-
Notifications
You must be signed in to change notification settings - Fork 15
/
Copy pathCom_RGBIO8.pde
344 lines (304 loc) · 10.4 KB
/
Com_RGBIO8.pde
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
#ifdef RGBIO8_ENABLE
#include "Config.h"
#include "Com_RGBIO8.h"
#define SOFTSWITCH_OFF 0
#define SOFTSWITCH_ON 1
#define SOFTSWITCH_AUTO 2
byte softSwitchPv[PVOUT_COUNT];
byte softSwitchHeat[HEAT_OUTPUTS_COUNT];
RGBIO8 rgbio8s[RGBIO8_NUM_BOARDS];
unsigned long lastRGBIO8 = 0;
// Initializes the RGBIO8 system. If you want to provide custom IO mappings
// this is the place to do it. See the CUSTOM CONFIGURATION section below for
// further instructions.
void RGBIO8_Init() {
// Initialize and address each RGB board that is attached
for (int i = 0; i < RGBIO8_NUM_BOARDS; i++) {
rgbio8s[i].begin(0, RGBIO8_START_ADDR + i);
}
// Set the default coniguration. The user can override this with the
// custom configuration information below.
int ioIndex = 0;
for (int i = 0; i < HEAT_OUTPUTS_COUNT && (ioIndex / 8) < RGBIO8_NUM_BOARDS; i++, ioIndex++) {
rgbio8s[ioIndex / 8].assignHeatInput(i, ioIndex % 8);
rgbio8s[ioIndex / 8].assignHeatOutputRecipe(i, ioIndex % 8, 0);
}
for (int i = 0; i < PVOUT_COUNT && (ioIndex / 8) < RGBIO8_NUM_BOARDS; i++, ioIndex++) {
rgbio8s[ioIndex / 8].assignPvInput(i, ioIndex % 8);
rgbio8s[ioIndex / 8].assignPvOutputRecipe(i, ioIndex % 8, 1);
}
// Set the default values of Softswitches to AUTO so that outputs that are not assigned to softswitches are unaffected by this logic
for (byte i = 0; i < PVOUT_COUNT; i++)
softSwitchPv[i] = SOFTSWITCH_AUTO;
for (byte i = 0; i < HEAT_OUTPUTS_COUNT; i++)
softSwitchHeat[i] = SOFTSWITCH_AUTO;
////////////////////////////////////////////////////////////////////////
// CUSTOM CONFIGURATION
////////////////////////////////////////////////////////////////////////
// To provide your own custom IO mappings you will have to add code to
// this section. The code is very simple and the mappings are very
// powerful.
//
// The system is configured by providing input and output mappings
// for heat outputs and pump/valve outputs. Each of these outputs
// can be in one of four states:
// Off: The output is forced off, no matter what other systems attempt.
// Auto Off: The output is under auto control of BrewTroller, and is
// currently set to off. It may turn on at any time.
// Auto On: The output is under auto control of BrewTroller, and is
// currently set to on. It may turn off at any time.
// On: The output is forced on and is not under control of
// BrewTroller.
//
// The first thing that is configured are output "recipes". These recipes
// define the color that will be shown for each of the states above.
//
// Often times you will see colors on a web page expressed in RGB
// hexidecimal, such as #FF0000 meaning bright red or #FFFF00 meaning
// bright yellow. The RGBIO8 board uses a similar system for color,
// except it uses 3 digits instead of 6. In most cases, if you find
// a color you like that is in the #ABCDEF format, you can convert it
// to the right code for RGBIO8 by removing the second, fourth and
// last digit. So, for instance, #ABCDEF would become #ACE.
//
// The system has room for four recipes, so you can create 4 different
// color schemes that map to your outputs.
//
// By default we use two recipes. One for heat outputs and another for
// pump/valve outputs. They are listed below. If you like, you can just
// change the colors in a recipe, or you can create entirely new recipes.
// Recipe 0, used for Heat Outputs
// Off: 0xF00 (Red)
// Auto Off: 0xFFF (White)
// Auto On: 0xF40 (Orange)
// On: 0x0F0 (Green)
RGBIO8::setOutputRecipe(0, 0xF00, 0xFFF, 0xF40, 0x0F0);
// Recipe 1, used for Pump/Valve Outputs
// Off: 0xF00 (Red)
// Auto Off: 0xFFF (White)
// Auto On: 0x00F (Blue)
// On: 0x0F0 (Green)
RGBIO8::setOutputRecipe(1, 0xF00, 0xFFF, 0x00F, 0x0F0);
//
// Now we move on to mappings. A mapping ties a given input or output to
// either a heat output or a pump/valve output.
//
// To create a mapping between a heat output you use one of the following
// two functions:
// assignHeatInput(vesselNumber, inputNumber);
// assignHeatOutputRecipe(vesselNumber, outputNumber, recipeNumber);
//
// To create a mapping between a pump/valve output you use one of the
// following two functions.
// assignPvInput(pvOutputNumber, inputNumber);
// assignPvOutputRecipe(pvOutputNumber, outputNumber, recipeNumber);
//
// When creating a mapping, you have to specify which RGB board the mapping
// belongs to. That is done by using rgbio8s[boardNumber]. before the
// function calls above. Some example mappings are shown below:
//
// Map board 0, heat output 0 (HLT) to input/output 0 using recipe 0.
// rgbio8s[0].assignHeatInput(0, 0);
// rgbio8s[0].assignHeatOutputRecipe(0, 0, 0);
//
//
// Map board 1, pump/valve output 2 to input/output 3 using recipe 1.
// rgbio8s[1].assignPvInput(2, 3);
// rgbio8s[1].assignPvOutputRecipe(2, 3, 1);
//
// Add your custom mappings below this line
}
void RGBIO8_Update() {
if (millis() > (lastRGBIO8 + RGBIO8_INTERVAL)) {
for (int i = 0; i < RGBIO8_NUM_BOARDS; i++) {
rgbio8s[i].update();
}
lastRGBIO8 = millis();
}
}
uint16_t RGBIO8::output_recipes[RGBIO8_MAX_OUTPUT_RECIPES][4];
RGBIO8::RGBIO8() {
this->rs485_address = 0;
this->i2c_address = 0;
for (int i = 0; i < 8; i++) {
output_assignments[i].type = 0;
input_assignments[i].type = 0;
}
}
void RGBIO8::begin(int rs485_address, int i2c_address) {
this->rs485_address = rs485_address;
this->i2c_address = i2c_address;
}
void RGBIO8::setOutputRecipe(
byte recipe_id,
uint16_t off_rgb,
uint16_t auto_off_rgb,
uint16_t auto_on_rgb,
uint16_t on_rgb) {
output_recipes[recipe_id][0] = off_rgb;
output_recipes[recipe_id][1] = auto_off_rgb;
output_recipes[recipe_id][2] = auto_on_rgb;
output_recipes[recipe_id][3] = on_rgb;
}
void RGBIO8::assignHeatOutputRecipe(byte vessel, byte output, byte recipe_id) {
output_assignments[output].type = 1;
output_assignments[output].index = vessel;
output_assignments[output].recipe_id = recipe_id;
}
void RGBIO8::assignPvOutputRecipe(byte pv, byte output, byte recipe_id) {
output_assignments[output].type = 2;
output_assignments[output].index = pv;
output_assignments[output].recipe_id = recipe_id;
}
void RGBIO8::assignHeatInput(byte vessel, byte input) {
input_assignments[input].type = 1;
input_assignments[input].index = vessel;
}
void RGBIO8::assignPvInput(byte pv, byte input) {
input_assignments[input].type = 2;
input_assignments[input].index = pv;
}
void RGBIO8::update(void) {
// Get the state of the 8 inputs first
getInputs(&inputs_manual, &inputs_auto);
// Update any assigned inputs
for (int i = 0; i < 8; i++) {
RGBIO8_input_assignment *a = &input_assignments[i];
if (a->type) {
if (a->type == 1) {
// this is a heat input
if (inputs_manual & (1 << i)) {
softSwitchHeat[a->index] = SOFTSWITCH_ON;
}
else if (inputs_auto & (1 << i)) {
softSwitchHeat[a->index] = SOFTSWITCH_AUTO;
}
else {
softSwitchHeat[a->index] = SOFTSWITCH_OFF;
}
}
else if (a->type == 2) {
// this is a PV input
if (inputs_manual & (1 << i)) {
softSwitchPv[a->index] = SOFTSWITCH_ON;
}
else if (inputs_auto & (1 << i)) {
softSwitchPv[a->index] = SOFTSWITCH_AUTO;
}
else {
softSwitchPv[a->index] = SOFTSWITCH_OFF;
}
}
}
}
// Update any assigned outputs
#ifdef PVOUT
unsigned long vlvBits = Valves.get();
#endif
for (int i = 0; i < 8; i++) {
RGBIO8_output_assignment *a = &output_assignments[i];
if (a->type) {
if (a->type == 1) {
// this is a heat output
// If PIDEnabled[a->index] is set and the PID is heating, heatStatus
// will always be set. It does not reflect the state of the pin.
// If we want to reflect the actual state of the pin we'd also
// need to check against heatPin[a->index].get().
if (heatStatus[a->index]) {
if (softSwitchHeat[a->index] == SOFTSWITCH_AUTO) {
setOutput(i, output_recipes[a->recipe_id][2]);
}
else {
setOutput(i, output_recipes[a->recipe_id][3]);
}
}
else {
if (softSwitchHeat[a->index] == SOFTSWITCH_AUTO) {
setOutput(i, output_recipes[a->recipe_id][1]);
}
else {
setOutput(i, output_recipes[a->recipe_id][0]);
}
}
}
else if (a->type == 2) {
// this is a PV output
#ifdef PVOUT
if (vlvBits & (1 << a->index)) {
if (softSwitchPv[a->index] == SOFTSWITCH_AUTO) {
setOutput(i, output_recipes[a->recipe_id][2]);
}
else {
setOutput(i, output_recipes[a->recipe_id][3]);
}
}
else {
if (softSwitchPv[a->index] == SOFTSWITCH_AUTO) {
setOutput(i, output_recipes[a->recipe_id][1]);
}
else {
setOutput(i, output_recipes[a->recipe_id][0]);
}
}
#endif
}
}
}
}
void RGBIO8::restart() {
Wire.beginTransmission(i2c_address);
Wire.send(0xfd);
Wire.endTransmission();
}
void RGBIO8::setIdMode(byte id_mode) {
Wire.beginTransmission(i2c_address);
Wire.send(0xfe);
Wire.send(id_mode);
Wire.endTransmission();
}
void RGBIO8::setAddress(byte a) {
Wire.beginTransmission(i2c_address);
Wire.send(0xff);
Wire.send(a);
Wire.endTransmission();
}
int RGBIO8::getInputs(uint8_t *m, uint8_t *a) {
Wire.requestFrom(i2c_address, 3);
uint8_t inputs_m = Wire.receive();
uint8_t inputs_a = Wire.receive();
uint8_t crc = Wire.receive();
uint8_t crc_comp = '*';
crc_comp = crc8(crc_comp, inputs_m);
crc_comp = crc8(crc_comp, inputs_a);
if (crc == crc_comp) {
*m = inputs_m;
*a = inputs_a;
return 1;
}
else {
return 0;
}
}
void RGBIO8::setOutput(byte output, uint16_t rgb) {
Wire.beginTransmission(i2c_address);
Wire.send(0x01);
Wire.send(output);
Wire.send((uint8_t*) &rgb, 2);
Wire.endTransmission();
}
uint8_t RGBIO8::crc8(uint8_t inCrc, uint8_t inData ) {
uint8_t i;
uint8_t data;
data = inCrc ^ inData;
for (i = 0; i < 8; i++) {
if ((data & 0x80) != 0) {
data <<= 1;
data ^= 0x07;
}
else {
data <<= 1;
}
}
return data;
}
#endif