-
Notifications
You must be signed in to change notification settings - Fork 995
/
tm_efficientdet.c
649 lines (560 loc) · 20.4 KB
/
tm_efficientdet.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
/*
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* License); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* AS IS BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*/
/*
* Author: zylo117
*
* original model: https://github.com/zylo117/Yet-Another-EfficientDet-Pytorch
*/
#include <stdlib.h>
#include <stdio.h>
#include "common.h"
#include "tengine/c_api.h"
#include "tengine_operations.h"
#define DEFAULT_IMG_H 512
#define DEFAULT_IMG_W 512
#define DEFAULT_SCALE1 0.017124754f
#define DEFAULT_SCALE2 0.017507003f
#define DEFAULT_SCALE3 0.017429194f
#define DEFAULT_MEAN1 123.675
#define DEFAULT_MEAN2 116.280
#define DEFAULT_MEAN3 103.530
#define DEFAULT_LOOP_COUNT 1
#define DEFAULT_THREAD_COUNT 1
#define DEFAULT_CPU_AFFINITY 255
typedef struct Box
{
int x0;
int y0;
int x1;
int y1;
int class_idx;
float score;
} Box_t;
void qsort_descent_inplace(Box_t* boxes, int left, int right)
{
int i = left;
int j = right;
float p = boxes[(left + right) / 2].score;
while (i <= j)
{
while (boxes[i].score > p)
i++;
while (boxes[j].score < p)
j--;
if (i <= j)
{
// swap
Box_t tmp = boxes[i];
boxes[i] = boxes[j];
boxes[j] = tmp;
i++;
j--;
}
}
#pragma omp parallel sections
{
#pragma omp section
{
if (left < j) qsort_descent_inplace(boxes, left, j);
}
#pragma omp section
{
if (i < right) qsort_descent_inplace(boxes, i, right);
}
}
}
int nms(const Box_t* boxes, const int num_boxes, int* suppressed, float nms_threshold)
{
int num_outputs = num_boxes;
float* areas = malloc(num_boxes * sizeof(float));
for (int i = 0; i < num_boxes; i++)
{
areas[i] = (float)((boxes[i].x1 - boxes[i].x0) * (boxes[i].y1 - boxes[i].y0));
}
for (int i = 0; i < num_boxes; i++)
{
const Box_t a = boxes[i];
if (suppressed[i] == 1)
continue;
for (int j = i + 1; j < num_boxes; j++)
{
const Box_t b = boxes[j];
if (suppressed[j] == 1)
continue;
// iou
float intersection = fmaxf(fminf(a.x1, b.x1) - fmaxf(a.x0, b.x0), 0) * fmaxf(fminf(a.y1, b.y1) - fmaxf(a.y0, b.y0), 0);
float total_area = (a.x1 - a.x0) * (a.y1 - a.y0) + (b.x1 - b.x0) * (b.y1 - b.y0) - intersection;
float iou = fmaxf(intersection / total_area, 0);
if (iou > nms_threshold)
{
suppressed[j] = 1;
num_outputs--;
}
else
{
suppressed[j] = 0;
}
}
}
free(areas);
return num_outputs;
}
float* arange(int start, int end, float stride)
{
int length = (int)((float)ceilf((float)(end - start) / stride));
float* result = malloc(length * sizeof(float));
result[0] = (float)start;
for (int i = 1; i < length; i++)
{
result[i] = result[i - 1] + stride;
}
return result;
}
void tile(const float* arr, int arr_length, int times, float offset,
float* result, int arr_starts_from, int arr_stride)
{
int length = arr_length * times;
if (result == NULL)
{
result = malloc(length * sizeof(float));
arr_starts_from = 0;
}
for (int i = 0, j = 0; i < length; i++, j += arr_stride)
{
result[j + arr_starts_from] = arr[i % arr_length] + offset;
}
}
void repeat(const float* arr, int arr_length, int times, float offset,
float* result, int arr_starts_from, int arr_stride)
{
int length = arr_length * times;
if (result == NULL)
{
result = malloc(length * sizeof(float));
arr_starts_from = 0;
}
for (int i = 0, j = 0; i < length; i++, j += arr_stride)
{
result[j + arr_starts_from] = arr[i / times] + offset;
}
}
int argmax(const float* arr, int arr_starts_from, int arr_length)
{
float max_value = arr[arr_starts_from];
int max_idx = 0;
for (int i = 1; i < arr_length; i++)
{
float this_value = arr[arr_starts_from + i];
if (this_value > max_value)
{
max_value = this_value;
max_idx = i;
}
}
return max_idx;
}
int tengine_detect(const char* model_file, const char* image_file, int img_h, int img_w, const float* mean,
const float* scale, int loop_count, int num_thread, int affinity)
{
/* setup network */
const char* CLASSES_NAME[] = {"person", "bicycle", "car", "motorcycle", "airplane", "bus", "train", "truck", "boat", "traffic light",
"fire hydrant", "", "stop sign", "parking meter", "bench", "bird", "cat", "dog", "horse", "sheep",
"cow", "elephant", "bear", "zebra", "giraffe", "", "backpack", "umbrella", "", "", "handbag", "tie",
"suitcase", "frisbee", "skis", "snowboard", "sports ball", "kite", "baseball bat", "baseball glove",
"skateboard", "surfboard", "tennis racket", "bottle", "", "wine glass", "cup", "fork", "knife", "spoon",
"bowl", "banana", "apple", "sandwich", "orange", "broccoli", "carrot", "hot dog", "pizza", "donut",
"cake", "chair", "couch", "potted plant", "bed", "", "dining table", "", "", "toilet", "", "tv",
"laptop", "mouse", "remote", "keyboard", "cell phone", "microwave", "oven", "toaster", "sink",
"refrigerator", "", "book", "clock", "vase", "scissors", "teddy bear", "hair drier",
"toothbrush"};
int PYRAMID_LEVELS[] = {3, 4, 5, 6, 7};
int STRIDES[] = {8, 16, 32, 64, 128};
float SCALES[] = {
(float)pow(2, 0.),
(float)pow(2, 1. / 3.),
(float)pow(2, 2. / 3.),
};
float RATIOS_X[] = {1.f, 1.4f, 0.7f};
float RATIOS_Y[] = {1.f, 0.7f, 1.4f};
float ANCHOR_SCALE = 4.f;
float CONFIDENCE_THRESHOLD = 0.2f;
float NMS_THRESHOLD = 0.2f;
int num_levels = sizeof(PYRAMID_LEVELS) / sizeof(int);
int num_scales = sizeof(SCALES) / sizeof(float);
int num_ratios = sizeof(RATIOS_X) / sizeof(float);
/* set runtime options */
struct options opt;
opt.num_thread = num_thread;
opt.cluster = TENGINE_CLUSTER_ALL;
opt.precision = TENGINE_MODE_FP32;
opt.affinity = affinity;
/* inital tengine */
if (init_tengine() != 0)
{
fprintf(stderr, "Initial tengine failed.\n");
return -1;
}
fprintf(stderr, "tengine-lite library version: %s\n", get_tengine_version());
/* create graph, load tengine model xxx.tmfile */
graph_t graph = create_graph(NULL, "tengine", model_file);
if (NULL == graph)
{
fprintf(stderr, "Create graph failed.\n");
return -1;
}
/* set the shape, data buffer of input_tensor of the graph */
int img_size = img_h * img_w * 3;
int dims[] = {1, 3, img_h, img_w}; // nchw
float* input_data = (float*)malloc(img_size * sizeof(float));
tensor_t input_tensor = get_graph_input_tensor(graph, 0, 0);
if (input_tensor == NULL)
{
fprintf(stderr, "Get input tensor failed\n");
return -1;
}
if (set_tensor_shape(input_tensor, dims, 4) < 0)
{
fprintf(stderr, "Set input tensor shape failed\n");
return -1;
}
if (set_tensor_buffer(input_tensor, input_data, img_size * sizeof(float)) < 0)
{
fprintf(stderr, "Set input tensor buffer failed\n");
return -1;
}
/* prerun graph, set work options(num_thread, cluster, precision) */
if (prerun_graph_multithread(graph, opt) < 0)
{
fprintf(stderr, "Prerun multithread graph failed.\n");
return -1;
}
/* prepare process input data, set the data mem to input tensor */
float means[3] = {mean[0], mean[1], mean[2]};
float scales[3] = {scale[0], scale[1], scale[2]};
image im = imread(image_file);
image im_vis = copy_image(im);
im = imread2caffe(im, img_w, img_h, means, scales);
int raw_h = im.h;
int raw_w = im.w;
int resized_h, resized_w;
float resize_scale;
image resImg;
if (raw_h > raw_w)
{
resized_h = img_h;
resized_w = (int)((float)img_h / raw_h * raw_w);
resImg = resize_image(im, resized_w, img_h);
resize_scale = (float)raw_h / img_h;
}
else
{
resized_w = img_w;
resized_h = (int)((float)img_w / raw_w * raw_h);
resImg = resize_image(im, img_w, resized_h);
resize_scale = (float)raw_w / img_w;
}
free_image(im);
image paddedImg = copyMaker(resImg, 0, img_h - resized_h, 0, img_w - resized_w, 0);
free_image(resImg);
memcpy(input_data, paddedImg.data, sizeof(float) * paddedImg.c * img_w * img_h);
free_image(paddedImg);
/* run graph */
double min_time = DBL_MAX;
double max_time = DBL_MIN;
double total_time = 0.;
for (int i = 0; i < loop_count; i++)
{
double start = get_current_time();
if (run_graph(graph, 1) < 0)
{
fprintf(stderr, "Run graph failed\n");
return -1;
}
double end = get_current_time();
double cur = end - start;
total_time += cur;
if (min_time > cur)
min_time = cur;
if (max_time < cur)
max_time = cur;
}
fprintf(stderr, "\nmodel file : %s\n", model_file);
fprintf(stderr, "image file : %s\n", image_file);
fprintf(stderr, "img_h, img_w, scale[3], mean[3] : %d %d , %.3f %.3f %.3f, %.1f %.1f %.1f\n", img_h, img_w,
scale[0], scale[1], scale[2], mean[0], mean[1], mean[2]);
fprintf(stderr, "Repeat %d times, thread %d, avg time %.2f ms, max_time %.2f ms, min_time %.2f ms\n", loop_count,
num_thread, total_time / loop_count, max_time, min_time);
fprintf(stderr, "--------------------------------------\n");
/* get the result of classification */
tensor_t output_tensor_regression = get_graph_output_tensor(graph, 0, 0);
float* output_data_regression = (float*)get_tensor_buffer(output_tensor_regression);
int num_anchors = get_tensor_buffer_size(output_tensor_regression) / sizeof(float) / 4;
tensor_t output_tensor_classification = get_graph_output_tensor(graph, 1, 0);
float* output_data_classification = (float*)get_tensor_buffer(output_tensor_classification);
int num_classes = get_tensor_buffer_size(output_tensor_classification) / sizeof(float) / num_anchors;
// postprocess
// generate anchors
float* anchors_x0 = malloc(num_anchors * sizeof(float));
float* anchors_x1 = malloc(num_anchors * sizeof(float));
float* anchors_y0 = malloc(num_anchors * sizeof(float));
float* anchors_y1 = malloc(num_anchors * sizeof(float));
int anchor_idx = 0;
for (int stride_idx = 0; stride_idx < num_levels; stride_idx++)
{
int stride = STRIDES[stride_idx];
float arange_stride = powf(2, (float)PYRAMID_LEVELS[stride_idx]);
int length_x = (int)ceilf(((float)img_w - (float)stride / 2) / (float)arange_stride);
int length_y = (int)ceilf(((float)img_h - (float)stride / 2) / (float)arange_stride);
float* x = arange(stride / 2, img_w, arange_stride);
float* y = arange(stride / 2, img_h, arange_stride);
int start_idx = anchor_idx;
int num_anchor_types = num_scales * num_ratios;
for (int i = 0; i < num_scales; i++)
{
float anchor_scale = SCALES[i];
float base_anchor_size = ANCHOR_SCALE * (float)stride * anchor_scale;
for (int j = 0; j < num_ratios; j++)
{
float ratio_x = RATIOS_X[j];
float ratio_y = RATIOS_Y[j];
float anchor_size_x_2 = base_anchor_size * ratio_x / 2.f;
float anchor_size_y_2 = base_anchor_size * ratio_y / 2.f;
tile(x, length_x, length_y, -anchor_size_x_2, anchors_x0,
start_idx + i * num_scales + j, num_anchor_types);
repeat(y, length_y, length_x, -anchor_size_y_2, anchors_y0,
start_idx + i * num_scales + j, num_anchor_types);
tile(x, length_x, length_y, anchor_size_x_2, anchors_x1,
start_idx + i * num_scales + j, num_anchor_types);
repeat(y, length_y, length_x, anchor_size_y_2, anchors_y1,
start_idx + i * num_scales + j, num_anchor_types);
anchor_idx += (length_x * length_y);
}
}
free(x);
free(y);
}
// loop over anchors
Box_t* proposals = malloc(sizeof(Box_t) * num_anchors);
int num_proposals_over_threshold = 0;
#pragma omp parallel for num_threads(opt.num_thread)
for (int i = 0; i < num_anchors; i++)
{
// loop over anchors
// confidence
int max_idx = argmax(output_data_classification, i * num_classes, num_classes);
float max_score = output_data_classification[i * num_classes + max_idx];
if (isinf(max_score) || max_score < CONFIDENCE_THRESHOLD)
{
proposals[i].class_idx = -1;
continue;
}
proposals[i].class_idx = max_idx;
proposals[i].score = max_score;
// box transform
float ha = anchors_y1[i] - anchors_y0[i];
float wa = anchors_x1[i] - anchors_x0[i];
float y_center_a = (anchors_y1[i] + anchors_y0[i]) / 2;
float x_center_a = (anchors_x1[i] + anchors_x0[i]) / 2;
float w = expf(output_data_regression[i * 4 + 3]) * wa;
float h = expf(output_data_regression[i * 4 + 2]) * ha;
float y_center = output_data_regression[i * 4] * ha + y_center_a;
float x_center = output_data_regression[i * 4 + 1] * wa + x_center_a;
float ymin = y_center - h / 2;
float xmin = x_center - w / 2;
float ymax = y_center + h / 2;
float xmax = x_center + w / 2;
// scaling
ymin *= resize_scale;
xmin *= resize_scale;
ymax *= resize_scale;
xmax *= resize_scale;
// clipping
xmin = fmaxf(fminf(xmin, (float)(raw_w - 1)), 0.f);
xmax = fmaxf(fminf(xmax, (float)(raw_w - 1)), 0.f);
ymin = fmaxf(fminf(ymin, (float)(raw_h - 1)), 0.f);
ymax = fmaxf(fminf(ymax, (float)(raw_h - 1)), 0.f);
// area filtering
float area = (xmax - xmin) * (ymax - ymin);
if (area < 4)
{
proposals[i].class_idx = -1;
continue;
}
num_proposals_over_threshold++;
proposals[i].x0 = (int)xmin;
proposals[i].x1 = (int)xmax;
proposals[i].y0 = (int)ymin;
proposals[i].y1 = (int)ymax;
}
free(anchors_x0);
free(anchors_x1);
free(anchors_y0);
free(anchors_y1);
// filter boxes with confidence threshold
Box_t* proposals_over_threshold = malloc(sizeof(Box_t) * num_proposals_over_threshold);
int proposals_over_threshold_idx = 0;
for (int i = 0; i < num_anchors; i++)
{
Box_t box = proposals[i];
if (box.class_idx == -1)
continue;
proposals_over_threshold[proposals_over_threshold_idx] = box;
proposals_over_threshold_idx++;
}
free(proposals);
if (num_proposals_over_threshold > 0)
{
// sort boxes
qsort_descent_inplace(proposals_over_threshold, 0, num_proposals_over_threshold - 1);
// nms
int* suppressed = calloc(num_proposals_over_threshold, sizeof(int));
int num_outputs = nms(proposals_over_threshold, num_proposals_over_threshold, suppressed, NMS_THRESHOLD);
Box_t* proposals_after_nms = malloc(num_outputs * sizeof(Box_t));
int proposals_after_nms_idx = 0;
for (int i = 0; i < num_proposals_over_threshold; i++)
{
Box_t box = proposals_over_threshold[i];
if (suppressed[i] == 1)
continue;
proposals_after_nms[proposals_after_nms_idx] = box;
proposals_after_nms_idx++;
}
free(suppressed);
for (int i = 0; i < num_outputs; i++)
{
Box_t box = proposals_after_nms[i];
draw_box(im_vis, box.x0, box.y0, box.x1, box.y1, 2, 125, 0, 125);
fprintf(stderr, "%2d: %3.0f%%, [%4d, %4d, %4d, %4d], %s\n", box.class_idx, box.score * 100, box.x0,
box.y0, box.x1, box.y1, CLASSES_NAME[box.class_idx]);
}
save_image(im_vis, "efficientdet_out");
free(proposals_after_nms);
}
free(proposals_over_threshold);
/* release tengine */
free(input_data);
postrun_graph(graph);
destroy_graph(graph);
release_tengine();
return 0;
}
void show_usage()
{
fprintf(
stderr,
"[Usage]: [-h]\n [-m model_file] [-i image_file]\n [-g img_h,img_w] [-s scale[0],scale[1],scale[2]] [-w "
"mean[0],mean[1],mean[2]] [-r loop_count] [-t thread_count] [-a cpu_affinity]\n");
fprintf(
stderr,
"\nefficientdet example: \n ./classification -m /path/to/efficientdet.tmfile -i /path/to/img.jpg -g 512,512 -s "
"0.017,0.017,0.017 -w 103.53,116.28,123.675\n");
}
int main(int argc, char* argv[])
{
int loop_count = DEFAULT_LOOP_COUNT;
int num_thread = DEFAULT_THREAD_COUNT;
int cpu_affinity = DEFAULT_CPU_AFFINITY;
char* model_file = NULL;
char* image_file = NULL;
float img_hw[2] = {0.f};
int img_h = 0;
int img_w = 0;
float mean[3] = {-1.f, -1.f, -1.f};
float scale[3] = {0.f, 0.f, 0.f};
int res;
while ((res = getopt(argc, argv, "m:i:l:g:s:w:r:t:a:h")) != -1)
{
switch (res)
{
case 'm':
model_file = optarg;
break;
case 'i':
image_file = optarg;
break;
case 'g':
split(img_hw, optarg, ",");
img_h = (int)img_hw[0];
img_w = (int)img_hw[1];
break;
case 's':
split(scale, optarg, ",");
break;
case 'w':
split(mean, optarg, ",");
break;
case 'r':
loop_count = atoi(optarg);
break;
case 't':
num_thread = atoi(optarg);
break;
case 'a':
cpu_affinity = atoi(optarg);
break;
case 'h':
show_usage();
return 0;
default:
break;
}
}
/* check files */
if (model_file == NULL)
{
fprintf(stderr, "Error: Tengine model file not specified!\n");
show_usage();
return -1;
}
if (image_file == NULL)
{
fprintf(stderr, "Error: Image file not specified!\n");
show_usage();
return -1;
}
if (!check_file_exist(model_file) || !check_file_exist(image_file))
return -1;
if (img_h == 0)
{
img_h = DEFAULT_IMG_H;
fprintf(stderr, "Image height not specified, use default %d\n", img_h);
}
if (img_w == 0)
{
img_w = DEFAULT_IMG_W;
fprintf(stderr, "Image width not specified, use default %d\n", img_w);
}
if (scale[0] == 0.f || scale[1] == 0.f || scale[2] == 0.f)
{
scale[0] = DEFAULT_SCALE1;
scale[1] = DEFAULT_SCALE2;
scale[2] = DEFAULT_SCALE3;
fprintf(stderr, "Scale value not specified, use default %.3f, %.3f, %.3f\n", scale[0], scale[1], scale[2]);
}
if (mean[0] == -1.0 || mean[1] == -1.0 || mean[2] == -1.0)
{
mean[0] = DEFAULT_MEAN1;
mean[1] = DEFAULT_MEAN2;
mean[2] = DEFAULT_MEAN3;
fprintf(stderr, "Mean value not specified, use default %.1f, %.1f, %.1f\n", mean[0], mean[1], mean[2]);
}
if (tengine_detect(model_file, image_file, img_h, img_w, mean, scale, loop_count, num_thread, cpu_affinity) < 0)
return -1;
return 0;
}