-
Notifications
You must be signed in to change notification settings - Fork 995
/
tm_alphapose.cpp
515 lines (444 loc) · 17 KB
/
tm_alphapose.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
/*
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* License); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* AS IS BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*/
/*
* Copyright (c) 2020, OPEN AI LAB
* Author: guanguojing1989@126.com
*/
#include <float.h>
#include <stdlib.h>
#include <stdio.h>
#include "opencv2/opencv.hpp"
#include "opencv2/core/core.hpp"
#include "opencv2/highgui/highgui.hpp"
#include "common.h"
#include "tengine/c_api.h"
#include "tengine_operations.h"
#define DEFAULT_IMG_H 320
#define DEFAULT_IMG_W 256
#define DEFAULT_SCALE1 (0.0039216)
#define DEFAULT_SCALE2 (0.0039215)
#define DEFAULT_SCALE3 (0.0039215)
#define DEFAULT_MEAN1 0.406
#define DEFAULT_MEAN2 0.457
#define DEFAULT_MEAN3 0.480
#define DEFAULT_REPEAT_COUNT 1
#define DEFAULT_THREAD_COUNT 1
using bbox_t = std::array<float, 4>;
using pt_t = std::array<float, 2>;
using predict_t = std::tuple<cv::Mat, cv::Mat, cv::Mat>;
const float s_keypoint_thresh = 0.2;
cv::Mat get_3rd_point(const cv::Mat& a, const cv::Mat& b)
{
auto direct = a - b;
cv::Mat result(direct.size(), direct.type());
result.row(0).col(0) = b.row(0).col(0) - direct.row(0).col(1);
result.row(0).col(1) = b.row(0).col(1) + direct.row(0).col(0);
return result;
}
cv::Mat get_input_data_pose(const char* img_file_path)
{
cv::Mat img = cv::imread(img_file_path);
cv::cvtColor(img, img, cv::COLOR_BGR2RGB);
img.convertTo(img, CV_32FC3);
float* img_data = (float*)img.data;
float means[3]{DEFAULT_MEAN1, DEFAULT_MEAN2, DEFAULT_MEAN3};
float scales[3]{DEFAULT_SCALE1, DEFAULT_SCALE2, DEFAULT_SCALE3};
for (int h = 0; h < img.rows; h++)
{
for (int w = 0; w < img.cols; w++)
{
for (int c = 0; c < 3; c++)
{
*img_data = (scales[c] * (*img_data)) - means[c];
img_data++;
}
}
}
return std::move(img);
}
cv::Mat crop_box(const cv::Mat& org_img,
const pt_t& up_left,
const pt_t& bottom_right,
const int& input_res_h,
const int& input_res_w)
{
auto img = org_img.clone();
std::array<int, 2> ul{static_cast<int>(up_left[0]), static_cast<int>(up_left[1])};
std::array<int, 2> br{static_cast<int>(bottom_right[0] - 1), static_cast<int>(bottom_right[1] - 1)};
auto len_h = std::max((br[1] - ul[1]) * 1.f, (br[0] - ul[0]) * input_res_h * 1.f / input_res_w);
auto len_w = len_h * input_res_w / input_res_h;
std::vector<size_t> box_shape = {static_cast<size_t>((br[1] - ul[1])), static_cast<size_t>((br[0] - ul[0]))};
std::vector<int> pad_size = {static_cast<int>((len_h - box_shape[0]) / 2),
static_cast<int>((len_w - box_shape[1]) / 2)};
// padding zero
if (ul[1] > 0)
{
img.rowRange(0, ul[1]) = 0.f;
}
if (ul[0] > 0)
{
img.colRange(0, ul[0]) = 0.f;
}
if (br[1] < (img.rows - 1))
{
img.rowRange(br[1] + 1, img.rows - 1) = 0.f;
}
if (br[0] < (img.cols - 1))
{
img.colRange(br[0] + 1, img.cols - 1) = 0.f;
}
cv::Mat src = cv::Mat::zeros(3, 2, CV_32FC1);
cv::Mat dst = cv::Mat::zeros(3, 2, CV_32FC1);
src.at<float>(0, 0) = static_cast<float>(ul[0] - pad_size[1]);
src.at<float>(0, 1) = static_cast<float>(ul[1] - pad_size[0]);
src.at<float>(1, 0) = static_cast<float>(br[0] + pad_size[1]);
src.at<float>(1, 1) = static_cast<float>(br[1] + pad_size[0]);
get_3rd_point(src.row(0), src.row(1)).copyTo(src.row(2));
dst.row(0) = 0.f;
dst.at<float>(1, 0) = static_cast<float>(input_res_w - 1);
dst.at<float>(1, 1) = static_cast<float>(input_res_h - 1);
get_3rd_point(dst.row(0), dst.row(1)).copyTo(dst.row(2));
auto trans = cv::getAffineTransform(src, dst);
cv::Mat dst_img = cv::Mat::zeros(input_res_h, input_res_w, CV_32FC3);
cv::warpAffine(img, dst_img, trans, cv::Size{input_res_w, input_res_h}, cv::INTER_LINEAR);
return std::move(dst_img);
}
float* pre_process_pose(cv::Mat& img,
const std::vector<bbox_t>& boxes,
std::vector<pt_t>& pt1,
std::vector<pt_t>& pt2)
{
const int img_height = img.rows;
const int img_width = img.cols;
float* predict_data = (float*)malloc(boxes.size() * DEFAULT_IMG_H * DEFAULT_IMG_W * 3 * sizeof(float));
float* p_data = predict_data;
for (size_t i = 0; i < boxes.size(); i++)
{
pt_t up_left{boxes[i][0], boxes[i][1]};
pt_t bottom_right{boxes[i][2], boxes[i][3]};
auto box_ht = bottom_right[1] - up_left[1];
auto box_wt = bottom_right[0] - up_left[0];
auto scale_rate = 0.3f;
up_left[0] = std::max(0.f, up_left[0] - box_wt * scale_rate / 2);
up_left[1] = std::max(0.f, up_left[1] - box_ht * scale_rate / 2);
bottom_right[0] = std::max(std::min(img_width - 1.f, bottom_right[0] + box_wt * scale_rate / 2), up_left[0] + 5);
bottom_right[1] = std::max(std::min(img_height - 1.f, bottom_right[1] + box_ht * scale_rate / 2), up_left[1] + 5);
auto inp = crop_box(img, up_left, bottom_right, DEFAULT_IMG_H, DEFAULT_IMG_W);
//HWC -> CHW
for (int row = 0; row < inp.rows; row++)
{
for (int col = 0; col < inp.cols; col++)
{
for (int c = 0; c < inp.channels(); c++)
{
*(p_data + c * inp.rows * inp.cols + row * inp.cols + col) = inp.ptr<cv::Vec3f>(row, col)->val[c];
}
}
}
pt1[i] = up_left;
pt2[i] = bottom_right;
}
return predict_data;
}
cv::Mat transform_box_invert_batch(cv::Mat& pt,
const std::vector<pt_t>& ul, const std::vector<pt_t>& br,
const int& input_res_h, const int& input_res_w,
const int& output_res_h, const int& output_res_w)
{
std::vector<pt_t> center(ul.size());
std::vector<pt_t> size(ul.size());
std::vector<float> len_h(ul.size());
std::vector<float> len_w(ul.size());
for (size_t i = 0; i < center.size(); i++)
{
auto& len_h_element = len_h[i];
auto& len_w_element = len_w[i];
len_h_element = std::numeric_limits<float>::min();
for (size_t j = 0; j < std::tuple_size<pt_t>::value; j++)
{
center[i][j] = (br[i][j] - 1 - ul[i][j]) / 2;
size[i][j] = br[i][j] - ul[i][j];
if (j == 0)
{
size[i][j] *= (input_res_h * 1.f / input_res_w);
}
if (size[i][j] > len_h_element)
{
len_h_element = size[i][j];
}
}
len_w_element = len_h_element * (input_res_w * 1.f / input_res_h);
}
auto clamp_min_func = [](float v, float min = 0.f) {
if (v < min) return min;
return v;
};
cv::Mat new_point = cv::Mat::zeros(pt.dims, pt.size.p, pt.type());
for (int i = 0; i < pt.size[0]; i++)
{
for (int j = 0; j < pt.size[1]; j++)
{
float _pt;
_pt = pt.ptr<cv::Vec2f>(i, j)->val[0] * len_h[i] / output_res_h;
_pt = _pt - clamp_min_func(((len_w[i] - 1) / 2 - center[i][0]));
new_point.ptr<cv::Vec2f>(i, j)->val[0] = _pt + ul[i][0];
_pt = pt.ptr<cv::Vec2f>(i, j)->val[1] * len_h[i] / output_res_h;
_pt = _pt - clamp_min_func(((len_h[i] - 1) / 2 - center[i][1]));
new_point.ptr<cv::Vec2f>(i, j)->val[1] = _pt + ul[i][1];
}
}
return std::move(new_point);
}
predict_t get_predict(float* hm_data,
const int hm_dims[4],
const std::vector<pt_t>& pt1,
const std::vector<pt_t>& pt2,
const int& input_res_h,
const int& input_res_w)
{
// Get Keypoint location from heatmap
auto get_hm_data = [](float* data, const int data_dims[4], const std::array<int, 4> ele_dims) {
return *(data
+ ele_dims[0] * data_dims[1] * data_dims[2] * data_dims[3]
+ ele_dims[1] * data_dims[2] * data_dims[3]
+ ele_dims[2] * data_dims[3]
+ ele_dims[3]);
};
cv::Mat preds(hm_dims[0], hm_dims[1], CV_32FC2);
cv::Mat maxval(hm_dims[0], hm_dims[1], CV_32FC1);
for (int i = 0; i < hm_dims[0]; i++)
{
for (int j = 0; j < hm_dims[1]; j++)
{
float* start_iter = hm_data + i * hm_dims[1] * hm_dims[2] * hm_dims[3] + j * hm_dims[2] * hm_dims[3];
auto max_element = std::max_element(start_iter, start_iter + hm_dims[2] * hm_dims[3]);
preds.ptr<cv::Vec2f>(i, j)->val[0] = preds.ptr<cv::Vec2f>(i, j)->val[1] = std::distance(start_iter, max_element) + 1;
maxval.at<float>(i, j) = *max_element;
}
}
for (int i = 0; i < hm_dims[0]; i++)
{
for (int j = 0; j < hm_dims[1]; j++)
{
if (maxval.at<float>(i, j) < 0.)
{
preds.ptr<cv::Vec2f>(i, j)->val[0] = preds.ptr<cv::Vec2f>(i, j)->val[1] = 0.f;
}
else
{
preds.ptr<cv::Vec2f>(i, j)->val[0] = (size_t(preds.ptr<cv::Vec2f>(i, j)->val[0]) - 1) % hm_dims[3];
preds.ptr<cv::Vec2f>(i, j)->val[1] = std::floor((preds.ptr<cv::Vec2f>(i, j)->val[1] - 1) / hm_dims[3]);
}
//Very simple post-processing step to improve performance at tight PCK thresholds
int pX = int(std::round(preds.ptr<cv::Vec2f>(i, j)->val[0]));
int pY = int(std::round(preds.ptr<cv::Vec2f>(i, j)->val[1]));
if ((0 < pX)
&& (pX < (hm_dims[2] - 1))
&& (0 < pY)
&& (pY < (hm_dims[3] - 1)))
{
auto sign_func = [](float x) {
if (x > 0.)
x = 1.f;
else if (x < 0.)
x = -1.f;
return x;
};
float x = get_hm_data(hm_data, hm_dims, {i, j, pY, pX + 1}) - get_hm_data(hm_data, hm_dims, {i, j, pY, pX - 1});
float y = get_hm_data(hm_data, hm_dims, {i, j, pY + 1, pX}) - get_hm_data(hm_data, hm_dims, {i, j, pY - 1, pX});
preds.ptr<cv::Vec2f>(i, j)->val[0] += sign_func(x) * 0.25f;
preds.ptr<cv::Vec2f>(i, j)->val[1] += sign_func(y) * 0.25f;
}
preds.ptr<cv::Vec2f>(i, j)->val[0] += 0.2f;
preds.ptr<cv::Vec2f>(i, j)->val[1] += 0.2f;
}
}
auto preds_tf = transform_box_invert_batch(preds, pt1, pt2, input_res_h, input_res_w, hm_dims[2], hm_dims[3]);
return std::make_tuple(preds, preds_tf, maxval);
}
void post_process_pose(const char* image_file,
float* heatmap_data, int heatmap_dims[4],
const std::vector<pt_t>& pt1, const std::vector<pt_t>& pt2)
{
cv::Mat preds_hm, preds_scores;
std::tie(std::ignore, preds_hm, preds_scores) = get_predict(heatmap_data, heatmap_dims, pt1, pt2, DEFAULT_IMG_H, DEFAULT_IMG_W);
auto preds_mean_scores = cv::mean(preds_scores.col(0));
cv::Mat frame = cv::imread(image_file);
for (int i = 0; i < preds_hm.rows; i++)
{
if (cv::mean(preds_scores.row(i)).val[0] < s_keypoint_thresh) continue;
for (int kp_i = 0; kp_i < preds_hm.cols; kp_i++)
{
cv::circle(frame, cv::Point((int)preds_hm.ptr<float>(i, kp_i)[0], (int)preds_hm.ptr<float>(i, kp_i)[1]), 4, cv::Scalar(255, 255, 0), -1);
}
}
cv::imwrite("Output-Keypionts.jpg", frame);
}
void show_usage()
{
fprintf(stderr, "[Usage]: [-h]\n [-m model_file] [-i image_file] [-r repeat_count] [-t thread_count]\n");
}
bool tengine_predict(float* input_data, graph_t graph, const int input_dims[4], const int& num_thread, const int& loop_count)
{
/* set runtime options */
struct options opt;
opt.num_thread = num_thread;
opt.cluster = TENGINE_CLUSTER_ALL;
opt.precision = TENGINE_MODE_FP32;
opt.affinity = 0;
tensor_t input_tensor = get_graph_input_tensor(graph, 0, 0);
if (input_tensor == NULL)
{
fprintf(stderr, "Get input tensor failed\n");
return false;
}
if (set_tensor_shape(input_tensor, input_dims, 4) < 0)
{
fprintf(stderr, "Set input tensor shape failed\n");
return false;
}
size_t input_data_size = (unsigned long)input_dims[0] * input_dims[1] * input_dims[2] * input_dims[3] * sizeof(float);
if (set_tensor_buffer(input_tensor, input_data, input_data_size) < 0)
{
fprintf(stderr, "Set input tensor buffer failed\n");
return false;
}
/* prerun graph, set work options(num_thread, cluster, precision) */
if (prerun_graph_multithread(graph, opt) < 0)
{
fprintf(stderr, "Prerun multithread graph failed.\n");
return false;
}
/* run graph */
double min_time = DBL_MAX;
double max_time = -DBL_MAX;
double total_time = 0.;
for (int i = 0; i < loop_count; i++)
{
double start = get_current_time();
if (run_graph(graph, 1) < 0)
{
fprintf(stderr, "Run graph failed\n");
return false;
}
double end = get_current_time();
double cur = end - start;
total_time += cur;
if (min_time > cur)
min_time = cur;
if (max_time < cur)
max_time = cur;
}
fprintf(stderr, "Repeat %d times, thread %d, avg time %.2f ms, max_time %.2f ms, min_time %.2f ms\n",
loop_count,
num_thread, total_time / loop_count, max_time, min_time);
fprintf(stderr, "--------------------------------------\n");
return true;
}
int main(int argc, char* argv[])
{
const char* model_file = nullptr;
const char* image_file = nullptr;
int repeat_count = DEFAULT_REPEAT_COUNT;
int num_thread = DEFAULT_THREAD_COUNT;
int res;
while ((res = getopt(argc, argv, "m:i:r:t:h:")) != -1)
{
switch (res)
{
case 'm':
model_file = optarg;
break;
case 'i':
image_file = optarg;
break;
case 'r':
repeat_count = atoi(optarg);
break;
case 't':
num_thread = atoi(optarg);
break;
case 'h':
show_usage();
return 0;
default:
break;
}
}
/* check options */
if (nullptr == model_file)
{
fprintf(stderr, "Error: Tengine model file not specified!\n");
show_usage();
return -1;
}
if (nullptr == image_file)
{
fprintf(stderr, "Error: Image file not specified!\n");
show_usage();
return -1;
}
if (!check_file_exist(model_file) || !check_file_exist(image_file))
return -1;
/* inital tengine */
if (init_tengine() != 0)
{
fprintf(stderr, "Initial tengine failed.\n");
return -1;
}
fprintf(stderr, "tengine-lite library version: %s\n", get_tengine_version());
/* create graph, load tengine model xxx.tmfile */
graph_t graph = create_graph(nullptr, "tengine", model_file);
if (graph == nullptr)
{
fprintf(stderr, "Create graph failed.\n");
return -1;
}
auto input_tensor = get_input_data_pose(image_file);
int img_height = input_tensor.rows;
int img_width = input_tensor.cols;
// support multi-roi boxes later
std::vector<bbox_t> boxes{{0, 0, static_cast<float>(img_width - 1), static_cast<float>(img_height - 1)}};
std::vector<pt_t> pt1, pt2;
pt1.resize(boxes.size());
pt2.resize(boxes.size());
// pre-process
float* input_data = pre_process_pose(input_tensor, boxes, pt1, pt2);
int input_dims[] = {static_cast<int>(boxes.size()), 3, DEFAULT_IMG_H, DEFAULT_IMG_W}; // nchw
// run prediction
if (false == tengine_predict(input_data, graph, input_dims, num_thread, repeat_count))
{
fprintf(stderr, "Run model file: %s failed.\n", model_file);
return -1;
}
//post process
tensor_t output_tensor = get_graph_output_tensor(graph, 0, 0);
int heatmap_dims[MAX_SHAPE_DIM_NUM] = {0};
get_tensor_shape(output_tensor, heatmap_dims, MAX_SHAPE_DIM_NUM);
post_process_pose(image_file, (float*)get_tensor_buffer(output_tensor), heatmap_dims, pt1, pt2);
if (input_data)
{
free(input_data);
}
/* release tengine */
postrun_graph(graph);
destroy_graph(graph);
release_tengine();
return 0;
}