-
Notifications
You must be signed in to change notification settings - Fork 0
/
training_mt2st_dimish.log
1882 lines (1803 loc) · 121 KB
/
training_mt2st_dimish.log
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
D:\Anaconda\exe\python.exe "E:\2023 Fall\23 Fall MT2ST WE Acc Meng\MT2ST-Word-Embeddings-Acceleration-Method-main\MT2ST-Word-Embeddings-Acceleration-Method-main\training_dimish.py"
Size of the dataset: 1000
["This film did entertain me with lots of laughs at the actors who kept the film moving along in all types of crazy directions. If you like suggestive language and sexy looking gals they were all in the picture and gals and guys all looking burned out before they even graduate from high school. There is one scene where the teenagers drive their car into a very fake deer and then proceed to throw it out into a lake or ocean, which is repeated over and over again. There is no horror to this film except the word Horrible for the entire picture and Arnold who plays a plastic cop is really one sick character. Please don't waste your time viewing this film.", 'The animation in this re-imagining of Peter & the Wolf is excellent, but at 29 minutes, the film is sleep inducing. They should have called it "Peter & the Snails", because everything moves at a snail\'s pace. I couldn\'t even watch the film in one sitting - I had to watch it 15 minutes at a time, and it was pure torture.<br /><br />Save yourself 30 minutes - do not watch this film - and you will thank me.<br /><br />I can only guess that the Oscar nominating committee only watched the first few minutes of the nominees. Unfortunately, to vote for the winner in the Best Animated Short (short!) category, the voters will have to sit through the whole thing. I already feel sorry for them - and must predict that there\'s no way this film will come close to winning.', "This is a great show, and will make you cry, this group people really loved each other in real life and it shows time and time again. Email me and let's chat. I have been to Australia and they real do talk like this.<br /><br />I want you to enjoy Five Mile Creek and pass on these great stories of right and wrong, and friendship to your kids. I have all 40 Episodes on DVD-R that I have collected over the last 5 years. See my Five Mile Creek tribute at www.mikeandvicki.com and hear the extended theme music. Let's talk about them.<br /><br />These people are so cool!", 'This is a great TV miniseries of a classic novel. Janet McTeer and John Bowe, in the lead roles, are exceptional. This is one of the best adaptations from a book that I have seen. I would LOVE to get a copy of this - let me know if you know how I might get one...Thanks!', "My husband dragged me to this film as I had no interest in seeing some Anime cartoon. I was absolutely delighted by the simple story and amazing animation. In a digital world where effects are computer generated it was refreshing to see gorgeous, imaginative hand drawn animation. The world of Sosuke and Ponyo is a vivid fantasyland intermixed with minimal reality. I haven't seen animation like this since I was a child and it is wonderful to see it endure and succeed.<br /><br />The actors supplying the voices in the English version were fabulous. The length of the movie was PERFECT, especially for children who tend to get squirrelly in films. Overall a delightful experience worth the very expensive ticket prices we have nowadays.", "This film was reeeeeeallyyyy bad! Was it meant to be a comedy as I couldn't help laughing the whole way through it? what a waste of two hours! Donald Sutherland was wooden not that he was alone, everyone else was just as bad...and how miscast was linda hamilton???", "If you have enjoyed the Butterfly Effect, Donnie Darko or The Machinist, you will enjoy K-Pax too.<br /><br />To me, this movie felt really uplifting and yet depressing in the end. Spacey delivers a great performance as Prot. Also, lets not forget the appearance of Saul Williams in the movie, who i am a big fan of.<br /><br />After watching it, i recommended the movie to lots of my friends, and everyone was pretty much blown away.<br /><br />But still, it is very underrated, maybe because of the lack of action and explosions. I'm sorry, this is not a movie about blowing things up, it's about how humans behave, and how people live in worlds that don't exist.<br /><br />Go on, and enjoy.", "The first hour or so of the movie was mostly boring to say the least. However it improved afterwards as the Valentine Party commenced. Apart from the twist as to the identity of the killer in the very end, the hot bath murder scene was one of the few relatively memorable aspects of this movie. The scene at the garden with Kate was well shot and so was the very last scene (the 'twist'). In those scenes, there was some genuine suspense and thrills and the hot bath murder scene had a nasty (the way slashers should be) edge to it. The earlier murders are frustratingly devoid of gore.", "As an avid fan of Cary Grant, I expected to watch this movie and howl with laughter, as AMC billed it as a comedy. I have never been more disappointed with a film! Cary's usual charm and effortless comedy are AWOL from this entire movie; he comes across as strained, bored, and just not himself. Mississip's character ranks among one of the worst stereotypes I have ever witnessed - his accent is terribly exaggerated (and incorrect, according to which part of Mississippi he claims to hail from), and whenever he does deliver a line, it's several decibels higher than any other cast member. Mississip tried to make himself stand out in the film as a lovable, country-bumpkin goofball, but in the end, he manages only to detract from the already weak plot. Mansfield looks more like an obscene blow-up doll than a Hollywood sex kitten, and while she was never known in Hollywood for her acting ability, this film screams that she never had that ability to begin with. Ray Walston's character was sugary and ultimately contrived. For four men on shore leave, it was the tamest leave I've ever seen. I watched this nightmare until its very end, and while I won't spoil that for anyone, I will tell you that it's the most absurd you'll ever see. The film tries to spark patriotism and a sense of debt to the fighting men, but the film misses that point totally because of its weak plot line and weak cast. Sorry, Cary!"]
['negative', 'negative', 'positive', 'positive', 'positive', 'negative', 'positive', 'positive', 'negative']
['this film did entertain me with lots of laughs at the actors who kept the film moving along in all types of crazy directions if you like suggestive language and sexy looking gals they were all in the picture and gals and guys all looking burned out before they even graduate from high school there is one scene where the teenagers drive their car into a very fake deer and then proceed to throw it out into a lake or ocean which is repeated over and over again there is no horror to this film except the word horrible for the entire picture and arnold who plays a plastic cop is really one sick character please dont waste your time viewing this film', 'the animation in this reimagining of peter the wolf is excellent but at 29 minutes the film is sleep inducing they should have called it peter the snails because everything moves at a snails pace i couldnt even watch the film in one sitting i had to watch it 15 minutes at a time and it was pure torturesave yourself 30 minutes do not watch this film and you will thank mei can only guess that the oscar nominating committee only watched the first few minutes of the nominees unfortunately to vote for the winner in the best animated short short category the voters will have to sit through the whole thing i already feel sorry for them and must predict that theres no way this film will come close to winning', 'this is a great show and will make you cry this group people really loved each other in real life and it shows time and time again email me and lets chat i have been to australia and they real do talk like thisi want you to enjoy five mile creek and pass on these great stories of right and wrong and friendship to your kids i have all 40 episodes on dvdr that i have collected over the last 5 years see my five mile creek tribute at wwwmikeandvickicom and hear the extended theme music lets talk about themthese people are so cool', 'this is a great tv miniseries of a classic novel janet mcteer and john bowe in the lead roles are exceptional this is one of the best adaptations from a book that i have seen i would love to get a copy of this let me know if you know how i might get onethanks', 'my husband dragged me to this film as i had no interest in seeing some anime cartoon i was absolutely delighted by the simple story and amazing animation in a digital world where effects are computer generated it was refreshing to see gorgeous imaginative hand drawn animation the world of sosuke and ponyo is a vivid fantasyland intermixed with minimal reality i havent seen animation like this since i was a child and it is wonderful to see it endure and succeedthe actors supplying the voices in the english version were fabulous the length of the movie was perfect especially for children who tend to get squirrelly in films overall a delightful experience worth the very expensive ticket prices we have nowadays', 'this film was reeeeeeallyyyy bad was it meant to be a comedy as i couldnt help laughing the whole way through it what a waste of two hours donald sutherland was wooden not that he was alone everyone else was just as badand how miscast was linda hamilton', 'if you have enjoyed the butterfly effect donnie darko or the machinist you will enjoy kpax tooto me this movie felt really uplifting and yet depressing in the end spacey delivers a great performance as prot also lets not forget the appearance of saul williams in the movie who i am a big fan ofafter watching it i recommended the movie to lots of my friends and everyone was pretty much blown awaybut still it is very underrated maybe because of the lack of action and explosions im sorry this is not a movie about blowing things up its about how humans behave and how people live in worlds that dont existgo on and enjoy', 'the first hour or so of the movie was mostly boring to say the least however it improved afterwards as the valentine party commenced apart from the twist as to the identity of the killer in the very end the hot bath murder scene was one of the few relatively memorable aspects of this movie the scene at the garden with kate was well shot and so was the very last scene the twist in those scenes there was some genuine suspense and thrills and the hot bath murder scene had a nasty the way slashers should be edge to it the earlier murders are frustratingly devoid of gore', 'as an avid fan of cary grant i expected to watch this movie and howl with laughter as amc billed it as a comedy i have never been more disappointed with a film carys usual charm and effortless comedy are awol from this entire movie he comes across as strained bored and just not himself mississips character ranks among one of the worst stereotypes i have ever witnessed his accent is terribly exaggerated and incorrect according to which part of mississippi he claims to hail from and whenever he does deliver a line its several decibels higher than any other cast member mississip tried to make himself stand out in the film as a lovable countrybumpkin goofball but in the end he manages only to detract from the already weak plot mansfield looks more like an obscene blowup doll than a hollywood sex kitten and while she was never known in hollywood for her acting ability this film screams that she never had that ability to begin with ray walstons character was sugary and ultimately contrived for four men on shore leave it was the tamest leave ive ever seen i watched this nightmare until its very end and while i wont spoil that for anyone i will tell you that its the most absurd youll ever see the film tries to spark patriotism and a sense of debt to the fighting men but the film misses that point totally because of its weak plot line and weak cast sorry cary']
[nltk_data] Downloading package punkt to
[nltk_data] C:\Users\LdTenacity\AppData\Roaming\nltk_data...
[nltk_data] Package punkt is already up-to-date!
[['this', 'film', 'did', 'entertain', 'me', 'with', 'lots', 'of', 'laughs', 'at', 'the', 'actors', 'who', 'kept', 'the', 'film', 'moving', 'along', 'in', 'all', 'types', 'of', 'crazy', 'directions', 'if', 'you', 'like', 'suggestive', 'language', 'and', 'sexy', 'looking', 'gals', 'they', 'were', 'all', 'in', 'the', 'picture', 'and', 'gals', 'and', 'guys', 'all', 'looking', 'burned', 'out', 'before', 'they', 'even', 'graduate', 'from', 'high', 'school', 'there', 'is', 'one', 'scene', 'where', 'the', 'teenagers', 'drive', 'their', 'car', 'into', 'a', 'very', 'fake', 'deer', 'and', 'then', 'proceed', 'to', 'throw', 'it', 'out', 'into', 'a', 'lake', 'or', 'ocean', 'which', 'is', 'repeated', 'over', 'and', 'over', 'again', 'there', 'is', 'no', 'horror', 'to', 'this', 'film', 'except', 'the', 'word', 'horrible', 'for', 'the', 'entire', 'picture', 'and', 'arnold', 'who', 'plays', 'a', 'plastic', 'cop', 'is', 'really', 'one', 'sick', 'character', 'please', 'dont', 'waste', 'your', 'time', 'viewing', 'this', 'film'], ['the', 'animation', 'in', 'this', 'reimagining', 'of', 'peter', 'the', 'wolf', 'is', 'excellent', 'but', 'at', '29', 'minutes', 'the', 'film', 'is', 'sleep', 'inducing', 'they', 'should', 'have', 'called', 'it', 'peter', 'the', 'snails', 'because', 'everything', 'moves', 'at', 'a', 'snails', 'pace', 'i', 'couldnt', 'even', 'watch', 'the', 'film', 'in', 'one', 'sitting', 'i', 'had', 'to', 'watch', 'it', '15', 'minutes', 'at', 'a', 'time', 'and', 'it', 'was', 'pure', 'torturesave', 'yourself', '30', 'minutes', 'do', 'not', 'watch', 'this', 'film', 'and', 'you', 'will', 'thank', 'mei', 'can', 'only', 'guess', 'that', 'the', 'oscar', 'nominating', 'committee', 'only', 'watched', 'the', 'first', 'few', 'minutes', 'of', 'the', 'nominees', 'unfortunately', 'to', 'vote', 'for', 'the', 'winner', 'in', 'the', 'best', 'animated', 'short', 'short', 'category', 'the', 'voters', 'will', 'have', 'to', 'sit', 'through', 'the', 'whole', 'thing', 'i', 'already', 'feel', 'sorry', 'for', 'them', 'and', 'must', 'predict', 'that', 'theres', 'no', 'way', 'this', 'film', 'will', 'come', 'close', 'to', 'winning'], ['this', 'is', 'a', 'great', 'show', 'and', 'will', 'make', 'you', 'cry', 'this', 'group', 'people', 'really', 'loved', 'each', 'other', 'in', 'real', 'life', 'and', 'it', 'shows', 'time', 'and', 'time', 'again', 'email', 'me', 'and', 'lets', 'chat', 'i', 'have', 'been', 'to', 'australia', 'and', 'they', 'real', 'do', 'talk', 'like', 'thisi', 'want', 'you', 'to', 'enjoy', 'five', 'mile', 'creek', 'and', 'pass', 'on', 'these', 'great', 'stories', 'of', 'right', 'and', 'wrong', 'and', 'friendship', 'to', 'your', 'kids', 'i', 'have', 'all', '40', 'episodes', 'on', 'dvdr', 'that', 'i', 'have', 'collected', 'over', 'the', 'last', '5', 'years', 'see', 'my', 'five', 'mile', 'creek', 'tribute', 'at', 'wwwmikeandvickicom', 'and', 'hear', 'the', 'extended', 'theme', 'music', 'lets', 'talk', 'about', 'themthese', 'people', 'are', 'so', 'cool'], ['this', 'is', 'a', 'great', 'tv', 'miniseries', 'of', 'a', 'classic', 'novel', 'janet', 'mcteer', 'and', 'john', 'bowe', 'in', 'the', 'lead', 'roles', 'are', 'exceptional', 'this', 'is', 'one', 'of', 'the', 'best', 'adaptations', 'from', 'a', 'book', 'that', 'i', 'have', 'seen', 'i', 'would', 'love', 'to', 'get', 'a', 'copy', 'of', 'this', 'let', 'me', 'know', 'if', 'you', 'know', 'how', 'i', 'might', 'get', 'onethanks'], ['my', 'husband', 'dragged', 'me', 'to', 'this', 'film', 'as', 'i', 'had', 'no', 'interest', 'in', 'seeing', 'some', 'anime', 'cartoon', 'i', 'was', 'absolutely', 'delighted', 'by', 'the', 'simple', 'story', 'and', 'amazing', 'animation', 'in', 'a', 'digital', 'world', 'where', 'effects', 'are', 'computer', 'generated', 'it', 'was', 'refreshing', 'to', 'see', 'gorgeous', 'imaginative', 'hand', 'drawn', 'animation', 'the', 'world', 'of', 'sosuke', 'and', 'ponyo', 'is', 'a', 'vivid', 'fantasyland', 'intermixed', 'with', 'minimal', 'reality', 'i', 'havent', 'seen', 'animation', 'like', 'this', 'since', 'i', 'was', 'a', 'child', 'and', 'it', 'is', 'wonderful', 'to', 'see', 'it', 'endure', 'and', 'succeedthe', 'actors', 'supplying', 'the', 'voices', 'in', 'the', 'english', 'version', 'were', 'fabulous', 'the', 'length', 'of', 'the', 'movie', 'was', 'perfect', 'especially', 'for', 'children', 'who', 'tend', 'to', 'get', 'squirrelly', 'in', 'films', 'overall', 'a', 'delightful', 'experience', 'worth', 'the', 'very', 'expensive', 'ticket', 'prices', 'we', 'have', 'nowadays'], ['this', 'film', 'was', 'reeeeeeallyyyy', 'bad', 'was', 'it', 'meant', 'to', 'be', 'a', 'comedy', 'as', 'i', 'couldnt', 'help', 'laughing', 'the', 'whole', 'way', 'through', 'it', 'what', 'a', 'waste', 'of', 'two', 'hours', 'donald', 'sutherland', 'was', 'wooden', 'not', 'that', 'he', 'was', 'alone', 'everyone', 'else', 'was', 'just', 'as', 'badand', 'how', 'miscast', 'was', 'linda', 'hamilton'], ['if', 'you', 'have', 'enjoyed', 'the', 'butterfly', 'effect', 'donnie', 'darko', 'or', 'the', 'machinist', 'you', 'will', 'enjoy', 'kpax', 'tooto', 'me', 'this', 'movie', 'felt', 'really', 'uplifting', 'and', 'yet', 'depressing', 'in', 'the', 'end', 'spacey', 'delivers', 'a', 'great', 'performance', 'as', 'prot', 'also', 'lets', 'not', 'forget', 'the', 'appearance', 'of', 'saul', 'williams', 'in', 'the', 'movie', 'who', 'i', 'am', 'a', 'big', 'fan', 'ofafter', 'watching', 'it', 'i', 'recommended', 'the', 'movie', 'to', 'lots', 'of', 'my', 'friends', 'and', 'everyone', 'was', 'pretty', 'much', 'blown', 'awaybut', 'still', 'it', 'is', 'very', 'underrated', 'maybe', 'because', 'of', 'the', 'lack', 'of', 'action', 'and', 'explosions', 'im', 'sorry', 'this', 'is', 'not', 'a', 'movie', 'about', 'blowing', 'things', 'up', 'its', 'about', 'how', 'humans', 'behave', 'and', 'how', 'people', 'live', 'in', 'worlds', 'that', 'dont', 'existgo', 'on', 'and', 'enjoy'], ['the', 'first', 'hour', 'or', 'so', 'of', 'the', 'movie', 'was', 'mostly', 'boring', 'to', 'say', 'the', 'least', 'however', 'it', 'improved', 'afterwards', 'as', 'the', 'valentine', 'party', 'commenced', 'apart', 'from', 'the', 'twist', 'as', 'to', 'the', 'identity', 'of', 'the', 'killer', 'in', 'the', 'very', 'end', 'the', 'hot', 'bath', 'murder', 'scene', 'was', 'one', 'of', 'the', 'few', 'relatively', 'memorable', 'aspects', 'of', 'this', 'movie', 'the', 'scene', 'at', 'the', 'garden', 'with', 'kate', 'was', 'well', 'shot', 'and', 'so', 'was', 'the', 'very', 'last', 'scene', 'the', 'twist', 'in', 'those', 'scenes', 'there', 'was', 'some', 'genuine', 'suspense', 'and', 'thrills', 'and', 'the', 'hot', 'bath', 'murder', 'scene', 'had', 'a', 'nasty', 'the', 'way', 'slashers', 'should', 'be', 'edge', 'to', 'it', 'the', 'earlier', 'murders', 'are', 'frustratingly', 'devoid', 'of', 'gore'], ['as', 'an', 'avid', 'fan', 'of', 'cary', 'grant', 'i', 'expected', 'to', 'watch', 'this', 'movie', 'and', 'howl', 'with', 'laughter', 'as', 'amc', 'billed', 'it', 'as', 'a', 'comedy', 'i', 'have', 'never', 'been', 'more', 'disappointed', 'with', 'a', 'film', 'carys', 'usual', 'charm', 'and', 'effortless', 'comedy', 'are', 'awol', 'from', 'this', 'entire', 'movie', 'he', 'comes', 'across', 'as', 'strained', 'bored', 'and', 'just', 'not', 'himself', 'mississips', 'character', 'ranks', 'among', 'one', 'of', 'the', 'worst', 'stereotypes', 'i', 'have', 'ever', 'witnessed', 'his', 'accent', 'is', 'terribly', 'exaggerated', 'and', 'incorrect', 'according', 'to', 'which', 'part', 'of', 'mississippi', 'he', 'claims', 'to', 'hail', 'from', 'and', 'whenever', 'he', 'does', 'deliver', 'a', 'line', 'its', 'several', 'decibels', 'higher', 'than', 'any', 'other', 'cast', 'member', 'mississip', 'tried', 'to', 'make', 'himself', 'stand', 'out', 'in', 'the', 'film', 'as', 'a', 'lovable', 'countrybumpkin', 'goofball', 'but', 'in', 'the', 'end', 'he', 'manages', 'only', 'to', 'detract', 'from', 'the', 'already', 'weak', 'plot', 'mansfield', 'looks', 'more', 'like', 'an', 'obscene', 'blowup', 'doll', 'than', 'a', 'hollywood', 'sex', 'kitten', 'and', 'while', 'she', 'was', 'never', 'known', 'in', 'hollywood', 'for', 'her', 'acting', 'ability', 'this', 'film', 'screams', 'that', 'she', 'never', 'had', 'that', 'ability', 'to', 'begin', 'with', 'ray', 'walstons', 'character', 'was', 'sugary', 'and', 'ultimately', 'contrived', 'for', 'four', 'men', 'on', 'shore', 'leave', 'it', 'was', 'the', 'tamest', 'leave', 'ive', 'ever', 'seen', 'i', 'watched', 'this', 'nightmare', 'until', 'its', 'very', 'end', 'and', 'while', 'i', 'wont', 'spoil', 'that', 'for', 'anyone', 'i', 'will', 'tell', 'you', 'that', 'its', 'the', 'most', 'absurd', 'youll', 'ever', 'see', 'the', 'film', 'tries', 'to', 'spark', 'patriotism', 'and', 'a', 'sense', 'of', 'debt', 'to', 'the', 'fighting', 'men', 'but', 'the', 'film', 'misses', 'that', 'point', 'totally', 'because', 'of', 'its', 'weak', 'plot', 'line', 'and', 'weak', 'cast', 'sorry', 'cary']]
[nltk_data] Downloading package stopwords to
[nltk_data] C:\Users\LdTenacity\AppData\Roaming\nltk_data...
[nltk_data] Package stopwords is already up-to-date!
[['film', 'entertain', 'lots', 'laughs', 'actors', 'kept', 'film', 'moving', 'along', 'types', 'crazy', 'directions', 'like', 'suggestive', 'language', 'sexy', 'looking', 'gals', 'picture', 'gals', 'guys', 'looking', 'burned', 'even', 'graduate', 'high', 'school', 'one', 'scene', 'teenagers', 'drive', 'car', 'fake', 'deer', 'proceed', 'throw', 'lake', 'ocean', 'repeated', 'horror', 'film', 'except', 'word', 'horrible', 'entire', 'picture', 'arnold', 'plays', 'plastic', 'cop', 'really', 'one', 'sick', 'character', 'please', 'dont', 'waste', 'time', 'viewing', 'film'], ['animation', 'reimagining', 'peter', 'wolf', 'excellent', '29', 'minutes', 'film', 'sleep', 'inducing', 'called', 'peter', 'snails', 'everything', 'moves', 'snails', 'pace', 'couldnt', 'even', 'watch', 'film', 'one', 'sitting', 'watch', '15', 'minutes', 'time', 'pure', 'torturesave', '30', 'minutes', 'watch', 'film', 'thank', 'mei', 'guess', 'oscar', 'nominating', 'committee', 'watched', 'first', 'minutes', 'nominees', 'unfortunately', 'vote', 'winner', 'best', 'animated', 'short', 'short', 'category', 'voters', 'sit', 'whole', 'thing', 'already', 'feel', 'sorry', 'must', 'predict', 'theres', 'way', 'film', 'come', 'close', 'winning'], ['great', 'show', 'make', 'cry', 'group', 'people', 'really', 'loved', 'real', 'life', 'shows', 'time', 'time', 'email', 'lets', 'chat', 'australia', 'real', 'talk', 'like', 'thisi', 'want', 'enjoy', 'five', 'mile', 'creek', 'pass', 'great', 'stories', 'right', 'wrong', 'friendship', 'kids', '40', 'episodes', 'dvdr', 'collected', 'last', '5', 'years', 'see', 'five', 'mile', 'creek', 'tribute', 'wwwmikeandvickicom', 'hear', 'extended', 'theme', 'music', 'lets', 'talk', 'themthese', 'people', 'cool'], ['great', 'tv', 'miniseries', 'classic', 'novel', 'janet', 'mcteer', 'john', 'bowe', 'lead', 'roles', 'exceptional', 'one', 'best', 'adaptations', 'book', 'seen', 'would', 'love', 'get', 'copy', 'let', 'know', 'know', 'might', 'get', 'onethanks'], ['husband', 'dragged', 'film', 'interest', 'seeing', 'anime', 'cartoon', 'absolutely', 'delighted', 'simple', 'story', 'amazing', 'animation', 'digital', 'world', 'effects', 'computer', 'generated', 'refreshing', 'see', 'gorgeous', 'imaginative', 'hand', 'drawn', 'animation', 'world', 'sosuke', 'ponyo', 'vivid', 'fantasyland', 'intermixed', 'minimal', 'reality', 'havent', 'seen', 'animation', 'like', 'since', 'child', 'wonderful', 'see', 'endure', 'succeedthe', 'actors', 'supplying', 'voices', 'english', 'version', 'fabulous', 'length', 'movie', 'perfect', 'especially', 'children', 'tend', 'get', 'squirrelly', 'films', 'overall', 'delightful', 'experience', 'worth', 'expensive', 'ticket', 'prices', 'nowadays'], ['film', 'reeeeeeallyyyy', 'bad', 'meant', 'comedy', 'couldnt', 'help', 'laughing', 'whole', 'way', 'waste', 'two', 'hours', 'donald', 'sutherland', 'wooden', 'alone', 'everyone', 'else', 'badand', 'miscast', 'linda', 'hamilton'], ['enjoyed', 'butterfly', 'effect', 'donnie', 'darko', 'machinist', 'enjoy', 'kpax', 'tooto', 'movie', 'felt', 'really', 'uplifting', 'yet', 'depressing', 'end', 'spacey', 'delivers', 'great', 'performance', 'prot', 'also', 'lets', 'forget', 'appearance', 'saul', 'williams', 'movie', 'big', 'fan', 'ofafter', 'watching', 'recommended', 'movie', 'lots', 'friends', 'everyone', 'pretty', 'much', 'blown', 'awaybut', 'still', 'underrated', 'maybe', 'lack', 'action', 'explosions', 'im', 'sorry', 'movie', 'blowing', 'things', 'humans', 'behave', 'people', 'live', 'worlds', 'dont', 'existgo', 'enjoy'], ['first', 'hour', 'movie', 'mostly', 'boring', 'say', 'least', 'however', 'improved', 'afterwards', 'valentine', 'party', 'commenced', 'apart', 'twist', 'identity', 'killer', 'end', 'hot', 'bath', 'murder', 'scene', 'one', 'relatively', 'memorable', 'aspects', 'movie', 'scene', 'garden', 'kate', 'well', 'shot', 'last', 'scene', 'twist', 'scenes', 'genuine', 'suspense', 'thrills', 'hot', 'bath', 'murder', 'scene', 'nasty', 'way', 'slashers', 'edge', 'earlier', 'murders', 'frustratingly', 'devoid', 'gore'], ['avid', 'fan', 'cary', 'grant', 'expected', 'watch', 'movie', 'howl', 'laughter', 'amc', 'billed', 'comedy', 'never', 'disappointed', 'film', 'carys', 'usual', 'charm', 'effortless', 'comedy', 'awol', 'entire', 'movie', 'comes', 'across', 'strained', 'bored', 'mississips', 'character', 'ranks', 'among', 'one', 'worst', 'stereotypes', 'ever', 'witnessed', 'accent', 'terribly', 'exaggerated', 'incorrect', 'according', 'part', 'mississippi', 'claims', 'hail', 'whenever', 'deliver', 'line', 'several', 'decibels', 'higher', 'cast', 'member', 'mississip', 'tried', 'make', 'stand', 'film', 'lovable', 'countrybumpkin', 'goofball', 'end', 'manages', 'detract', 'already', 'weak', 'plot', 'mansfield', 'looks', 'like', 'obscene', 'blowup', 'doll', 'hollywood', 'sex', 'kitten', 'never', 'known', 'hollywood', 'acting', 'ability', 'film', 'screams', 'never', 'ability', 'begin', 'ray', 'walstons', 'character', 'sugary', 'ultimately', 'contrived', 'four', 'men', 'shore', 'leave', 'tamest', 'leave', 'ive', 'ever', 'seen', 'watched', 'nightmare', 'end', 'wont', 'spoil', 'anyone', 'tell', 'absurd', 'youll', 'ever', 'see', 'film', 'tries', 'spark', 'patriotism', 'sense', 'debt', 'fighting', 'men', 'film', 'misses', 'point', 'totally', 'weak', 'plot', 'line', 'weak', 'cast', 'sorry', 'cary']]
[nltk_data] Downloading package wordnet to
[nltk_data] C:\Users\LdTenacity\AppData\Roaming\nltk_data...
[nltk_data] Package wordnet is already up-to-date!
[nltk_data] Downloading package omw-1.4 to
[nltk_data] C:\Users\LdTenacity\AppData\Roaming\nltk_data...
[nltk_data] Package omw-1.4 is already up-to-date!
[['film', 'entertain', 'lot', 'laugh', 'actor', 'kept', 'film', 'moving', 'along', 'type', 'crazy', 'direction', 'like', 'suggestive', 'language', 'sexy', 'looking', 'gal', 'picture', 'gal', 'guy', 'looking', 'burned', 'even', 'graduate', 'high', 'school', 'one', 'scene', 'teenager', 'drive', 'car', 'fake', 'deer', 'proceed', 'throw', 'lake', 'ocean', 'repeated', 'horror', 'film', 'except', 'word', 'horrible', 'entire', 'picture', 'arnold', 'play', 'plastic', 'cop', 'really', 'one', 'sick', 'character', 'please', 'dont', 'waste', 'time', 'viewing', 'film'], ['animation', 'reimagining', 'peter', 'wolf', 'excellent', '29', 'minute', 'film', 'sleep', 'inducing', 'called', 'peter', 'snail', 'everything', 'move', 'snail', 'pace', 'couldnt', 'even', 'watch', 'film', 'one', 'sitting', 'watch', '15', 'minute', 'time', 'pure', 'torturesave', '30', 'minute', 'watch', 'film', 'thank', 'mei', 'guess', 'oscar', 'nominating', 'committee', 'watched', 'first', 'minute', 'nominee', 'unfortunately', 'vote', 'winner', 'best', 'animated', 'short', 'short', 'category', 'voter', 'sit', 'whole', 'thing', 'already', 'feel', 'sorry', 'must', 'predict', 'there', 'way', 'film', 'come', 'close', 'winning'], ['great', 'show', 'make', 'cry', 'group', 'people', 'really', 'loved', 'real', 'life', 'show', 'time', 'time', 'email', 'let', 'chat', 'australia', 'real', 'talk', 'like', 'thisi', 'want', 'enjoy', 'five', 'mile', 'creek', 'pas', 'great', 'story', 'right', 'wrong', 'friendship', 'kid', '40', 'episode', 'dvdr', 'collected', 'last', '5', 'year', 'see', 'five', 'mile', 'creek', 'tribute', 'wwwmikeandvickicom', 'hear', 'extended', 'theme', 'music', 'let', 'talk', 'themthese', 'people', 'cool'], ['great', 'tv', 'miniseries', 'classic', 'novel', 'janet', 'mcteer', 'john', 'bowe', 'lead', 'role', 'exceptional', 'one', 'best', 'adaptation', 'book', 'seen', 'would', 'love', 'get', 'copy', 'let', 'know', 'know', 'might', 'get', 'onethanks'], ['husband', 'dragged', 'film', 'interest', 'seeing', 'anime', 'cartoon', 'absolutely', 'delighted', 'simple', 'story', 'amazing', 'animation', 'digital', 'world', 'effect', 'computer', 'generated', 'refreshing', 'see', 'gorgeous', 'imaginative', 'hand', 'drawn', 'animation', 'world', 'sosuke', 'ponyo', 'vivid', 'fantasyland', 'intermixed', 'minimal', 'reality', 'havent', 'seen', 'animation', 'like', 'since', 'child', 'wonderful', 'see', 'endure', 'succeedthe', 'actor', 'supplying', 'voice', 'english', 'version', 'fabulous', 'length', 'movie', 'perfect', 'especially', 'child', 'tend', 'get', 'squirrelly', 'film', 'overall', 'delightful', 'experience', 'worth', 'expensive', 'ticket', 'price', 'nowadays'], ['film', 'reeeeeeallyyyy', 'bad', 'meant', 'comedy', 'couldnt', 'help', 'laughing', 'whole', 'way', 'waste', 'two', 'hour', 'donald', 'sutherland', 'wooden', 'alone', 'everyone', 'else', 'badand', 'miscast', 'linda', 'hamilton'], ['enjoyed', 'butterfly', 'effect', 'donnie', 'darko', 'machinist', 'enjoy', 'kpax', 'tooto', 'movie', 'felt', 'really', 'uplifting', 'yet', 'depressing', 'end', 'spacey', 'delivers', 'great', 'performance', 'prot', 'also', 'let', 'forget', 'appearance', 'saul', 'williams', 'movie', 'big', 'fan', 'ofafter', 'watching', 'recommended', 'movie', 'lot', 'friend', 'everyone', 'pretty', 'much', 'blown', 'awaybut', 'still', 'underrated', 'maybe', 'lack', 'action', 'explosion', 'im', 'sorry', 'movie', 'blowing', 'thing', 'human', 'behave', 'people', 'live', 'world', 'dont', 'existgo', 'enjoy'], ['first', 'hour', 'movie', 'mostly', 'boring', 'say', 'least', 'however', 'improved', 'afterwards', 'valentine', 'party', 'commenced', 'apart', 'twist', 'identity', 'killer', 'end', 'hot', 'bath', 'murder', 'scene', 'one', 'relatively', 'memorable', 'aspect', 'movie', 'scene', 'garden', 'kate', 'well', 'shot', 'last', 'scene', 'twist', 'scene', 'genuine', 'suspense', 'thrill', 'hot', 'bath', 'murder', 'scene', 'nasty', 'way', 'slasher', 'edge', 'earlier', 'murder', 'frustratingly', 'devoid', 'gore'], ['avid', 'fan', 'cary', 'grant', 'expected', 'watch', 'movie', 'howl', 'laughter', 'amc', 'billed', 'comedy', 'never', 'disappointed', 'film', 'carys', 'usual', 'charm', 'effortless', 'comedy', 'awol', 'entire', 'movie', 'come', 'across', 'strained', 'bored', 'mississips', 'character', 'rank', 'among', 'one', 'worst', 'stereotype', 'ever', 'witnessed', 'accent', 'terribly', 'exaggerated', 'incorrect', 'according', 'part', 'mississippi', 'claim', 'hail', 'whenever', 'deliver', 'line', 'several', 'decibel', 'higher', 'cast', 'member', 'mississip', 'tried', 'make', 'stand', 'film', 'lovable', 'countrybumpkin', 'goofball', 'end', 'manages', 'detract', 'already', 'weak', 'plot', 'mansfield', 'look', 'like', 'obscene', 'blowup', 'doll', 'hollywood', 'sex', 'kitten', 'never', 'known', 'hollywood', 'acting', 'ability', 'film', 'scream', 'never', 'ability', 'begin', 'ray', 'walstons', 'character', 'sugary', 'ultimately', 'contrived', 'four', 'men', 'shore', 'leave', 'tamest', 'leave', 'ive', 'ever', 'seen', 'watched', 'nightmare', 'end', 'wont', 'spoil', 'anyone', 'tell', 'absurd', 'youll', 'ever', 'see', 'film', 'try', 'spark', 'patriotism', 'sense', 'debt', 'fighting', 'men', 'film', 'miss', 'point', 'totally', 'weak', 'plot', 'line', 'weak', 'cast', 'sorry', 'cary']]
Epoch: 1, loss: 0.69320, train_acc: 0.51
Epoch: 2, loss: 3.30163, train_acc: 0.49
Epoch: 3, loss: 7.12619, train_acc: 0.51
Epoch: 4, loss: 1.90261, train_acc: 0.48
Epoch: 5, loss: 2.00941, train_acc: 0.49
Epoch: 6, loss: 0.93977, train_acc: 0.50
Epoch: 7, loss: 1.51636, train_acc: 0.49
Epoch: 8, loss: 0.92211, train_acc: 0.47
Epoch: 9, loss: 1.63303, train_acc: 0.50
Epoch: 10, loss: 1.01953, train_acc: 0.49
Epoch: 11, loss: 1.40945, train_acc: 0.51
Epoch: 12, loss: 1.42190, train_acc: 0.48
Epoch: 13, loss: 1.62770, train_acc: 0.50
Epoch: 14, loss: 1.22491, train_acc: 0.50
Epoch: 15, loss: 0.92069, train_acc: 0.51
Epoch: 16, loss: 0.91376, train_acc: 0.51
Epoch: 17, loss: 0.91519, train_acc: 0.51
Epoch: 18, loss: 0.88758, train_acc: 0.52
Epoch: 19, loss: 0.85773, train_acc: 0.53
Epoch: 20, loss: 0.80663, train_acc: 0.54
Epoch: 21, loss: 0.86148, train_acc: 0.53
Epoch: 22, loss: 0.76396, train_acc: 0.54
Epoch: 23, loss: 0.87464, train_acc: 0.56
Epoch: 24, loss: 0.77012, train_acc: 0.53
Epoch: 25, loss: 0.84821, train_acc: 0.53
Finished Training
precision recall f1-score support
0 0.58 0.32 0.41 132
1 0.49 0.74 0.59 118
accuracy 0.52 250
macro avg 0.53 0.53 0.50 250
weighted avg 0.54 0.52 0.49 250
test_pad.shape: 250
test_pad[0].shape: 100
weight adjusted tensor(1.8958, dtype=torch.float64, grad_fn=<MulBackward0>)
Epoch: 1, loss: 0.69409, train_acc: 0.49
weight adjusted tensor(1.8000, dtype=torch.float64, grad_fn=<MulBackward0>)
Epoch: 2, loss: 0.69545, train_acc: 0.51
weight adjusted tensor(1.6239, dtype=torch.float64, grad_fn=<MulBackward0>)
Epoch: 3, loss: 0.69283, train_acc: 0.51
weight adjusted tensor(1.3222, dtype=torch.float64, grad_fn=<MulBackward0>)
Epoch: 4, loss: 0.69156, train_acc: 0.54
weight adjusted tensor(0.8770, dtype=torch.float64, grad_fn=<MulBackward0>)
Epoch: 5, loss: 0.69180, train_acc: 0.52
weight adjusted tensor(0.3859, dtype=torch.float64, grad_fn=<MulBackward0>)
Epoch: 6, loss: 0.69137, train_acc: 0.53
weight adjusted tensor(0.0747, dtype=torch.float64, grad_fn=<MulBackward0>)
Epoch: 7, loss: 0.69009, train_acc: 0.56
weight adjusted tensor(0.0028, dtype=torch.float64, grad_fn=<MulBackward0>)
Epoch: 8, loss: 0.68882, train_acc: 0.55
weight adjusted tensor(3.9478e-06, dtype=torch.float64, grad_fn=<MulBackward0>)
Epoch: 9, loss: 0.68788, train_acc: 0.55
weight adjusted tensor(7.8240e-12, dtype=torch.float64, grad_fn=<MulBackward0>)
Epoch: 10, loss: 0.68682, train_acc: 0.56
weight adjusted tensor(3.0698e-23, dtype=torch.float64, grad_fn=<MulBackward0>)
Epoch: 11, loss: 0.68498, train_acc: 0.58
weight adjusted tensor(4.7435e-46, dtype=torch.float64, grad_fn=<MulBackward0>)
Epoch: 12, loss: 0.68245, train_acc: 0.58
weight adjusted tensor(1.1327e-91, dtype=torch.float64, grad_fn=<MulBackward0>)
Epoch: 13, loss: 0.67959, train_acc: 0.61
weight adjusted tensor(6.4448e-183, dtype=torch.float64, grad_fn=<MulBackward0>)
Epoch: 14, loss: 0.67618, train_acc: 0.66
weight adjusted tensor(0., dtype=torch.float64, grad_fn=<MulBackward0>)
Epoch: 15, loss: 0.67135, train_acc: 0.67
weight adjusted tensor(0., dtype=torch.float64, grad_fn=<MulBackward0>)
Epoch: 16, loss: 0.66447, train_acc: 0.67
weight adjusted tensor(0., dtype=torch.float64, grad_fn=<MulBackward0>)
Epoch: 17, loss: 0.65658, train_acc: 0.66
weight adjusted tensor(0., dtype=torch.float64, grad_fn=<MulBackward0>)
Epoch: 18, loss: 0.64398, train_acc: 0.72
weight adjusted tensor(0., dtype=torch.float64, grad_fn=<MulBackward0>)
Epoch: 19, loss: 0.62836, train_acc: 0.76
weight adjusted tensor(0., dtype=torch.float64, grad_fn=<MulBackward0>)
Epoch: 20, loss: 0.60180, train_acc: 0.82
weight adjusted tensor(0., dtype=torch.float64, grad_fn=<MulBackward0>)
Epoch: 21, loss: 0.56940, train_acc: 0.83
weight adjusted tensor(0., dtype=torch.float64, grad_fn=<MulBackward0>)
Epoch: 22, loss: 1.06824, train_acc: 0.51
weight adjusted tensor(0., dtype=torch.float64, grad_fn=<MulBackward0>)
Epoch: 23, loss: 0.53579, train_acc: 0.88
weight adjusted tensor(0., dtype=torch.float64, grad_fn=<MulBackward0>)
Epoch: 24, loss: 0.60502, train_acc: 0.59
weight adjusted tensor(0., dtype=torch.float64, grad_fn=<MulBackward0>)
Epoch: 25, loss: 0.59692, train_acc: 0.60
Finished Training
precision recall f1-score support
0 0.57 0.03 0.06 132
1 0.47 0.97 0.64 118
accuracy 0.48 250
macro avg 0.52 0.50 0.35 250
weighted avg 0.53 0.48 0.33 250
input_torch torch.Size([750, 100])
sparsemans loss -0.41609179091997733
Epoch: 1, loss: 0.27714, train_acc: 0.49
input_torch torch.Size([750, 100])
sparsemans loss 0.6527650595018676
Epoch: 2, loss: 1.35032, train_acc: 0.51
input_torch torch.Size([750, 100])
sparsemans loss 0.4923516750488703
Epoch: 3, loss: 1.18431, train_acc: 0.51
input_torch torch.Size([750, 100])
sparsemans loss 0.6119662200987549
Epoch: 4, loss: 1.30490, train_acc: 0.50
input_torch torch.Size([750, 100])
sparsemans loss 0.4294825445928083
Epoch: 5, loss: 1.12270, train_acc: 0.50
input_torch torch.Size([750, 100])
sparsemans loss 0.1857012926225767
Epoch: 6, loss: 0.87709, train_acc: 0.52
input_torch torch.Size([750, 100])
sparsemans loss 0.03563924999890316
Epoch: 7, loss: 0.72524, train_acc: 0.56
input_torch torch.Size([750, 100])
sparsemans loss 0.0013455647325037775
Epoch: 8, loss: 0.69007, train_acc: 0.55
input_torch torch.Size([750, 100])
sparsemans loss 1.912038626706246e-06
Epoch: 9, loss: 0.68829, train_acc: 0.51
input_torch torch.Size([750, 100])
sparsemans loss 4.004398980721484e-12
Epoch: 10, loss: 0.68729, train_acc: 0.51
input_torch torch.Size([750, 100])
sparsemans loss 2.2831511913034837e-23
Epoch: 11, loss: 0.68539, train_acc: 0.51
input_torch torch.Size([750, 100])
sparsemans loss 3.728677465090531e-46
Epoch: 12, loss: 0.68302, train_acc: 0.61
input_torch torch.Size([750, 100])
sparsemans loss 8.929298714715044e-92
Epoch: 13, loss: 0.68053, train_acc: 0.63
input_torch torch.Size([750, 100])
sparsemans loss 4.802445037713229e-183
Epoch: 14, loss: 0.67776, train_acc: 0.67
input_torch torch.Size([750, 100])
sparsemans loss 0.0
Epoch: 15, loss: 0.67400, train_acc: 0.67
input_torch torch.Size([750, 100])
sparsemans loss 0.0
Epoch: 16, loss: 0.66852, train_acc: 0.68
input_torch torch.Size([750, 100])
sparsemans loss 0.0
Epoch: 17, loss: 0.66142, train_acc: 0.67
input_torch torch.Size([750, 100])
sparsemans loss 0.0
Epoch: 18, loss: 0.65358, train_acc: 0.68
input_torch torch.Size([750, 100])
sparsemans loss 0.0
Epoch: 19, loss: 0.64000, train_acc: 0.74
input_torch torch.Size([750, 100])
sparsemans loss 0.0
Epoch: 20, loss: 0.62382, train_acc: 0.81
input_torch torch.Size([750, 100])
sparsemans loss 0.0
Epoch: 21, loss: 0.59702, train_acc: 0.89
input_torch torch.Size([750, 100])
sparsemans loss 0.0
Epoch: 22, loss: 0.56761, train_acc: 0.73
input_torch torch.Size([750, 100])
sparsemans loss 0.0
Epoch: 23, loss: 0.57850, train_acc: 0.66
input_torch torch.Size([750, 100])
sparsemans loss 0.0
Epoch: 24, loss: 0.48652, train_acc: 0.92
input_torch torch.Size([750, 100])
sparsemans loss 0.0
Epoch: 25, loss: 1.36384, train_acc: 0.52
Finished Training
precision recall f1-score support
0 0.60 0.85 0.70 132
1 0.68 0.36 0.47 118
accuracy 0.62 250
macro avg 0.64 0.60 0.58 250
weighted avg 0.63 0.62 0.59 250
weight adjusted tensor(0.0190, dtype=torch.float64, grad_fn=<MulBackward0>)
Epoch: 1, loss: 0.67423, train_acc: 0.50
weight adjusted tensor(0.0180, dtype=torch.float64, grad_fn=<MulBackward0>)
Epoch: 2, loss: 0.67706, train_acc: 0.51
weight adjusted tensor(0.0163, dtype=torch.float64, grad_fn=<MulBackward0>)
Epoch: 3, loss: 0.67561, train_acc: 0.52
weight adjusted tensor(0.0138, dtype=torch.float64, grad_fn=<MulBackward0>)
Epoch: 4, loss: 0.67932, train_acc: 0.50
weight adjusted tensor(0.0092, dtype=torch.float64, grad_fn=<MulBackward0>)
Epoch: 5, loss: 0.68263, train_acc: 0.52
weight adjusted tensor(0.0040, dtype=torch.float64, grad_fn=<MulBackward0>)
Epoch: 6, loss: 0.68603, train_acc: 0.55
weight adjusted tensor(0.0008, dtype=torch.float64, grad_fn=<MulBackward0>)
Epoch: 7, loss: 0.68863, train_acc: 0.52
weight adjusted tensor(2.8264e-05, dtype=torch.float64, grad_fn=<MulBackward0>)
Epoch: 8, loss: 0.68890, train_acc: 0.51
weight adjusted tensor(3.9816e-08, dtype=torch.float64, grad_fn=<MulBackward0>)
Epoch: 9, loss: 0.68753, train_acc: 0.51
weight adjusted tensor(7.8909e-14, dtype=torch.float64, grad_fn=<MulBackward0>)
Epoch: 10, loss: 0.68545, train_acc: 0.56
weight adjusted tensor(3.1040e-25, dtype=torch.float64, grad_fn=<MulBackward0>)
Epoch: 11, loss: 0.68334, train_acc: 0.59
weight adjusted tensor(4.7910e-48, dtype=torch.float64, grad_fn=<MulBackward0>)
Epoch: 12, loss: 0.68105, train_acc: 0.63
weight adjusted tensor(1.1446e-93, dtype=torch.float64, grad_fn=<MulBackward0>)
Epoch: 13, loss: 0.67777, train_acc: 0.62
weight adjusted tensor(6.5258e-185, dtype=torch.float64, grad_fn=<MulBackward0>)
Epoch: 14, loss: 0.67300, train_acc: 0.63
weight adjusted tensor(0., dtype=torch.float64, grad_fn=<MulBackward0>)
Epoch: 15, loss: 0.66748, train_acc: 0.64
weight adjusted tensor(0., dtype=torch.float64, grad_fn=<MulBackward0>)
Epoch: 16, loss: 0.65960, train_acc: 0.67
weight adjusted tensor(0., dtype=torch.float64, grad_fn=<MulBackward0>)
Epoch: 17, loss: 0.64794, train_acc: 0.73
weight adjusted tensor(0., dtype=torch.float64, grad_fn=<MulBackward0>)
Epoch: 18, loss: 0.63204, train_acc: 0.78
weight adjusted tensor(0., dtype=torch.float64, grad_fn=<MulBackward0>)
Epoch: 19, loss: 0.60575, train_acc: 0.86
weight adjusted tensor(0., dtype=torch.float64, grad_fn=<MulBackward0>)
Epoch: 20, loss: 0.56052, train_acc: 0.85
weight adjusted tensor(0., dtype=torch.float64, grad_fn=<MulBackward0>)
Epoch: 21, loss: 0.71121, train_acc: 0.57
weight adjusted tensor(0., dtype=torch.float64, grad_fn=<MulBackward0>)
Epoch: 22, loss: 0.87930, train_acc: 0.54
weight adjusted tensor(0., dtype=torch.float64, grad_fn=<MulBackward0>)
Epoch: 23, loss: 0.51675, train_acc: 0.85
weight adjusted tensor(0., dtype=torch.float64, grad_fn=<MulBackward0>)
Epoch: 24, loss: 0.56172, train_acc: 0.72
weight adjusted tensor(0., dtype=torch.float64, grad_fn=<MulBackward0>)
Epoch: 25, loss: 0.58047, train_acc: 0.68
Finished Training
precision recall f1-score support
0 0.54 0.90 0.67 132
1 0.55 0.14 0.22 118
accuracy 0.54 250
macro avg 0.55 0.52 0.45 250
weighted avg 0.54 0.54 0.46 250
sparsemans loss -0.0437991358863134
word analogy weight adjusted tensor(1.8958, dtype=torch.float64, grad_fn=<MulBackward0>)
Epoch: 1, loss: -1.24619, train_acc: 0.49
sparsemans loss 0.020398819997954776
word analogy weight adjusted tensor(1.8000, dtype=torch.float64, grad_fn=<MulBackward0>)
Epoch: 2, loss: -1.08246, train_acc: 0.51
sparsemans loss 0.042769925575897906
word analogy weight adjusted tensor(1.6238, dtype=torch.float64, grad_fn=<MulBackward0>)
Epoch: 3, loss: -0.88856, train_acc: 0.51
sparsemans loss 0.1630684395206019
word analogy weight adjusted tensor(1.3222, dtype=torch.float64, grad_fn=<MulBackward0>)
Epoch: 4, loss: -0.46691, train_acc: 0.51
sparsemans loss 0.13805267034898117
word analogy weight adjusted tensor(0.8768, dtype=torch.float64, grad_fn=<MulBackward0>)
Epoch: 5, loss: -0.04582, train_acc: 0.50
sparsemans loss 0.11825382959771562
word analogy weight adjusted tensor(0.3856, dtype=torch.float64, grad_fn=<MulBackward0>)
Epoch: 6, loss: 0.42446, train_acc: 0.50
sparsemans loss 0.09973138674528717
word analogy weight adjusted tensor(0.0747, dtype=torch.float64, grad_fn=<MulBackward0>)
Epoch: 7, loss: 0.71532, train_acc: 0.55
sparsemans loss 0.09544363243570497
word analogy weight adjusted tensor(0.0029, dtype=torch.float64, grad_fn=<MulBackward0>)
Epoch: 8, loss: 0.78166, train_acc: 0.56
sparsemans loss 0.09565025290854935
word analogy weight adjusted tensor(4.0949e-06, dtype=torch.float64, grad_fn=<MulBackward0>)
Epoch: 9, loss: 0.78420, train_acc: 0.53
sparsemans loss 0.09395667178309149
word analogy weight adjusted tensor(8.1152e-12, dtype=torch.float64, grad_fn=<MulBackward0>)
Epoch: 10, loss: 0.78177, train_acc: 0.51
sparsemans loss 0.13158122545857429
word analogy weight adjusted tensor(3.1818e-23, dtype=torch.float64, grad_fn=<MulBackward0>)
Epoch: 11, loss: 0.81787, train_acc: 0.51
sparsemans loss 0.02614176736894955
word analogy weight adjusted tensor(4.9151e-46, dtype=torch.float64, grad_fn=<MulBackward0>)
Epoch: 12, loss: 0.71029, train_acc: 0.61
sparsemans loss 0.019882763340076052
word analogy weight adjusted tensor(1.1732e-91, dtype=torch.float64, grad_fn=<MulBackward0>)
Epoch: 13, loss: 0.70165, train_acc: 0.63
sparsemans loss -0.0009591981122265089
word analogy weight adjusted tensor(6.6764e-183, dtype=torch.float64, grad_fn=<MulBackward0>)
Epoch: 14, loss: 0.67819, train_acc: 0.65
sparsemans loss 0.004767933728205103
word analogy weight adjusted tensor(0., dtype=torch.float64, grad_fn=<MulBackward0>)
Epoch: 15, loss: 0.68052, train_acc: 0.65
sparsemans loss 0.006806864133655973
word analogy weight adjusted tensor(0., dtype=torch.float64, grad_fn=<MulBackward0>)
Epoch: 16, loss: 0.67763, train_acc: 0.66
sparsemans loss -0.001574165648607894
word analogy weight adjusted tensor(0., dtype=torch.float64, grad_fn=<MulBackward0>)
Epoch: 17, loss: 0.66268, train_acc: 0.65
sparsemans loss -0.02648973204285577
word analogy weight adjusted tensor(0., dtype=torch.float64, grad_fn=<MulBackward0>)
Epoch: 18, loss: 0.63037, train_acc: 0.67
sparsemans loss -0.03711998494046967
word analogy weight adjusted tensor(0., dtype=torch.float64, grad_fn=<MulBackward0>)
Epoch: 19, loss: 0.60741, train_acc: 0.71
sparsemans loss 0.08556063243585413
word analogy weight adjusted tensor(0., dtype=torch.float64, grad_fn=<MulBackward0>)
Epoch: 20, loss: 0.71456, train_acc: 0.76
sparsemans loss 0.0875671725911075
word analogy weight adjusted tensor(0., dtype=torch.float64, grad_fn=<MulBackward0>)
Epoch: 21, loss: 0.69096, train_acc: 0.85
sparsemans loss 0.06670921701004531
word analogy weight adjusted tensor(0., dtype=torch.float64, grad_fn=<MulBackward0>)
Epoch: 22, loss: 0.63668, train_acc: 0.74
sparsemans loss 0.04559978943609979
word analogy weight adjusted tensor(0., dtype=torch.float64, grad_fn=<MulBackward0>)
Epoch: 23, loss: 0.80448, train_acc: 0.57
sparsemans loss 0.06961070671010827
word analogy weight adjusted tensor(0., dtype=torch.float64, grad_fn=<MulBackward0>)
Epoch: 24, loss: 0.59007, train_acc: 0.85
sparsemans loss 0.09925342095474456
word analogy weight adjusted tensor(0., dtype=torch.float64, grad_fn=<MulBackward0>)
Epoch: 25, loss: 0.68766, train_acc: 0.56
Finished Training
precision recall f1-score support
0 0.62 0.06 0.11 132
1 0.48 0.96 0.64 118
accuracy 0.48 250
macro avg 0.55 0.51 0.37 250
weighted avg 0.55 0.48 0.36 250
Epoch: 1, loss: 0.69289, train_acc: 0.51
Epoch: 2, loss: 7.59723, train_acc: 0.51
Epoch: 3, loss: 3.34010, train_acc: 0.49
Epoch: 4, loss: 2.66350, train_acc: 0.51
Epoch: 5, loss: 2.53510, train_acc: 0.52
Epoch: 6, loss: 2.11589, train_acc: 0.47
Epoch: 7, loss: 2.08927, train_acc: 0.49
Epoch: 8, loss: 1.48527, train_acc: 0.51
Epoch: 9, loss: 1.57091, train_acc: 0.51
Epoch: 10, loss: 1.46807, train_acc: 0.51
Epoch: 11, loss: 1.06362, train_acc: 0.51
Epoch: 12, loss: 1.03521, train_acc: 0.51
Epoch: 13, loss: 0.92183, train_acc: 0.52
Epoch: 14, loss: 0.90762, train_acc: 0.51
Epoch: 15, loss: 0.87001, train_acc: 0.52
Epoch: 16, loss: 0.95731, train_acc: 0.53
Epoch: 17, loss: 0.94945, train_acc: 0.52
Epoch: 18, loss: 0.96433, train_acc: 0.48
Epoch: 19, loss: 0.90388, train_acc: 0.49
Epoch: 20, loss: 0.82710, train_acc: 0.53
Epoch: 21, loss: 0.84216, train_acc: 0.53
Epoch: 22, loss: 0.87078, train_acc: 0.51
Epoch: 23, loss: 0.83626, train_acc: 0.53
Epoch: 24, loss: 0.81623, train_acc: 0.51
Epoch: 25, loss: 0.78845, train_acc: 0.53
Finished Training
precision recall f1-score support
0 0.58 0.36 0.44 132
1 0.50 0.71 0.59 118
accuracy 0.52 250
macro avg 0.54 0.53 0.51 250
weighted avg 0.54 0.52 0.51 250
test_pad.shape: 250
test_pad[0].shape: 100
weight adjusted tensor(2.9565, dtype=torch.float64, grad_fn=<MulBackward0>)
Epoch: 1, loss: 0.69296, train_acc: 0.51
weight adjusted tensor(2.8092, dtype=torch.float64, grad_fn=<MulBackward0>)
Epoch: 2, loss: 0.69157, train_acc: 0.51
weight adjusted tensor(2.5336, dtype=torch.float64, grad_fn=<MulBackward0>)
Epoch: 3, loss: 0.69016, train_acc: 0.55
weight adjusted tensor(2.0628, dtype=torch.float64, grad_fn=<MulBackward0>)
Epoch: 4, loss: 0.68826, train_acc: 0.56
weight adjusted tensor(1.3692, dtype=torch.float64, grad_fn=<MulBackward0>)
Epoch: 5, loss: 0.68567, train_acc: 0.57
weight adjusted tensor(0.6026, dtype=torch.float64, grad_fn=<MulBackward0>)
Epoch: 6, loss: 0.68195, train_acc: 0.57
weight adjusted tensor(0.1167, dtype=torch.float64, grad_fn=<MulBackward0>)
Epoch: 7, loss: 0.67631, train_acc: 0.60
weight adjusted tensor(0.0045, dtype=torch.float64, grad_fn=<MulBackward0>)
Epoch: 8, loss: 0.66761, train_acc: 0.63
weight adjusted tensor(6.1626e-06, dtype=torch.float64, grad_fn=<MulBackward0>)
Epoch: 9, loss: 0.65231, train_acc: 0.65
weight adjusted tensor(1.2187e-11, dtype=torch.float64, grad_fn=<MulBackward0>)
Epoch: 10, loss: 0.62347, train_acc: 0.67
weight adjusted tensor(4.9047e-23, dtype=torch.float64, grad_fn=<MulBackward0>)
Epoch: 11, loss: 0.68390, train_acc: 0.63
weight adjusted tensor(7.5699e-46, dtype=torch.float64, grad_fn=<MulBackward0>)
Epoch: 12, loss: 0.83204, train_acc: 0.61
weight adjusted tensor(1.7604e-91, dtype=torch.float64, grad_fn=<MulBackward0>)
Epoch: 13, loss: 0.58830, train_acc: 0.71
weight adjusted tensor(1.0024e-182, dtype=torch.float64, grad_fn=<MulBackward0>)
Epoch: 14, loss: 0.61849, train_acc: 0.63
weight adjusted tensor(0., dtype=torch.float64, grad_fn=<MulBackward0>)
Epoch: 15, loss: 0.63507, train_acc: 0.57
weight adjusted tensor(0., dtype=torch.float64, grad_fn=<MulBackward0>)
Epoch: 16, loss: 0.63940, train_acc: 0.55
weight adjusted tensor(0., dtype=torch.float64, grad_fn=<MulBackward0>)
Epoch: 17, loss: 0.63797, train_acc: 0.55
weight adjusted tensor(0., dtype=torch.float64, grad_fn=<MulBackward0>)
Epoch: 18, loss: 0.63425, train_acc: 0.56
weight adjusted tensor(0., dtype=torch.float64, grad_fn=<MulBackward0>)
Epoch: 19, loss: 0.62987, train_acc: 0.58
weight adjusted tensor(0., dtype=torch.float64, grad_fn=<MulBackward0>)
Epoch: 20, loss: 0.62546, train_acc: 0.63
weight adjusted tensor(0., dtype=torch.float64, grad_fn=<MulBackward0>)
Epoch: 21, loss: 0.62121, train_acc: 0.68
weight adjusted tensor(0., dtype=torch.float64, grad_fn=<MulBackward0>)
Epoch: 22, loss: 0.61705, train_acc: 0.73
weight adjusted tensor(0., dtype=torch.float64, grad_fn=<MulBackward0>)
Epoch: 23, loss: 0.61282, train_acc: 0.75
weight adjusted tensor(0., dtype=torch.float64, grad_fn=<MulBackward0>)
Epoch: 24, loss: 0.60825, train_acc: 0.78
weight adjusted tensor(0., dtype=torch.float64, grad_fn=<MulBackward0>)
Epoch: 25, loss: 0.60300, train_acc: 0.79
Finished Training
precision recall f1-score support
0 0.59 0.49 0.54 132
1 0.52 0.62 0.57 118
accuracy 0.55 250
macro avg 0.56 0.56 0.55 250
weighted avg 0.56 0.55 0.55 250
input_torch torch.Size([750, 100])
sparsemans loss -1.1092659447205742
Epoch: 1, loss: -0.41605, train_acc: 0.50
input_torch torch.Size([750, 100])
sparsemans loss -0.3770598301522397
Epoch: 2, loss: 0.31556, train_acc: 0.51
input_torch torch.Size([750, 100])
sparsemans loss 0.429205224644936
Epoch: 3, loss: 1.12010, train_acc: 0.51
input_torch torch.Size([750, 100])
sparsemans loss 0.4265257078599068
Epoch: 4, loss: 1.11620, train_acc: 0.59
input_torch torch.Size([750, 100])
sparsemans loss 0.2663758657007368
Epoch: 5, loss: 0.95453, train_acc: 0.58
input_torch torch.Size([750, 100])
sparsemans loss 0.10371847248855112
Epoch: 6, loss: 0.78941, train_acc: 0.61
input_torch torch.Size([750, 100])
sparsemans loss 0.019875025101317535
Epoch: 7, loss: 0.70236, train_acc: 0.59
input_torch torch.Size([750, 100])
sparsemans loss 0.00010328892077861262
Epoch: 8, loss: 0.67855, train_acc: 0.59
input_torch torch.Size([750, 100])
sparsemans loss 1.1477823909106558e-06
Epoch: 9, loss: 0.67243, train_acc: 0.61
input_torch torch.Size([750, 100])
sparsemans loss 2.636733248991266e-12
Epoch: 10, loss: 0.66319, train_acc: 0.62
input_torch torch.Size([750, 100])
sparsemans loss 5.893414950786862e-24
Epoch: 11, loss: 0.64965, train_acc: 0.67
input_torch torch.Size([750, 100])
sparsemans loss 5.554443605299215e-47
Epoch: 12, loss: 0.62486, train_acc: 0.69
input_torch torch.Size([750, 100])
sparsemans loss 2.3360977613192538e-93
Epoch: 13, loss: 0.65211, train_acc: 0.67
input_torch torch.Size([750, 100])
sparsemans loss 1.1997514727082994e-183
Epoch: 14, loss: 1.35143, train_acc: 0.57
input_torch torch.Size([750, 100])
sparsemans loss 0.0
Epoch: 15, loss: 0.60269, train_acc: 0.71
input_torch torch.Size([750, 100])
sparsemans loss 0.0
Epoch: 16, loss: 0.72200, train_acc: 0.54
input_torch torch.Size([750, 100])
sparsemans loss 0.0
Epoch: 17, loss: 0.66360, train_acc: 0.53
input_torch torch.Size([750, 100])
sparsemans loss 0.0
Epoch: 18, loss: 0.63547, train_acc: 0.54
input_torch torch.Size([750, 100])
sparsemans loss 0.0
Epoch: 19, loss: 0.62914, train_acc: 0.55
input_torch torch.Size([750, 100])
sparsemans loss 0.0
Epoch: 20, loss: 0.62807, train_acc: 0.57
input_torch torch.Size([750, 100])
sparsemans loss 0.0
Epoch: 21, loss: 0.62827, train_acc: 0.59
input_torch torch.Size([750, 100])
sparsemans loss 0.0
Epoch: 22, loss: 0.62869, train_acc: 0.63
input_torch torch.Size([750, 100])
sparsemans loss 0.0
Epoch: 23, loss: 0.62900, train_acc: 0.66
input_torch torch.Size([750, 100])
sparsemans loss 0.0
Epoch: 24, loss: 0.62911, train_acc: 0.70
input_torch torch.Size([750, 100])
sparsemans loss 0.0
Epoch: 25, loss: 0.62897, train_acc: 0.73
Finished Training
precision recall f1-score support
0 0.64 0.22 0.33 132
1 0.50 0.86 0.63 118
accuracy 0.52 250
macro avg 0.57 0.54 0.48 250
weighted avg 0.58 0.52 0.47 250
weight adjusted tensor(0.0296, dtype=torch.float64, grad_fn=<MulBackward0>)
Epoch: 1, loss: 0.66343, train_acc: 0.51
weight adjusted tensor(0.0281, dtype=torch.float64, grad_fn=<MulBackward0>)
Epoch: 2, loss: 0.66390, train_acc: 0.54
weight adjusted tensor(0.0253, dtype=torch.float64, grad_fn=<MulBackward0>)
Epoch: 3, loss: 0.66505, train_acc: 0.55
weight adjusted tensor(0.0206, dtype=torch.float64, grad_fn=<MulBackward0>)
Epoch: 4, loss: 0.66834, train_acc: 0.53
weight adjusted tensor(0.0137, dtype=torch.float64, grad_fn=<MulBackward0>)
Epoch: 5, loss: 0.67294, train_acc: 0.57
weight adjusted tensor(0.0060, dtype=torch.float64, grad_fn=<MulBackward0>)
Epoch: 6, loss: 0.67766, train_acc: 0.59
weight adjusted tensor(0.0012, dtype=torch.float64, grad_fn=<MulBackward0>)
Epoch: 7, loss: 0.67849, train_acc: 0.62
weight adjusted tensor(4.3808e-05, dtype=torch.float64, grad_fn=<MulBackward0>)
Epoch: 8, loss: 0.67334, train_acc: 0.62
weight adjusted tensor(6.1662e-08, dtype=torch.float64, grad_fn=<MulBackward0>)
Epoch: 9, loss: 0.66426, train_acc: 0.61
weight adjusted tensor(1.2219e-13, dtype=torch.float64, grad_fn=<MulBackward0>)
Epoch: 10, loss: 0.64979, train_acc: 0.64
weight adjusted tensor(4.7966e-25, dtype=torch.float64, grad_fn=<MulBackward0>)
Epoch: 11, loss: 0.62728, train_acc: 0.68
weight adjusted tensor(7.3954e-48, dtype=torch.float64, grad_fn=<MulBackward0>)
Epoch: 12, loss: 0.60337, train_acc: 0.67
weight adjusted tensor(1.7647e-93, dtype=torch.float64, grad_fn=<MulBackward0>)
Epoch: 13, loss: 0.81038, train_acc: 0.67
weight adjusted tensor(1.0051e-184, dtype=torch.float64, grad_fn=<MulBackward0>)
Epoch: 14, loss: 0.59735, train_acc: 0.63
weight adjusted tensor(0., dtype=torch.float64, grad_fn=<MulBackward0>)
Epoch: 15, loss: 0.61907, train_acc: 0.60
weight adjusted tensor(0., dtype=torch.float64, grad_fn=<MulBackward0>)
Epoch: 16, loss: 0.61038, train_acc: 0.61
weight adjusted tensor(0., dtype=torch.float64, grad_fn=<MulBackward0>)
Epoch: 17, loss: 0.60856, train_acc: 0.64
weight adjusted tensor(0., dtype=torch.float64, grad_fn=<MulBackward0>)
Epoch: 18, loss: 0.60861, train_acc: 0.68
weight adjusted tensor(0., dtype=torch.float64, grad_fn=<MulBackward0>)
Epoch: 19, loss: 0.60875, train_acc: 0.72
weight adjusted tensor(0., dtype=torch.float64, grad_fn=<MulBackward0>)
Epoch: 20, loss: 0.60844, train_acc: 0.75
weight adjusted tensor(0., dtype=torch.float64, grad_fn=<MulBackward0>)
Epoch: 21, loss: 0.60742, train_acc: 0.77
weight adjusted tensor(0., dtype=torch.float64, grad_fn=<MulBackward0>)
Epoch: 22, loss: 0.60550, train_acc: 0.79
weight adjusted tensor(0., dtype=torch.float64, grad_fn=<MulBackward0>)
Epoch: 23, loss: 0.60242, train_acc: 0.79
weight adjusted tensor(0., dtype=torch.float64, grad_fn=<MulBackward0>)
Epoch: 24, loss: 0.59792, train_acc: 0.80
weight adjusted tensor(0., dtype=torch.float64, grad_fn=<MulBackward0>)
Epoch: 25, loss: 0.59166, train_acc: 0.81
Finished Training
precision recall f1-score support
0 0.63 0.59 0.61 132
1 0.57 0.61 0.59 118
accuracy 0.60 250
macro avg 0.60 0.60 0.60 250
weighted avg 0.60 0.60 0.60 250
sparsemans loss -0.11676483628637624
word analogy weight adjusted tensor(2.9565, dtype=torch.float64, grad_fn=<MulBackward0>)
Epoch: 1, loss: -2.38006, train_acc: 0.49
sparsemans loss 0.15964030462461778
word analogy weight adjusted tensor(2.8077, dtype=torch.float64, grad_fn=<MulBackward0>)
Epoch: 2, loss: -1.95541, train_acc: 0.51
sparsemans loss 0.03400193938074211
word analogy weight adjusted tensor(2.5341, dtype=torch.float64, grad_fn=<MulBackward0>)
Epoch: 3, loss: -1.80907, train_acc: 0.51
sparsemans loss 0.02959458757821494
word analogy weight adjusted tensor(2.0647, dtype=torch.float64, grad_fn=<MulBackward0>)
Epoch: 4, loss: -1.34539, train_acc: 0.57
sparsemans loss 0.02745021254745301
word analogy weight adjusted tensor(1.3699, dtype=torch.float64, grad_fn=<MulBackward0>)
Epoch: 5, loss: -0.65409, train_acc: 0.59
sparsemans loss 0.022335816241085098
word analogy weight adjusted tensor(0.6027, dtype=torch.float64, grad_fn=<MulBackward0>)
Epoch: 6, loss: 0.10591, train_acc: 0.62
sparsemans loss 0.029431296170194684
word analogy weight adjusted tensor(0.1165, dtype=torch.float64, grad_fn=<MulBackward0>)
Epoch: 7, loss: 0.59622, train_acc: 0.60
sparsemans loss 0.03624941211345431
word analogy weight adjusted tensor(0.0044, dtype=torch.float64, grad_fn=<MulBackward0>)
Epoch: 8, loss: 0.71135, train_acc: 0.61
sparsemans loss 0.05574167702241284
word analogy weight adjusted tensor(6.1561e-06, dtype=torch.float64, grad_fn=<MulBackward0>)
Epoch: 9, loss: 0.73013, train_acc: 0.60
sparsemans loss 0.14927925773597547
word analogy weight adjusted tensor(1.2201e-11, dtype=torch.float64, grad_fn=<MulBackward0>)
Epoch: 10, loss: 0.81607, train_acc: 0.62
sparsemans loss 0.23260332760739572
word analogy weight adjusted tensor(4.7901e-23, dtype=torch.float64, grad_fn=<MulBackward0>)
Epoch: 11, loss: 0.88774, train_acc: 0.66
sparsemans loss 0.22488187463391734
word analogy weight adjusted tensor(7.3976e-46, dtype=torch.float64, grad_fn=<MulBackward0>)
Epoch: 12, loss: 0.86257, train_acc: 0.69
sparsemans loss 0.19586583877848093
word analogy weight adjusted tensor(1.7618e-91, dtype=torch.float64, grad_fn=<MulBackward0>)
Epoch: 13, loss: 0.80045, train_acc: 0.71
sparsemans loss 0.14201137008970788
word analogy weight adjusted tensor(1.0035e-182, dtype=torch.float64, grad_fn=<MulBackward0>)
Epoch: 14, loss: 0.85264, train_acc: 0.64
sparsemans loss 0.18715816556643425
word analogy weight adjusted tensor(0., dtype=torch.float64, grad_fn=<MulBackward0>)
Epoch: 15, loss: 1.23521, train_acc: 0.61
sparsemans loss 0.19228846090755972
word analogy weight adjusted tensor(0., dtype=torch.float64, grad_fn=<MulBackward0>)
Epoch: 16, loss: 0.79396, train_acc: 0.72
sparsemans loss 0.19505029320309955
word analogy weight adjusted tensor(0., dtype=torch.float64, grad_fn=<MulBackward0>)
Epoch: 17, loss: 0.76849, train_acc: 0.75
sparsemans loss 0.18916702965310841
word analogy weight adjusted tensor(0., dtype=torch.float64, grad_fn=<MulBackward0>)
Epoch: 18, loss: 0.77670, train_acc: 0.74
sparsemans loss 0.17962427686461513
word analogy weight adjusted tensor(0., dtype=torch.float64, grad_fn=<MulBackward0>)
Epoch: 19, loss: 0.77642, train_acc: 0.71
sparsemans loss 0.18855693380512878
word analogy weight adjusted tensor(0., dtype=torch.float64, grad_fn=<MulBackward0>)
Epoch: 20, loss: 0.79084, train_acc: 0.68
sparsemans loss 0.1672695770443027
word analogy weight adjusted tensor(0., dtype=torch.float64, grad_fn=<MulBackward0>)
Epoch: 21, loss: 0.77247, train_acc: 0.66
sparsemans loss 0.14512696952028667
word analogy weight adjusted tensor(0., dtype=torch.float64, grad_fn=<MulBackward0>)
Epoch: 22, loss: 0.75135, train_acc: 0.64
sparsemans loss 0.14516360193442518
word analogy weight adjusted tensor(0., dtype=torch.float64, grad_fn=<MulBackward0>)
Epoch: 23, loss: 0.75087, train_acc: 0.63
sparsemans loss 0.15083040680116017
word analogy weight adjusted tensor(0., dtype=torch.float64, grad_fn=<MulBackward0>)
Epoch: 24, loss: 0.75472, train_acc: 0.62
sparsemans loss 0.13924540922962095
word analogy weight adjusted tensor(0., dtype=torch.float64, grad_fn=<MulBackward0>)
Epoch: 25, loss: 0.74012, train_acc: 0.63
Finished Training
precision recall f1-score support
0 0.90 0.07 0.13 132
1 0.49 0.99 0.65 118
accuracy 0.50 250
macro avg 0.69 0.53 0.39 250
weighted avg 0.71 0.50 0.38 250
test_pad.shape: 250
test_pad[0].shape: 100
weight adjusted tensor(52.5325, dtype=torch.float64, grad_fn=<MulBackward0>)
Epoch: 1, loss: 0.69619, train_acc: 0.49
weight adjusted tensor(49.9064, dtype=torch.float64, grad_fn=<MulBackward0>)
Epoch: 2, loss: 0.69598, train_acc: 0.51
weight adjusted tensor(45.0451, dtype=torch.float64, grad_fn=<MulBackward0>)
Epoch: 3, loss: 0.69393, train_acc: 0.51
weight adjusted tensor(36.6934, dtype=torch.float64, grad_fn=<MulBackward0>)
Epoch: 4, loss: 0.69185, train_acc: 0.52
weight adjusted tensor(24.3457, dtype=torch.float64, grad_fn=<MulBackward0>)
Epoch: 5, loss: 0.69204, train_acc: 0.56
weight adjusted tensor(10.7163, dtype=torch.float64, grad_fn=<MulBackward0>)
Epoch: 6, loss: 0.69227, train_acc: 0.49
weight adjusted tensor(2.0760, dtype=torch.float64, grad_fn=<MulBackward0>)
Epoch: 7, loss: 0.69149, train_acc: 0.53
weight adjusted tensor(0.0779, dtype=torch.float64, grad_fn=<MulBackward0>)
Epoch: 8, loss: 0.69030, train_acc: 0.51
weight adjusted tensor(0.0001, dtype=torch.float64, grad_fn=<MulBackward0>)
Epoch: 9, loss: 0.68932, train_acc: 0.52
weight adjusted tensor(2.1750e-10, dtype=torch.float64, grad_fn=<MulBackward0>)
Epoch: 10, loss: 0.68866, train_acc: 0.59
weight adjusted tensor(8.5500e-22, dtype=torch.float64, grad_fn=<MulBackward0>)
Epoch: 11, loss: 0.68794, train_acc: 0.51
weight adjusted tensor(1.3212e-44, dtype=torch.float64, grad_fn=<MulBackward0>)
Epoch: 12, loss: 0.68672, train_acc: 0.51
weight adjusted tensor(3.1544e-90, dtype=torch.float64, grad_fn=<MulBackward0>)
Epoch: 13, loss: 0.68488, train_acc: 0.55
weight adjusted tensor(1.7982e-181, dtype=torch.float64, grad_fn=<MulBackward0>)
Epoch: 14, loss: 0.68262, train_acc: 0.72
weight adjusted tensor(0., dtype=torch.float64, grad_fn=<MulBackward0>)
Epoch: 15, loss: 0.68010, train_acc: 0.58
weight adjusted tensor(0., dtype=torch.float64, grad_fn=<MulBackward0>)
Epoch: 16, loss: 0.67707, train_acc: 0.63
weight adjusted tensor(0., dtype=torch.float64, grad_fn=<MulBackward0>)
Epoch: 17, loss: 0.67282, train_acc: 0.67
weight adjusted tensor(0., dtype=torch.float64, grad_fn=<MulBackward0>)
Epoch: 18, loss: 0.66673, train_acc: 0.66
weight adjusted tensor(0., dtype=torch.float64, grad_fn=<MulBackward0>)
Epoch: 19, loss: 0.65885, train_acc: 0.71
weight adjusted tensor(0., dtype=torch.float64, grad_fn=<MulBackward0>)
Epoch: 20, loss: 0.64858, train_acc: 0.73
weight adjusted tensor(0., dtype=torch.float64, grad_fn=<MulBackward0>)
Epoch: 21, loss: 0.63175, train_acc: 0.79
weight adjusted tensor(0., dtype=torch.float64, grad_fn=<MulBackward0>)
Epoch: 22, loss: 0.61009, train_acc: 0.81
weight adjusted tensor(0., dtype=torch.float64, grad_fn=<MulBackward0>)
Epoch: 23, loss: 0.59644, train_acc: 0.76
weight adjusted tensor(0., dtype=torch.float64, grad_fn=<MulBackward0>)
Epoch: 24, loss: 0.61144, train_acc: 0.54
weight adjusted tensor(0., dtype=torch.float64, grad_fn=<MulBackward0>)
Epoch: 25, loss: 0.53213, train_acc: 0.87
Finished Training
D:\Anaconda\exe\lib\site-packages\sklearn\metrics\_classification.py:1318: UndefinedMetricWarning: Precision and F-score are ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.
_warn_prf(average, modifier, msg_start, len(result))
D:\Anaconda\exe\lib\site-packages\sklearn\metrics\_classification.py:1318: UndefinedMetricWarning: Precision and F-score are ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.
_warn_prf(average, modifier, msg_start, len(result))
D:\Anaconda\exe\lib\site-packages\sklearn\metrics\_classification.py:1318: UndefinedMetricWarning: Precision and F-score are ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.
_warn_prf(average, modifier, msg_start, len(result))
precision recall f1-score support
0 0.00 0.00 0.00 132
1 0.47 1.00 0.64 118
accuracy 0.47 250
macro avg 0.24 0.50 0.32 250
weighted avg 0.22 0.47 0.30 250
input_torch torch.Size([750, 100])
sparsemans loss -1.4233990069845313
Epoch: 1, loss: -0.73013, train_acc: 0.49
input_torch torch.Size([750, 100])
sparsemans loss -1.3551573934006915
Epoch: 2, loss: -0.65337, train_acc: 0.51
input_torch torch.Size([750, 100])
sparsemans loss -1.221505516055852
Epoch: 3, loss: -0.52872, train_acc: 0.51
input_torch torch.Size([750, 100])
sparsemans loss -0.9854291647991537
Epoch: 4, loss: -0.29260, train_acc: 0.49
input_torch torch.Size([750, 100])
sparsemans loss -0.651895087124373
Epoch: 5, loss: 0.04283, train_acc: 0.49
input_torch torch.Size([750, 100])
sparsemans loss -0.2867099664406636
Epoch: 6, loss: 0.40691, train_acc: 0.49
input_torch torch.Size([750, 100])
sparsemans loss -0.05568045381140377
Epoch: 7, loss: 0.63582, train_acc: 0.52
input_torch torch.Size([750, 100])
sparsemans loss -0.0020890952432272483
Epoch: 8, loss: 0.68800, train_acc: 0.52
input_torch torch.Size([750, 100])
sparsemans loss -2.921156474079242e-06
Epoch: 9, loss: 0.68972, train_acc: 0.51
input_torch torch.Size([750, 100])
sparsemans loss -5.804555903695825e-12
Epoch: 10, loss: 0.68973, train_acc: 0.51
input_torch torch.Size([750, 100])
sparsemans loss -2.2949586673190082e-23
Epoch: 11, loss: 0.68923, train_acc: 0.51
input_torch torch.Size([750, 100])
sparsemans loss -3.537885793660971e-46
Epoch: 12, loss: 0.68801, train_acc: 0.51
input_torch torch.Size([750, 100])
sparsemans loss -8.463433505058134e-92
Epoch: 13, loss: 0.68637, train_acc: 0.51
input_torch torch.Size([750, 100])
sparsemans loss -4.808593431088358e-183
Epoch: 14, loss: 0.68468, train_acc: 0.71
input_torch torch.Size([750, 100])
sparsemans loss -0.0
Epoch: 15, loss: 0.68306, train_acc: 0.60
input_torch torch.Size([750, 100])
sparsemans loss -0.0
Epoch: 16, loss: 0.68129, train_acc: 0.61
input_torch torch.Size([750, 100])
sparsemans loss -0.0
Epoch: 17, loss: 0.67897, train_acc: 0.68
input_torch torch.Size([750, 100])
sparsemans loss -0.0
Epoch: 18, loss: 0.67566, train_acc: 0.68
input_torch torch.Size([750, 100])
sparsemans loss -0.0
Epoch: 19, loss: 0.67112, train_acc: 0.61
input_torch torch.Size([750, 100])
sparsemans loss -0.0
Epoch: 20, loss: 0.66547, train_acc: 0.65
input_torch torch.Size([750, 100])
sparsemans loss -0.0
Epoch: 21, loss: 0.65878, train_acc: 0.71
input_torch torch.Size([750, 100])
sparsemans loss -0.0
Epoch: 22, loss: 0.64943, train_acc: 0.73
input_torch torch.Size([750, 100])
sparsemans loss -0.0
Epoch: 23, loss: 0.63480, train_acc: 0.75
input_torch torch.Size([750, 100])
sparsemans loss -0.0
Epoch: 24, loss: 0.61618, train_acc: 0.81
input_torch torch.Size([750, 100])
sparsemans loss -0.0
Epoch: 25, loss: 0.58506, train_acc: 0.84
Finished Training
precision recall f1-score support
0 0.69 0.19 0.30 132
1 0.50 0.91 0.64 118
accuracy 0.53 250
macro avg 0.60 0.55 0.47 250
weighted avg 0.60 0.53 0.46 250
weight adjusted tensor(0.5253, dtype=torch.float64, grad_fn=<MulBackward0>)
Epoch: 1, loss: 0.16783, train_acc: 0.51
weight adjusted tensor(0.4991, dtype=torch.float64, grad_fn=<MulBackward0>)
Epoch: 2, loss: 0.19409, train_acc: 0.51
weight adjusted tensor(0.4503, dtype=torch.float64, grad_fn=<MulBackward0>)
Epoch: 3, loss: 0.24687, train_acc: 0.51
weight adjusted tensor(0.3667, dtype=torch.float64, grad_fn=<MulBackward0>)
Epoch: 4, loss: 0.32545, train_acc: 0.52
weight adjusted tensor(0.2433, dtype=torch.float64, grad_fn=<MulBackward0>)
Epoch: 5, loss: 0.44858, train_acc: 0.52
weight adjusted tensor(0.1071, dtype=torch.float64, grad_fn=<MulBackward0>)
Epoch: 6, loss: 0.58538, train_acc: 0.49
weight adjusted tensor(0.0207, dtype=torch.float64, grad_fn=<MulBackward0>)
Epoch: 7, loss: 0.67030, train_acc: 0.51
weight adjusted tensor(0.0008, dtype=torch.float64, grad_fn=<MulBackward0>)
Epoch: 8, loss: 0.68865, train_acc: 0.57
weight adjusted tensor(1.0951e-06, dtype=torch.float64, grad_fn=<MulBackward0>)
Epoch: 9, loss: 0.68868, train_acc: 0.51
weight adjusted tensor(2.1709e-12, dtype=torch.float64, grad_fn=<MulBackward0>)
Epoch: 10, loss: 0.68825, train_acc: 0.51
weight adjusted tensor(8.5327e-24, dtype=torch.float64, grad_fn=<MulBackward0>)
Epoch: 11, loss: 0.68706, train_acc: 0.51
weight adjusted tensor(1.3183e-46, dtype=torch.float64, grad_fn=<MulBackward0>)
Epoch: 12, loss: 0.68490, train_acc: 0.51
weight adjusted tensor(3.1473e-92, dtype=torch.float64, grad_fn=<MulBackward0>)
Epoch: 13, loss: 0.68230, train_acc: 0.61
weight adjusted tensor(1.7939e-183, dtype=torch.float64, grad_fn=<MulBackward0>)
Epoch: 14, loss: 0.67971, train_acc: 0.74
weight adjusted tensor(0., dtype=torch.float64, grad_fn=<MulBackward0>)
Epoch: 15, loss: 0.67660, train_acc: 0.68
weight adjusted tensor(0., dtype=torch.float64, grad_fn=<MulBackward0>)
Epoch: 16, loss: 0.67164, train_acc: 0.70
weight adjusted tensor(0., dtype=torch.float64, grad_fn=<MulBackward0>)
Epoch: 17, loss: 0.66433, train_acc: 0.73
weight adjusted tensor(0., dtype=torch.float64, grad_fn=<MulBackward0>)
Epoch: 18, loss: 0.65544, train_acc: 0.75
weight adjusted tensor(0., dtype=torch.float64, grad_fn=<MulBackward0>)
Epoch: 19, loss: 0.64184, train_acc: 0.76
weight adjusted tensor(0., dtype=torch.float64, grad_fn=<MulBackward0>)
Epoch: 20, loss: 0.62036, train_acc: 0.77
weight adjusted tensor(0., dtype=torch.float64, grad_fn=<MulBackward0>)
Epoch: 21, loss: 0.57994, train_acc: 0.83
weight adjusted tensor(0., dtype=torch.float64, grad_fn=<MulBackward0>)
Epoch: 22, loss: 0.76919, train_acc: 0.51
weight adjusted tensor(0., dtype=torch.float64, grad_fn=<MulBackward0>)
Epoch: 23, loss: 0.86012, train_acc: 0.55
weight adjusted tensor(0., dtype=torch.float64, grad_fn=<MulBackward0>)
Epoch: 24, loss: 0.54825, train_acc: 0.93
weight adjusted tensor(0., dtype=torch.float64, grad_fn=<MulBackward0>)
Epoch: 25, loss: 0.58000, train_acc: 0.68
Finished Training
D:\Anaconda\exe\lib\site-packages\sklearn\metrics\_classification.py:1318: UndefinedMetricWarning: Precision and F-score are ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.
_warn_prf(average, modifier, msg_start, len(result))
D:\Anaconda\exe\lib\site-packages\sklearn\metrics\_classification.py:1318: UndefinedMetricWarning: Precision and F-score are ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.
_warn_prf(average, modifier, msg_start, len(result))
D:\Anaconda\exe\lib\site-packages\sklearn\metrics\_classification.py:1318: UndefinedMetricWarning: Precision and F-score are ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.
_warn_prf(average, modifier, msg_start, len(result))
precision recall f1-score support
0 0.00 0.00 0.00 132
1 0.47 1.00 0.64 118
accuracy 0.47 250
macro avg 0.24 0.50 0.32 250
weighted avg 0.22 0.47 0.30 250
sparsemans loss -0.14983147441942435
word analogy weight adjusted tensor(52.5325, dtype=torch.float64, grad_fn=<MulBackward0>)
Epoch: 1, loss: -51.98676, train_acc: 0.49
sparsemans loss -0.14986634288541748
word analogy weight adjusted tensor(49.9053, dtype=torch.float64, grad_fn=<MulBackward0>)
Epoch: 2, loss: -49.35904, train_acc: 0.51
sparsemans loss -0.15018870643105686
word analogy weight adjusted tensor(45.0423, dtype=torch.float64, grad_fn=<MulBackward0>)
Epoch: 3, loss: -44.49876, train_acc: 0.51
sparsemans loss -0.15013900896687488
word analogy weight adjusted tensor(36.6899, dtype=torch.float64, grad_fn=<MulBackward0>)
Epoch: 4, loss: -36.14827, train_acc: 0.51
sparsemans loss -0.1485689440985761
word analogy weight adjusted tensor(24.3424, dtype=torch.float64, grad_fn=<MulBackward0>)
Epoch: 5, loss: -23.79892, train_acc: 0.55
sparsemans loss -0.14913028932998318
word analogy weight adjusted tensor(10.7141, dtype=torch.float64, grad_fn=<MulBackward0>)
Epoch: 6, loss: -10.17097, train_acc: 0.49
sparsemans loss -0.14955853906152553
word analogy weight adjusted tensor(2.0755, dtype=torch.float64, grad_fn=<MulBackward0>)
Epoch: 7, loss: -1.53360, train_acc: 0.53
sparsemans loss -0.14969744106874588
word analogy weight adjusted tensor(0.0779, dtype=torch.float64, grad_fn=<MulBackward0>)
Epoch: 8, loss: 0.46270, train_acc: 0.52
sparsemans loss -0.1491430629373602
word analogy weight adjusted tensor(0.0001, dtype=torch.float64, grad_fn=<MulBackward0>)
Epoch: 9, loss: 0.54009, train_acc: 0.52
sparsemans loss -0.14847357777127262
word analogy weight adjusted tensor(2.1741e-10, dtype=torch.float64, grad_fn=<MulBackward0>)
Epoch: 10, loss: 0.54024, train_acc: 0.55
sparsemans loss -0.14800733942061298
word analogy weight adjusted tensor(8.5462e-22, dtype=torch.float64, grad_fn=<MulBackward0>)
Epoch: 11, loss: 0.54002, train_acc: 0.51
sparsemans loss -0.14887972934252472
word analogy weight adjusted tensor(1.3205e-44, dtype=torch.float64, grad_fn=<MulBackward0>)
Epoch: 12, loss: 0.53795, train_acc: 0.51
sparsemans loss -0.14830583525315352
word analogy weight adjusted tensor(3.1528e-90, dtype=torch.float64, grad_fn=<MulBackward0>)
Epoch: 13, loss: 0.53672, train_acc: 0.55
sparsemans loss -0.1486748600953907
word analogy weight adjusted tensor(1.7972e-181, dtype=torch.float64, grad_fn=<MulBackward0>)
Epoch: 14, loss: 0.53413, train_acc: 0.71
sparsemans loss -0.14908405383639609
word analogy weight adjusted tensor(0., dtype=torch.float64, grad_fn=<MulBackward0>)
Epoch: 15, loss: 0.53122, train_acc: 0.54
sparsemans loss -0.1490821158956847
word analogy weight adjusted tensor(0., dtype=torch.float64, grad_fn=<MulBackward0>)
Epoch: 16, loss: 0.52822, train_acc: 0.61
sparsemans loss -0.1490999365333161
word analogy weight adjusted tensor(0., dtype=torch.float64, grad_fn=<MulBackward0>)
Epoch: 17, loss: 0.52400, train_acc: 0.65
sparsemans loss -0.14926646249201447
word analogy weight adjusted tensor(0., dtype=torch.float64, grad_fn=<MulBackward0>)
Epoch: 18, loss: 0.51775, train_acc: 0.59
sparsemans loss -0.14963853799774782
word analogy weight adjusted tensor(0., dtype=torch.float64, grad_fn=<MulBackward0>)
Epoch: 19, loss: 0.50961, train_acc: 0.63
sparsemans loss -0.14873546467971316
word analogy weight adjusted tensor(0., dtype=torch.float64, grad_fn=<MulBackward0>)
Epoch: 20, loss: 0.50020, train_acc: 0.66
sparsemans loss -0.1484530811398529
word analogy weight adjusted tensor(0., dtype=torch.float64, grad_fn=<MulBackward0>)
Epoch: 21, loss: 0.48412, train_acc: 0.74
sparsemans loss -0.14823188954886
word analogy weight adjusted tensor(0., dtype=torch.float64, grad_fn=<MulBackward0>)
Epoch: 22, loss: 0.46148, train_acc: 0.77
sparsemans loss -0.14386069675335694
word analogy weight adjusted tensor(0., dtype=torch.float64, grad_fn=<MulBackward0>)
Epoch: 23, loss: 0.80224, train_acc: 0.67
sparsemans loss -0.14329881361574962
word analogy weight adjusted tensor(0., dtype=torch.float64, grad_fn=<MulBackward0>)
Epoch: 24, loss: 0.48317, train_acc: 0.55
sparsemans loss -0.14017227967807055
word analogy weight adjusted tensor(0., dtype=torch.float64, grad_fn=<MulBackward0>)
Epoch: 25, loss: 0.46428, train_acc: 0.57
Finished Training
precision recall f1-score support
0 0.58 0.88 0.70 132
1 0.67 0.28 0.40 118
accuracy 0.60 250
macro avg 0.63 0.58 0.55 250
weighted avg 0.62 0.60 0.55 250
test_pad.shape: 250
test_pad[0].shape: 100
weight adjusted tensor(22.2510, dtype=torch.float64, grad_fn=<MulBackward0>)
Epoch: 1, loss: 0.69403, train_acc: 0.49
weight adjusted tensor(21.1356, dtype=torch.float64, grad_fn=<MulBackward0>)
Epoch: 2, loss: 0.69362, train_acc: 0.51
weight adjusted tensor(19.0743, dtype=torch.float64, grad_fn=<MulBackward0>)
Epoch: 3, loss: 0.69236, train_acc: 0.51
weight adjusted tensor(15.5362, dtype=torch.float64, grad_fn=<MulBackward0>)
Epoch: 4, loss: 0.69104, train_acc: 0.56
weight adjusted tensor(10.3070, dtype=torch.float64, grad_fn=<MulBackward0>)
Epoch: 5, loss: 0.69054, train_acc: 0.52
weight adjusted tensor(4.5363, dtype=torch.float64, grad_fn=<MulBackward0>)
Epoch: 6, loss: 0.68977, train_acc: 0.55
weight adjusted tensor(0.8787, dtype=torch.float64, grad_fn=<MulBackward0>)
Epoch: 7, loss: 0.68827, train_acc: 0.52
weight adjusted tensor(0.0330, dtype=torch.float64, grad_fn=<MulBackward0>)
Epoch: 8, loss: 0.68634, train_acc: 0.55
weight adjusted tensor(4.6426e-05, dtype=torch.float64, grad_fn=<MulBackward0>)
Epoch: 9, loss: 0.68425, train_acc: 0.59
weight adjusted tensor(9.2052e-11, dtype=torch.float64, grad_fn=<MulBackward0>)
Epoch: 10, loss: 0.68157, train_acc: 0.59