model.save()
path = Path("")
classes = ['lilies', 'rhubarb', 'oleander', 'castor_oil_plant', 'dieffenbachia', 'foxglove', 'wisteria', 'lily_of_the_valley']
data2 = ImageDataBunch.single_from_classes(path, classes, tfms=get_transforms(), size=299).normalize(imagenet_stats)
learn = create_cnn(data2, models.resnet18, pretrained=False)
learn.load('res18-unfine')
def model_predict(img_path):
"""
model_predict will return the preprocessed image
"""
img = open_image(img_path)
pred_class, pred_idx, outputs = learn.predict(img)
result = str(pred_class)
return json.dumps({'result':result, 'prob':float(outputs[pred_idx])})
@app.route('/', methods=['GET'])
def index():
# Main page
return render_template('index.html')
@app.route('/predict', methods=['GET', 'POST'])
def upload():
if request.method == 'POST':
# Get the file from post request
f = request.files['file']
# Save the file to ./uploads
basepath = os.path.dirname(__file__)
file_path = os.path.join(
basepath, 'uploads', secure_filename(f.filename))
f.save(file_path)
# Make prediction
preds = model_predict(file_path)
os.remove(file_path)
return preds
return None
if __name__ == '__main__':
app.run(debug=True)