Skip to content

Latest commit

 

History

History
136 lines (118 loc) · 8.28 KB

README.md

File metadata and controls

136 lines (118 loc) · 8.28 KB

End-to-End Emotion-Cause Pair Extraction based on SlidingWindow Multi-Label Learning

This repository contains the code for our EMNLP 2020 paper:

Zixiang Ding, Rui Xia, Jianfei Yu. End-to-End Emotion-Cause Pair Extraction based on SlidingWindow Multi-Label Learning. EMNLP 2020.

Please cite our paper if you use this code.

Dependencies

Usage

python main.py

Results

Experimental results under two different data split setttings:

  • 10-fold cross-validation, following NUSTM/ECPE (already reported in our paper)
Approach Emotion-Cause Pair Ext. Emotion Ext. Cause Ext.
P R F1 P R F1 P R F1
ECPE-MLL(ISML) 0.7090 0.6441 0.6740 0.8582 0.8429 0.8500 0.7248 0.6702 0.6950
ECPE-MLL(BERT) 0.7700 0.7235 0.7452 0.8608 0.9191 0.8886 0.7382 0.7912 0.7630
  • Randomly sampling train/validation/test sets with 8:1:1 proportion 20 times, following HLT-HITSZ/TransECPE
Approach Emotion-Cause Pair Ext. Emotion Ext. Cause Ext.
P R F1 P R F1 P R F1
ECPE-MLL(ISML) 0.6725 0.6248 0.6471 0.8415 0.8212 0.8310 0.6864 0.6443 0.6639
ECPE-MLL(BERT) 0.7488 0.6976 0.7220 0.8465 0.8990 0.8717 0.7051 0.7704 0.7358