-
Notifications
You must be signed in to change notification settings - Fork 0
/
main.py
510 lines (430 loc) · 27.6 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
# encoding: utf-8
# @author: zxding
# email: d.z.x@qq.com
import numpy as np
import tensorflow as tf
from sklearn.model_selection import KFold
import sys, os, time, pdb
sys.path.append('./bert')
sys.path.append('./utils')
from tf_funcs import *
from prepare_data import *
import modeling, optimization, tokenization
FLAGS = tf.app.flags.FLAGS
# >>>>>>>>>>>>>>>>>>>> For Model <<<<<<<<<<<<<<<<<<<< #
## input struct ##
tf.app.flags.DEFINE_integer('max_sen_len', 30, 'max number of tokens per clause')
tf.app.flags.DEFINE_integer('max_doc_len', 75, 'max number of clauses per document')
tf.app.flags.DEFINE_integer('max_doc_len_bert', 350, 'max number of tokens per document for Bert Model')
## model struct ##
tf.app.flags.DEFINE_integer('model_iter_num', 1, 'iter num of ISML')
tf.app.flags.DEFINE_string('model_type', 'Inter-EC', 'model type: Inter-CE, Inter-EC, ISML, BERT')
tf.app.flags.DEFINE_integer('window_size', 3, 'window_size')
tf.app.flags.DEFINE_integer('n_hidden', 100, 'number of hidden unit')
tf.app.flags.DEFINE_integer('n_class', 2, 'number of distinct class')
# >>>>>>>>>>>>>>>>>>>> For Training <<<<<<<<<<<<<<<<<<<< #
tf.app.flags.DEFINE_integer('start_fold', 1, 'start_fold')
tf.app.flags.DEFINE_integer('end_fold', 11, 'end_fold')
tf.app.flags.DEFINE_string('split', 'split10', 'split type: split10, split20')
tf.app.flags.DEFINE_string('bert_base_dir', '../BERT/chinese_L-12_H-768_A-12/', 'base dir of pretrained bert')
tf.app.flags.DEFINE_integer('batch_size', 8, 'batch size')
tf.app.flags.DEFINE_float('learning_rate', 2e-5, 'learning rate')
tf.app.flags.DEFINE_float('keep_prob1', 0.5, 'keep prob for word embedding')
tf.app.flags.DEFINE_float('keep_prob2', 1.0, 'keep prob for softmax layer')
tf.app.flags.DEFINE_float('l2_reg', 1e-5, 'l2 regularization')
tf.app.flags.DEFINE_float('emo', 1., 'loss weight of emotion ext.')
tf.app.flags.DEFINE_float('cause', 1., 'loss weight of cause ext.')
tf.app.flags.DEFINE_float('pair', 1., 'loss weight of pair ext.')
tf.app.flags.DEFINE_float('threshold', 0.5, 'threshold for pair ext.')
tf.app.flags.DEFINE_integer('training_iter', 20, 'number of training iter') # for Bert
tf.app.flags.DEFINE_string('log_file_name', '', 'name of log file')
def build_subtasks(x_bert, x_mask_bert, x_type_bert, s_idx_bert, x, sen_len, doc_len, is_training):
def get_bert_s(x_bert, x_mask_bert, x_type_bert, s_idx_bert, is_training, feature_mask, scope='bert'):
bert_config = modeling.BertConfig.from_json_file(FLAGS.bert_base_dir + 'bert_config.json')
bert_config.hidden_dropout_prob, bert_config.attention_probs_dropout_prob = 0.1, 0.2
model = modeling.BertModel(
config=bert_config,
is_training=is_training,
input_ids=x_bert,
input_mask=x_mask_bert,
token_type_ids=x_type_bert,
scope=scope)
s_bert, _ = model.get_sequence_output()
# [-1, FLAGS.max_doc_len_bert, n_hidden]
batch_size, n_hidden = tf.shape(s_bert)[0], s_bert.shape[-1].value
index = tf.reshape(tf.range(0, batch_size) * FLAGS.max_doc_len_bert, [batch_size, 1]) + s_idx_bert
index = tf.reshape(index, [-1])
s_bert = tf.gather(tf.reshape(s_bert, [-1, n_hidden]), index) # batch_size * n_hidden
s_bert = tf.reshape(s_bert, [-1, FLAGS.max_doc_len, n_hidden])
# [-1, FLAGS.max_doc_len, n_hidden]
s_bert = s_bert * feature_mask # independent clause representation from bert
s_bert = tf.layers.dense(s_bert, 2 * FLAGS.n_hidden, use_bias=True)
# shape: [-1, FLAGS.max_doc_len, 2 * FLAGS.n_hidden]
return s_bert
def get_s(inputs, sen_len, name):
with tf.name_scope('word_encode'):
inputs = biLSTM(inputs, sen_len, n_hidden=FLAGS.n_hidden, scope='word_layer' + name)
# inputs shape: [-1, FLAGS.max_sen_len, 2 * FLAGS.n_hidden]
with tf.name_scope('word_attention'):
sh2 = 2 * FLAGS.n_hidden
w1 = get_weight_varible('word_att_w1' + name, [sh2, sh2])
b1 = get_weight_varible('word_att_b1' + name, [sh2])
w2 = get_weight_varible('word_att_w2' + name, [sh2, 1])
s = att_var(inputs,sen_len,w1,b1,w2)
s = tf.reshape(s, [-1, FLAGS.max_doc_len, 2 * FLAGS.n_hidden])
return s
def emo_cause_prediction(s_ec, is_training, name):
s1 = tf.nn.dropout(s_ec, keep_prob = is_training * FLAGS.keep_prob2 + (1.-is_training))
s1 = tf.reshape(s1, [-1, 2 * FLAGS.n_hidden])
w_ec = get_weight_varible('softmax_w_'+name, [2 * FLAGS.n_hidden, FLAGS.n_class])
b_ec = get_weight_varible('softmax_b_'+name, [FLAGS.n_class])
pred_ec = tf.nn.softmax(tf.matmul(s1, w_ec) + b_ec)
pred_ec = tf.reshape(pred_ec, [-1, FLAGS.max_doc_len, FLAGS.n_class])
return pred_ec, w_ec, b_ec
cause_list, emo_list, reg = [], [], 0
feature_mask = getmask(doc_len, FLAGS.max_doc_len, [-1, FLAGS.max_doc_len, 1])
if FLAGS.model_type in ['Inter-CE','Inter-EC']:
with tf.name_scope('emotion_prediction'):
s_ec = get_s(x, sen_len, name='word_encode_emotion')
s_emo = biLSTM(s_ec, doc_len, n_hidden=FLAGS.n_hidden, scope='sentence_encode_emotion')
pred_emo, w_emo, b_emo = emo_cause_prediction(s_emo, is_training, name='emotion')
with tf.name_scope('cause_prediction'):
s_ec = get_s(x, sen_len, name='word_encode_cause')
s_ec = tf.concat([s_ec, pred_emo], axis=2) * feature_mask
s_cause = biLSTM(s_ec, doc_len, n_hidden=FLAGS.n_hidden, scope='sentence_encode_cause')
pred_cause, w_cause, b_cause = emo_cause_prediction(s_cause, is_training, name='cause')
emo_list.append(pred_emo)
cause_list.append(pred_cause)
reg += tf.nn.l2_loss(w_emo) + tf.nn.l2_loss(b_emo)
reg += tf.nn.l2_loss(w_cause) + tf.nn.l2_loss(b_cause)
if FLAGS.model_type in ['Inter-CE']:
print('using Inter-CE')
cause_list, emo_list, s_cause, s_emo = emo_list, cause_list, s_emo, s_cause
else:
print('using Inter-EC')
elif FLAGS.model_type in ['ISML']:
print('using ISML')
for i in range(FLAGS.model_iter_num):
s_ec = get_s(x, sen_len, name='word_encode_emotion_'+str(i))
s_ec = tf.concat([s_ec] + cause_list + emo_list, axis=2) * feature_mask
s_emo = biLSTM(s_ec, doc_len, n_hidden=FLAGS.n_hidden, scope='sentence_encode_emotion_' + str(i))
pred_emo, w_emo, b_emo = emo_cause_prediction(s_emo, is_training, name='emotion_'+str(i))
s_ec = get_s(x, sen_len, name='word_encode_cause_'+str(i))
s_ec = tf.concat([s_ec] + cause_list + emo_list, axis=2) * feature_mask
s_cause = biLSTM(s_ec, doc_len, n_hidden=FLAGS.n_hidden, scope='sentence_encode_cause_' + str(i))
pred_cause, w_cause, b_cause = emo_cause_prediction(s_cause, is_training, name='cause_'+str(i))
emo_list.append(pred_emo)
cause_list.append(pred_cause)
reg += tf.nn.l2_loss(w_emo) + tf.nn.l2_loss(b_emo)
reg += tf.nn.l2_loss(w_cause) + tf.nn.l2_loss(b_cause)
else:
print('using BERT')
s_bert = get_bert_s(x_bert, x_mask_bert, x_type_bert, s_idx_bert, is_training, feature_mask, scope="bert_emotion")
s_emo = standard_trans(s_bert, 2 * FLAGS.n_hidden, n_head=1, scope='sentence_encode_emo')
pred_emo, w_emo, b_emo = emo_cause_prediction(s_emo, is_training, name='emotion')
s_cause = standard_trans(s_bert, 2 * FLAGS.n_hidden, n_head=1, scope='sentence_encode_cause')
pred_cause, w_cause, b_cause = emo_cause_prediction(s_cause, is_training, name='cause')
emo_list.append(pred_emo)
cause_list.append(pred_cause)
reg += tf.nn.l2_loss(w_emo) + tf.nn.l2_loss(b_emo)
reg += tf.nn.l2_loss(w_cause) + tf.nn.l2_loss(b_cause)
return emo_list, cause_list, s_emo, s_cause, reg
def build_model(word_embedding, x_bert, x_mask_bert, x_type_bert, s_idx_bert, x, sen_len, doc_len, is_training):
x = tf.nn.embedding_lookup(word_embedding, x)
x = tf.reshape(x, [-1, FLAGS.max_sen_len, 200])
x = tf.nn.dropout(x, keep_prob = is_training * FLAGS.keep_prob1 + (1.-is_training))
sen_len = tf.reshape(sen_len, [-1])
########################################## emotion & cause extraction ############
print('building subtasks')
emo_list, cause_list, s_emo, s_cause, reg = build_subtasks(x_bert, x_mask_bert, x_type_bert, s_idx_bert, x, sen_len, doc_len, is_training)
print('build subtasks Done!')
########################################## emotion-cause pair extraction ############
def pair_prediction(inputs, feature_num, scope="pair_prediction"):
inputs = tf.reshape(inputs, [-1, feature_num])
w_pair = get_weight_varible(scope+'_softmax_w_pair', [feature_num, FLAGS.n_class * (FLAGS.window_size*2+1)])
b_pair = get_weight_varible(scope+'_softmax_b_pair', [FLAGS.n_class * (FLAGS.window_size*2+1)])
s_rc = tf.matmul(inputs, w_pair) + b_pair
pred_pair = tf.nn.softmax(tf.reshape(s_rc, [-1, 2]))
pred_pair = tf.reshape(pred_pair, [-1, FLAGS.max_doc_len * (FLAGS.window_size*2+1), FLAGS.n_class])
reg_tmp = tf.nn.l2_loss(w_pair) + tf.nn.l2_loss(b_pair)
return pred_pair, reg_tmp
pred_pair_row, reg_tmp = pair_prediction(s_emo, FLAGS.n_hidden * 2, scope="pair_row_prediction")
reg += reg_tmp
pred_pair_col, reg_tmp = pair_prediction(s_cause, FLAGS.n_hidden * 2, scope="pair_col_prediction")
reg += reg_tmp
return emo_list, cause_list, pred_pair_row, pred_pair_col, reg
def print_info():
print('\n\n>>>>>>>>>>>>>>>>>>>>MODEL INFO:')
print('model_type {} \nwindow_size {} \nbert_base_dir {} \nmodel_iter_num {}'.format(
FLAGS.model_type, FLAGS.window_size, FLAGS.bert_base_dir, FLAGS.model_iter_num))
print('\n\n>>>>>>>>>>>>>>>>>>>>TRAINING INFO:')
print('batch {} \nlr {} \nkb1 {} \nkb2 {} \nl2_reg {}'.format(
FLAGS.batch_size, FLAGS.learning_rate, FLAGS.keep_prob1, FLAGS.keep_prob2, FLAGS.l2_reg))
print('FLAGS.emo {} \nFLAGS.cause {} \nFLAGS.pair {} \nthreshold {} \ntraining_iter {}\n\n'.format(
FLAGS.emo, FLAGS.cause, FLAGS.pair, FLAGS.threshold, FLAGS.training_iter))
class Dataset(object):
def __init__(self, data_file_name, tokenizer, word_id_mapping):
doc_id, y_emotion, y_cause, y_pair_row, y_pair_col, y_pairs, x_bert, x_mask_bert, x_type_bert, s_idx_bert, x, sen_len, doc_len, pair_left_cnt = load_data_bert_hier(data_file_name, tokenizer, word_id_mapping, FLAGS.max_doc_len, FLAGS.max_sen_len, FLAGS.window_size, FLAGS.max_doc_len_bert)
self.doc_id, self.y_pairs = doc_id, y_pairs
self.y_emotion, self.y_cause, self.y_pair_row, self.y_pair_col, = y_emotion, y_cause, y_pair_row, y_pair_col
self.x_bert, self.x_mask_bert, self.x_type_bert, self.s_idx_bert = x_bert, x_mask_bert, x_type_bert, s_idx_bert
self.x, self.sen_len, self.doc_len = x, sen_len, doc_len
self.pair_left_cnt = pair_left_cnt
def get_batch_data(dataset, is_training, batch_size, test=False):
ds = dataset
for index in batch_index(len(ds.y_cause), batch_size, test):
feed_list = [ds.x_bert[index], ds.x_mask_bert[index], ds.x_type_bert[index], ds.s_idx_bert[index], ds.x[index], ds.sen_len[index], ds.doc_len[index], is_training, ds.y_emotion[index], ds.y_cause[index], ds.y_pair_row[index], ds.y_pair_col[index]]
yield feed_list, len(index)
def run():
if FLAGS.log_file_name:
if not os.path.exists('log'):
os.makedirs('log')
sys.stdout = open('log/'+FLAGS.log_file_name, 'w')
print_time()
tf.reset_default_graph()
# Model Code Block
word_idx_rev, word_id_mapping, word_embedding, _ = load_w2v(embedding_dim=200, embedding_dim_pos=50, data_file_path='data/all_data_pair.txt', embedding_path='data/w2v_200.txt')
word_embedding = tf.constant(word_embedding, dtype=tf.float32, name='word_embedding')
print('build model...')
x_bert = tf.placeholder(tf.int32, [None, FLAGS.max_doc_len_bert]) # for Bert
x_mask_bert = tf.placeholder(tf.int32, [None, FLAGS.max_doc_len_bert]) # for Bert
x_type_bert = tf.placeholder(tf.int32, [None, FLAGS.max_doc_len_bert]) # for Bert
s_idx_bert = tf.placeholder(tf.int32, [None, FLAGS.max_doc_len]) # for Bert
x = tf.placeholder(tf.int32, [None, FLAGS.max_doc_len, FLAGS.max_sen_len])
sen_len = tf.placeholder(tf.int32, [None, FLAGS.max_doc_len])
doc_len = tf.placeholder(tf.int32, [None])
is_training = tf.placeholder(tf.float32)
y_emotion = tf.placeholder(tf.float32, [None, FLAGS.max_doc_len, FLAGS.n_class])
y_cause = tf.placeholder(tf.float32, [None, FLAGS.max_doc_len, FLAGS.n_class])
y_pair_row = tf.placeholder(tf.float32, [None, FLAGS.max_doc_len * (FLAGS.window_size*2+1), FLAGS.n_class])
y_pair_col = tf.placeholder(tf.float32, [None, FLAGS.max_doc_len * (FLAGS.window_size*2+1), FLAGS.n_class])
placeholders = [x_bert, x_mask_bert, x_type_bert, s_idx_bert, x, sen_len, doc_len, is_training, y_emotion, y_cause, y_pair_row, y_pair_col]
emo_list, cause_list, pred_pair_row, pred_pair_col, reg = build_model(word_embedding, x_bert, x_mask_bert, x_type_bert, s_idx_bert, x, sen_len, doc_len, is_training)
print('build model done!\n')
loss_emo, loss_cause = [0.]*2
for i in range(len(emo_list)):
loss_emo += - tf.reduce_sum(y_emotion * tf.log(emo_list[i])) / tf.cast(tf.reduce_sum(y_emotion), dtype=tf.float32)
loss_cause += - tf.reduce_sum(y_cause * tf.log(cause_list[i])) / tf.cast(tf.reduce_sum(y_cause), dtype=tf.float32)
loss_pair = - tf.reduce_sum(y_pair_row * tf.log(pred_pair_row)) / tf.cast(tf.reduce_sum(y_pair_row), dtype=tf.float32)
loss_pair += - tf.reduce_sum(y_pair_col * tf.log(pred_pair_col)) / tf.cast(tf.reduce_sum(y_pair_col), dtype=tf.float32)
loss_op = loss_emo * FLAGS.emo + loss_cause * FLAGS.cause + loss_pair * FLAGS.pair + reg * FLAGS.l2_reg
def get_bert_optimizer(loss_op):
num_train_steps = int(1750 / FLAGS.batch_size * FLAGS.training_iter)
num_warmup_steps = int(num_train_steps * 0.1)
print('\n\nnum_warmup_steps {}\n\n'.format(num_warmup_steps))
optimizer, run_lr = optimization.create_bert_optimizer(loss_op, FLAGS.learning_rate, num_train_steps, num_warmup_steps, False)
return optimizer, run_lr
def init_from_bert_checkpoint():
init_checkpoint = FLAGS.bert_base_dir + 'bert_model.ckpt'
tvars = tf.trainable_variables()
(assignment_map_emotion, initialized_variable_names_emotion) = modeling.get_assignment_map_from_checkpoint(tvars, init_checkpoint, bert_scope='bert_emotion')
(assignment_map_cause, initialized_variable_names_cause) = modeling.get_assignment_map_from_checkpoint(tvars, init_checkpoint, bert_scope='bert_cause')
tf.train.init_from_checkpoint(init_checkpoint, assignment_map_emotion)
tf.train.init_from_checkpoint(init_checkpoint, assignment_map_cause)
# 仅仅只是替换变量的 initializers,后面运行sess.run(tf.global_variables_initializer())时才真正的加载
tf.logging.info("**** Trainable Variables ****")
initialized_variable_names_emotion.update(initialized_variable_names_cause)
initialized_variable_names = initialized_variable_names_emotion
for idx, var in enumerate(tvars):
init_string = ", *INIT_FROM_CKPT*" if var.name in initialized_variable_names else ""
tf.logging.info("var-index %s: name = %s, shape = %s%s", idx, var.name, var.shape, init_string)
def get_bert_tokenizer():
do_lower_case = True
tokenization.validate_case_matches_checkpoint(do_lower_case, FLAGS.bert_base_dir + 'bert_model.ckpt')
return tokenization.FullTokenizer(vocab_file = FLAGS.bert_base_dir + 'vocab.txt', do_lower_case = do_lower_case)
if FLAGS.model_type=='BERT':
optimizer, run_lr_op = get_bert_optimizer(loss_op)
else:
optimizer, run_lr_op = tf.train.AdamOptimizer(learning_rate=FLAGS.learning_rate).minimize(loss_op), tf.constant(FLAGS.learning_rate)
pred_emo, pred_cause = emo_list[-1], cause_list[-1]
true_y_emo_op = tf.argmax(y_emotion, 2)
pred_y_emo_op = tf.argmax(pred_emo, 2)
true_y_cause_op = tf.argmax(y_cause, 2)
pred_y_cause_op = tf.argmax(pred_cause, 2)
# Training Code Block
print_info()
tf_config = tf.ConfigProto()
tf_config.gpu_options.allow_growth = True
with tf.Session(config=tf_config) as sess:
de_emo_cause_list, de_pair_list = [], []
te_emo_cause_list, te_pair_list = [], []
tokenizer = get_bert_tokenizer()
fold = FLAGS.start_fold
while True:
# train for one fold
if fold == FLAGS.end_fold:
break
print('############# fold {} begin ###############'.format(fold))
init_from_bert_checkpoint()
sess.run(tf.global_variables_initializer())
# Data Code Block
train_file_name = 'data/{}/fold{}_train.txt'.format(FLAGS.split, fold)
dev_file_name = 'data/{}/fold{}_valid.txt'.format(FLAGS.split, fold)
test_file_name = 'data/{}/fold{}_test.txt'.format(FLAGS.split, fold)
train_data = Dataset(train_file_name, tokenizer, word_id_mapping)
test_data = Dataset(test_file_name, tokenizer, word_id_mapping)
if FLAGS.split=='split20':
dev_data = Dataset(dev_file_name, tokenizer, word_id_mapping)
else:
dev_data = test_data
print('train docs: {} valid docs: {} test docs: {}'.format(len(train_data.x), len(dev_data.x), len(test_data.x)))
de_emo_cause_max_prf, de_pair_max_prf = [-1.] * 6, [-1.]*15
te_emo_cause_max_prf, te_pair_max_prf = [-1.] * 6, [-1.]*15
tr_row_pair_max_f1 = -1.
for i in xrange(FLAGS.training_iter):
start_time, step = time.time(), 1
batch_eval_inputs = []
def combine_eval_inputs(x):
ret = []
for a in list(x):
ret.extend(list(a))
return np.array(ret)
def print_result(emo_cause_prf, pair_prf):
p, r, f1 = emo_cause_prf[:3]
print('emotion_prediction: p {:.4f} r {:.4f} f1 {:.4f}'.format(p, r, f1 ))
p, r, f1 = emo_cause_prf[3:6]
print('cause_prediction: p {:.4f} r {:.4f} f1 {:.4f}'.format(p, r, f1 ))
p, r, f1 = pair_prf[:3]
print('row pair_prediction: p {:.4f} r {:.4f} f1 {:.4f}'.format(p, r, f1 ))
p, r, f1 = pair_prf[3:6]
print('col pair_prediction: p {:.4f} r {:.4f} f1 {:.4f}'.format(p, r, f1 ))
# train
eval_input_op = [pred_y_emo_op, true_y_emo_op, pred_y_cause_op, true_y_cause_op, pred_pair_row, pred_pair_col, y_pair_row, y_pair_col, doc_len]
for train, _ in get_batch_data(train_data, 1, FLAGS.batch_size):
_, run_lr, loss = sess.run([optimizer, run_lr_op, loss_op], feed_dict=dict(zip(placeholders, train)))
eval_input = sess.run(eval_input_op, feed_dict=dict(zip(placeholders, train)))
batch_eval_inputs.append(eval_input)
if step % 10 == 0:
print('\nstep {}: train loss {:.4f} run_lr {:.6f}'.format(step, loss, run_lr))
emo_cause_prf, pair_prf = cal_ecp_prf(eval_input, threshold = FLAGS.threshold, window_size =FLAGS.window_size)
print_result(emo_cause_prf, pair_prf)
print('\ncost time: {:.1f}s'.format(time.time()-start_time))
start_time = time.time()
if step % 60 == 0:
batch_eval_inputs = zip(*batch_eval_inputs)
eval_input = map(combine_eval_inputs, batch_eval_inputs)
batch_eval_inputs = []
emo_cause_prf, pair_prf = cal_ecp_prf(eval_input, threshold = FLAGS.threshold, window_size =FLAGS.window_size)
print('\n############## Evaluation on {}-{} train steps ##############'.format(step-60,step))
print_result(emo_cause_prf, pair_prf)
if pair_prf[2] > tr_row_pair_max_f1:
tr_row_pair_max_f1 = pair_prf[2]
step = step + 1
# test
def evaluation(dataset):
ds = dataset
batch_eval_inputs = []
for test, _ in get_batch_data(ds, 0., FLAGS.batch_size, test=True):
eval_input = sess.run(eval_input_op, feed_dict=dict(zip(placeholders, test)))
batch_eval_inputs.append(eval_input)
batch_eval_inputs = zip(*batch_eval_inputs)
eval_input = map(combine_eval_inputs, batch_eval_inputs)
emo_cause_prf, pair_prf = cal_ecp_prf(eval_input, ds.pair_left_cnt, threshold = FLAGS.threshold, window_size =FLAGS.window_size)
return emo_cause_prf, pair_prf
de_emo_cause_prf, de_pair_prf = evaluation(dev_data)
te_emo_cause_prf, te_pair_prf = evaluation(test_data)
for j in range(2,6,3):
if de_emo_cause_prf[j] > de_emo_cause_max_prf[j]:
de_emo_cause_max_prf[j-2:j+1] = de_emo_cause_prf[j-2:j+1]
te_emo_cause_max_prf[j-2:j+1] = te_emo_cause_prf[j-2:j+1]
for j in range(2,15,3):
if de_pair_prf[j] > de_pair_max_prf[j]:
de_pair_max_prf[j-2:j+1] = de_pair_prf[j-2:j+1]
te_pair_max_prf[j-2:j+1] = te_pair_prf[j-2:j+1]
print('\nepoch {}\n'.format(i))
p, r, f1 = de_emo_cause_prf[:3]
print('Dev emotion_prediction: p {:.4f} r {:.4f} f1 {:.4f}'.format(p, r, f1 ))
p, r, f1 = de_emo_cause_max_prf[:3]
print('Dev emotion_prediction: max_p {:.4f} max_r {:.4f} max_f1 {:.4f}'.format(p, r, f1))
p, r, f1 = te_emo_cause_max_prf[:3]
print('Test emotion_prediction: max_p {:.4f} max_r {:.4f} max_f1 {:.4f}\n'.format(p, r, f1))
p, r, f1 = de_emo_cause_prf[3:6]
print('Dev cause_prediction: p {:.4f} r {:.4f} f1 {:.4f}'.format(p, r, f1 ))
p, r, f1 = de_emo_cause_max_prf[3:6]
print('Dev cause_prediction: max_p {:.4f} max_r {:.4f} max_f1 {:.4f}'.format(p, r, f1))
p, r, f1 = te_emo_cause_max_prf[3:6]
print('Test cause_prediction: max_p {:.4f} max_r {:.4f} max_f1 {:.4f}\n'.format(p, r, f1))
for j in [0,1,2,4]:
tmp = ['row', 'col', 'avg', 'AND', 'OR']
idx = 2+j*3
p, r, f1 = de_pair_prf[idx-2:idx+1]
print('\nDev {}_pair_prediction: p {:.4f} r {:.4f} f1 {:.4f}'.format(tmp[j], p, r, f1 ))
p, r, f1 = de_pair_max_prf[idx-2:idx+1]
print('\nDev {}_pair_prediction: max_p {:.4f} max_r {:.4f} max_f1 {:.4f}'.format(tmp[j], p, r, f1 ))
p, r, f1 = te_pair_max_prf[idx-2:idx+1]
print('\nTest {}_pair_prediction: max_p {:.4f} max_r {:.4f} max_f1 {:.4f}\n'.format(tmp[j], p, r, f1 ))
print('Optimization Finished!\n')
print('############# fold {} end ###############'.format(fold))
if FLAGS.model_type != 'BERT' or tr_row_pair_max_f1 > 0.5:
de_emo_cause_list.append(de_emo_cause_max_prf)
de_pair_list.append(de_pair_max_prf)
te_emo_cause_list.append(te_emo_cause_max_prf)
te_pair_list.append(te_pair_max_prf)
fold = fold + 1
de_emo_cause_list, de_pair_list, te_emo_cause_list, te_pair_list = map(lambda x: np.array(x), [de_emo_cause_list, de_pair_list, te_emo_cause_list, te_pair_list])
def finnal_output(emo_cause_list, pair_list):
for i in range(5):
tmp = ['row', 'col', 'avg', 'AND', 'OR']
idx = 2+i*3
print('\n{} pair_predict: test f1 in 10 fold: {}'.format(tmp[i], pair_list[:,idx:idx+1]))
p, r, f1 = pair_list[:,idx-2:idx+1].mean(axis=0)
print('average : p {:.4f} r {:.4f} f1 {:.4f}\n'.format(p, r, f1))
print('\nemotion_prediction: test f1 in 10 fold: {}'.format(emo_cause_list[:,2:3]))
p, r, f1 = emo_cause_list[:,:3].mean(axis=0)
print('average : p {:.4f} r {:.4f} f1 {:.4f}\n'.format(p, r, f1))
print('\ncause_prediction: test f1 in 10 fold: {}'.format(emo_cause_list[:,5:6]))
p, r, f1 = emo_cause_list[:,3:6].mean(axis=0)
print('average : p {:.4f} r {:.4f} f1 {:.4f}\n'.format(p, r, f1))
print('############# Evaluation on Dev ############# ')
finnal_output(de_emo_cause_list, de_pair_list)
print('############# Evaluation on Test ############# ')
finnal_output(te_emo_cause_list, te_pair_list)
print_time()
def main(_):
tf.logging.set_verbosity(tf.logging.INFO) # for Bert
########################## Split 10 ##########################
FLAGS.split='split10'
FLAGS.start_fold, FLAGS.end_fold = 1, 11
FLAGS.training_iter, FLAGS.batch_size, FLAGS.learning_rate = 20, 32, 0.005
FLAGS.model_type = 'Inter-EC'
# FLAGS.log_file_name = '{}_Inter-EC_1.log'.format(FLAGS.split)
# run()
# FLAGS.log_file_name = '{}_Inter-EC_2.log'.format(FLAGS.split)
# run()
FLAGS.model_type = 'Inter-CE'
# FLAGS.log_file_name = '{}_Inter-CE_1.log'.format(FLAGS.split)
# run()
# FLAGS.log_file_name = '{}_Inter-CE_2.log'.format(FLAGS.split)
# run()
FLAGS.model_type = 'ISML'
FLAGS.model_iter_num = 1
# FLAGS.log_file_name = '{}_Indep_1.log'.format(FLAGS.split)
# run()
# FLAGS.log_file_name = '{}_Indep_2.log'.format(FLAGS.split)
# run()
FLAGS.model_type = 'ISML'
# for FLAGS.model_iter_num in range(2,8):
# FLAGS.log_file_name = '{}_ISML{}_1.log'.format(FLAGS.split, FLAGS.model_iter_num)
# run()
# FLAGS.log_file_name = '{}_ISML{}_2.log'.format(FLAGS.split, FLAGS.model_iter_num)
# run()
FLAGS.training_iter, FLAGS.batch_size, FLAGS.learning_rate = 20, 8, 2e-5
FLAGS.model_type = 'BERT'
# FLAGS.log_file_name = '{}_BERT_1.log'.format(FLAGS.split)
# run()
# FLAGS.log_file_name = '{}_BERT_2.log'.format(FLAGS.split)
# run()
########################## Split 20 ##########################
FLAGS.split='split20'
FLAGS.start_fold, FLAGS.end_fold = 1, 21
FLAGS.training_iter, FLAGS.batch_size, FLAGS.learning_rate = 20, 32, 0.005
FLAGS.model_type = 'ISML'
FLAGS.model_iter_num = 6
FLAGS.log_file_name = '{}_ISML{}.log'.format(FLAGS.split, FLAGS.model_iter_num)
run()
FLAGS.training_iter, FLAGS.batch_size, FLAGS.learning_rate = 20, 8, 2e-5
FLAGS.model_type = 'BERT'
FLAGS.log_file_name = '{}_BERT.log'.format(FLAGS.split)
run()
if __name__ == '__main__':
tf.app.run()