-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathinference.py
150 lines (122 loc) · 5.91 KB
/
inference.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
from accelerate.utils import set_seed
from tqdm import tqdm
import argparse
import json
import numpy as np
import openai
import random
import torch
def select_models(args):
generator = None
evaluator = None
retriever_gen = None
retriever_eval = None
# if args.generator_name.startswith("gpt"):
# from generators.openai_generator import OpenaiGenerator
# generator = OpenaiGenerator(args.generator_name)
# else:
if args.generator_peft_dir == "":
from generators.hf_generator import HFGenerator
generator = HFGenerator(args.generator_name, device="cuda")
else:
from generators.hf_generator import HFLoraGenerator
generator = HFLoraGenerator(args.generator_name, args.generator_peft_dir, device="cuda")
if args.evaluator_name == "oracle":
from evaluators.oracle_evaluator import OracleEvaluator
evaluator = OracleEvaluator(args.db_path, args.oracle_prob)
elif args.evaluator_name.startswith("codellama"):
if args.evaluator_peft_dir == "":
from evaluators.codellama_evaluator import CodeLlamaEvaluator
evaluator = CodeLlamaEvaluator(args.evaluator_name, args.db_path, device="cuda")
else:
from evaluators.codellama_evaluator import CodeLlamaLoraEvaluator
evaluator = CodeLlamaLoraEvaluator(args.evaluator_name, args.evaluator_peft_dir, args.db_path, device="cuda")
elif args.evaluator_name.startswith("gpt"):
from evaluators.openai_evaluator import OpenaiEvaluator
evaluator = OpenaiEvaluator(args.evaluator_name, args.db_path)
# elif "starcoder" in args.evaluator_name:
# from evaluators.starcoder_evaluator import StarcoderEvaluator
# evaluator = StarcoderEvaluator(args.evaluator_name, args.db_path, device="cuda")
if args.retriever_name == "bm25":
from retrievers.bm25 import BM25Retriever
if args.retriever_corpus_gen:
retriever_gen = BM25Retriever(args.retriever_name, args.retriever_corpus_gen, args.retrieve_k)
if args.retriever_corpus_eval:
retriever_eval = BM25Retriever(args.retriever_name, args.retriever_corpus_eval, args.retrieve_k)
return generator, evaluator, retriever_gen, retriever_eval
def select_method(method_name):
if method_name == "mctot":
from planning_methods.mc_tot import mc_tot
return mc_tot
elif method_name == "greedy":
from planning_methods.greedy import greedy
return greedy
elif method_name == "rerank":
from planning_methods.rerank import rerank
return rerank
elif method_name == "iter_corr":
from planning_methods.iter_correction import iter_correction
return iter_correction
else:
raise Exception("Invalid method.")
def inference(generator, evaluator, retriever_gen, retriever_eval, args):
test_data = json.load(open(args.test_fname))
method = select_method(args.method_name)
results = []
log = []
for ex in tqdm(test_data):
res_sql = method(ex, generator, evaluator, retriever_gen, retriever_eval, args, log)
if args.dataset_name == "spider":
results.append(res_sql + "\t" + ex["db_id"]) # spider
elif args.dataset_name == "bird":
results.append(res_sql + "\t----- bird -----\t" + ex["db_id"])
else:
raise Exception("Invalid dataset name.")
if args.dataset_name == "spider":
out = open(args.result_fname, "w+", encoding="utf-8")
out.write("\n".join(results))
out.close()
elif args.dataset_name == "bird":
out = open(args.result_fname, "w+", encoding="utf-8")
json.dump(results, out, indent=2)
out.close()
else:
raise Exception("Invalid dataset name.")
if args.log_fname != "":
out = open("log/" + args.log_fname, "w+", encoding="utf-8")
json.dump(log, out, indent=2)
out.close()
def set_seed_all(seed):
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
set_seed(seed)
if torch.cuda.is_available():
torch.cuda.manual_seed_all(seed)
if __name__ == "__main__":
args_parser = argparse.ArgumentParser()
args_parser.add_argument('--test_fname', type=str, default='data/spider_dev.json')
args_parser.add_argument('--result_fname', type=str, default='spider_dev.sql')
args_parser.add_argument('--log_fname', type=str, default='spider_dev.json')
args_parser.add_argument('--dataset_name', type=str, default='spider')
args_parser.add_argument('--db_path', type=str, default='../spider/database')
args_parser.add_argument('--method_name', type=str, default='mctot')
args_parser.add_argument('--generator_name', type=str, default='bigcode/starcoderbase')
args_parser.add_argument('--generator_peft_dir', type=str, default='')
args_parser.add_argument('--evaluator_name', type=str, default='') #codellama/CodeLlama-13b-Instruct-hf
args_parser.add_argument('--evaluator_peft_dir', type=str, default='')
args_parser.add_argument('--oracle_prob', type=float, default=1.0)
args_parser.add_argument('--retriever_name', type=str, default='')
args_parser.add_argument('--retriever_corpus_gen', type=str, default='data/spider_train.json')
args_parser.add_argument('--retriever_corpus_eval', type=str, default='')
args_parser.add_argument('--retrieve_k', type=int, default=1)
args_parser.add_argument('--seed', type=int, default=42)
args_parser.add_argument('--api_key', type=str, default='')
args_parser.add_argument('--generation_config', type=str, default='generation_configs/temp_sampling.json')
args_parser.add_argument('--evaluation_config', type=str, default='')
args = args_parser.parse_args()
set_seed_all(args.seed)
if args.api_key:
openai.api_key = args.api_key
generator, evaluator, retriever_gen, retriever_eval = select_models(args)
inference(generator, evaluator, retriever_gen, retriever_eval, args)