-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrun_with_faulty_gps.py
409 lines (301 loc) · 13.6 KB
/
run_with_faulty_gps.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
import os
import cv2
import folium
import torch
import glob
import re
import numpy as np
from sahi.models.yolov8 import Yolov8DetectionModel
from sahi.predict import get_sliced_prediction
import pickle
from deep_sort_realtime.deepsort_tracker import DeepSort
import argsForParameters
import transformations
from googleMapsApi import grabNewGoogleMapsImage, googleMapsImageNeedsToUpdate
model_path = 'car_detection_model.pt'
model_conf = 0.65
dimOfImage = 1664
imgPixelCenter = (transformations.dimOfResizedImage / 2,
transformations.dimOfResizedImage / 2)
mapPath = 'currentLocation.png'
roadMaskPath = 'roadMask.png'
buildingMaskPath = 'buildingMask.png'
detectionsMaskPath = 'detectionsMask.png'
# "mobilenet",
# "torchreid",
# "clip_RN50",
# "clip_RN101",
# "clip_RN50x4",
# "clip_RN50x16",
# "clip_ViT-B/32",
# "clip_ViT-B/16",
tracker = DeepSort(max_age=5, embedder="clip_RN50", embedder_gpu=False)
model = Yolov8DetectionModel(
model_path=model_path,
confidence_threshold=model_conf,
device='mps' if torch.backends.mps.is_available() else 'cpu'
)
# this runs sliced window inference, this provides better results for ariel drone footage
def inference_with_sahi(img):
result = get_sliced_prediction(
img,
model,
slice_height=832,
slice_width=832,
overlap_height_ratio=0.2,
overlap_width_ratio=0.2)
return result
# this grabs the meta data for a single frame
def getParams(filePath):
gpsFile = open(filePath)
line = gpsFile.readline()
pos = re.findall(r'[-+]?\d*\.?\d+', line)
pos = [float(i) for i in pos]
line = gpsFile.readline()
# height = int(re.findall(r'[-+]?\d*\.?\d+', line)[0])
line = gpsFile.readline()
rot = int(re.findall(r'[-+]?\d*\.?\d+', line)[0])
return pos, rot
# this generates a mask for detection results, lets us filter out detection results
def createDetectionsMask(detectionsMaskPath, detectionImageShape, originalImageShape, detections, resize, rotation):
mask = np.ones(detectionImageShape)
mask.fill(255)
for detection in detections:
bbox = detection.bbox
mask[int(bbox.miny):int(bbox.maxy), int(bbox.minx):int(bbox.maxx)] = 0
mask = cv2.resize(mask, (originalImageShape[1], originalImageShape[0]))
if rotation != 0:
mask, _ = transformations.rotateImage(mask, rotation)
w_new, h_new = resize[0], resize[1]
h_old, w_old = mask.shape
h_new = int(h_old * w_new / w_old)
mask = cv2.resize(mask.astype('float32'), (w_new, h_new))
cv2.imwrite(detectionsMaskPath, mask)
# this returns the files in a sorted list
def findFiles(framesDir):
files = glob.glob(f'{framesDir}/*')
files.sort()
return files
def getDetections(cachedDetectionsPath, frameName, image):
results = None
if os.path.isfile(cachedDetectionsPath):
detectionsFile = open(cachedDetectionsPath, 'rb')
results = pickle.load(detectionsFile)
detectionsFile.close()
print(f'for {frameName} cached detections found')
else:
results = inference_with_sahi(image)
detectionsFile = open(cachedDetectionsPath, 'ab')
pickle.dump(results, detectionsFile)
detectionsFile.close()
print(
f'for {frameName} cached detections not found, new cached detections saved')
return results
def getTracking(cachedTrackingPath, results, droneImage, frameName):
tracks = None
if os.path.isfile(cachedTrackingPath):
trackingFile = open(cachedTrackingPath, 'rb')
tracks = pickle.load(trackingFile)
trackingFile.close()
print(f'for {frameName} cached tracking found')
else:
originalImg_h, originalImg_w, _ = droneImage.shape
resultsList = []
# loop over the detections
for result in results.object_prediction_list:
xmin, ymin, xmax, ymax = int(result.bbox.minx), int(
result.bbox.miny), int(result.bbox.maxx), int(result.bbox.maxy)
xmin, ymin, xmax, ymax = convertPredictionsToImageSpace(
xmin, ymin, xmax, ymax, originalImg_w, originalImg_h)
resultsList.append(
[[xmin, ymin, xmax - xmin, ymax - ymin], str(result.score.value), result.category])
tracks = tracker.update_tracks(resultsList, frame=droneImage)
trackingFile = open(cachedTrackingPath, 'ab')
pickle.dump(tracks, trackingFile)
trackingFile.close()
print(
f'for {frameName} cached tracking not found, new cached tracking saved')
return tracks
# this calculates the GPS position using pixel positions and the expected image size
def calculateGPSPosOfObject(center, imgPixelCenter, pos, zoom):
x = center[0]
y = center[1]
xDistFromCenter = (x - imgPixelCenter[0])
yDistFromCenter = (imgPixelCenter[1] - y)
lat = pos[0]
long = pos[1]
degrees_per_meter = 360 / (2 * np.pi * 6378137)
meters_per_pixel = 156543.03392 / (2 ** zoom)
lat_factor = np.cos(lat * np.pi / 180)
# image_shape = map_image.shape
delta_lat = yDistFromCenter * degrees_per_meter * meters_per_pixel * lat_factor
delta_long = xDistFromCenter * degrees_per_meter * meters_per_pixel
xcord = delta_long + long
ycord = delta_lat + lat
return (ycord, xcord)
def getPixelPositionInMapImage(minx, miny, maxx, maxy, transform, usingHomography):
xDet = minx + ((maxx - minx) / 2)
yDet = miny + ((maxy - miny) / 2)
positionInOriginal = np.array([xDet, yDet, 1]).T
x, y = None, None
positionInMap = np.matmul(transform, positionInOriginal)
if usingHomography:
# make x, y homogeneous
x, y = positionInMap[0] / \
positionInMap[2], positionInMap[1] / positionInMap[2]
else:
x, y = positionInMap[0], positionInMap[1]
return (int(x), int(y))
def convertPredictionsToImageSpace(minx, miny, maxx, maxy, originalImg_w, originalImg_h):
minx = originalImg_w * minx / dimOfImage
maxx = originalImg_w * maxx / dimOfImage
miny = originalImg_h * miny / dimOfImage
maxy = originalImg_h * maxy / dimOfImage
return minx, miny, maxx, maxy
def getRandomColors(numColors=500):
rng = np.random.default_rng()
colorValues = rng.choice(16777215, numColors, replace=False)
return [hex(color).replace('0x', '#').ljust(7, '0') for color in colorValues]
def drawPositionsOnMap(setsOfFrames: dict, colors, carMap):
for setNum in setsOfFrames:
for track_id in setsOfFrames[setNum]:
positions = setsOfFrames[setNum][track_id]
if len(positions) > 1:
for pos in positions:
folium.CircleMarker(
pos, radius=1, color=colors[track_id], fill_color=colors[track_id]).add_to(carMap)
def fileNames(args, err_in_gps):
carsText = 'filtering_cars' if args.filterCars else 'not_filtering_cars'
roadsText = 'filtering_roads' if args.filterRoads else 'not_filtering_roads'
buildingsText = 'filter_buildings' if args.filterBuildings else 'not_filter_buildings'
SGText = 'SuperGlue' if args.SuperGlue else 'not_SuperGlue'
LoFTRText = 'LoFTR' if args.LoFTR else 'not_LoFTR'
HomographyText = 'Homography' if args.homography else 'Affine2D'
base = f'err_{err_in_gps}_run_{carsText}_{roadsText}_{buildingsText}_{SGText}_{LoFTRText}_{HomographyText}'
saveHTMLName = f'gps_errors_html_results/{base}.html'
savegpsposHTMLName = f'gps_errors_html_results/reported_gps{base}.html'
savePickleName = f'gps_errors_GPS_results/{base}'
return saveHTMLName, savegpsposHTMLName, savePickleName
def need_to_delete_tracks(last_param_path, param_path):
last_area = last_param_path[last_param_path.find("params")+7:-7]
new_area = param_path[param_path.find("params")+7:-7]
return last_area != new_area
def apply_error_to_gps_position(pos, err_in_gps):
lat = pos[0]
long = pos[1]
err_in_meters_x = 2 * err_in_gps * (np.random.rand() - 0.5)
err_in_meters_y = 2 * err_in_gps * (np.random.rand() - 0.5)
degrees_per_meter = 360 / (2 * np.pi * 6378137)
lat_factor = np.cos(lat * np.pi / 180)
# image_shape = map_image.shape
delta_lat = err_in_meters_x * degrees_per_meter * lat_factor
delta_long = err_in_meters_y * degrees_per_meter
return [lat + delta_lat, long + delta_long]
def main(err_in_gps):
args = argsForParameters.parseArgs(verbose=True)
# clears cache to ensure gps matches aren't faulty
os.system('rm larger_set/cachedmkpts_SuperGlue/*')
os.system('rm larger_set/cachedmkpts_LoFTR/*')
print('Using: ', 'mps' if torch.backends.mps.is_available() else 'cpu')
zoom = 20
saveHTMLName, savegpsposHTMLName, savePickleName = fileNames(
args, err_in_gps)
print('saving to ', saveHTMLName, ' and ',
savePickleName, ' and ', savegpsposHTMLName)
frameFiles = findFiles(args.framesDir)
firstPosFile = frameFiles[0].replace(
args.framesDir, args.dataDir).replace('png', 'txt')
pos, _ = getParams(firstPosFile)
grabNewGoogleMapsImage(pos, mapPath, roadMaskPath, buildingMaskPath, zoom)
carMap = folium.Map(location=[float(pos[0]), float(pos[1])], zoom_start=20,
tiles='cartodbpositron', width=1280, height=960)
gpsMap = folium.Map(location=[float(pos[0]), float(pos[1])], zoom_start=20,
tiles='cartodbpositron', width=1280, height=960)
google_maps_pos = pos
colors = getRandomColors()
setIdx = 0
setsOfFrames = dict()
setsOfFrames[0] = dict()
last_param_path = ""
for i, frameName in enumerate(frameFiles):
fileFound = True
paramPath = None
pos = None
rot = None
try:
paramPath = frameName.replace(
args.framesDir, args.dataDir).replace('png', 'txt')
pos, rot = getParams(paramPath)
except:
fileFound = False
print(paramPath, 'not found')
if fileFound:
pos = apply_error_to_gps_position(pos, err_in_gps)
folium.CircleMarker(
pos, radius=1).add_to(gpsMap)
if need_to_delete_tracks(last_param_path, paramPath):
tracker.delete_all_tracks()
print('deleting tracks, setting new area')
colors = getRandomColors()
setIdx += 1
setsOfFrames[setIdx] = dict()
last_param_path = paramPath
if googleMapsImageNeedsToUpdate(google_maps_pos, pos):
print('grabbing new google maps image')
grabNewGoogleMapsImage(
pos, mapPath, roadMaskPath, buildingMaskPath, zoom)
google_maps_pos = pos
droneImage = cv2.imread(frameName)
imageForDetection = cv2.cvtColor(droneImage, cv2.COLOR_BGR2RGB)
imageForDetection = cv2.resize(
imageForDetection, (dimOfImage, dimOfImage))
numCars = 0
cachedDetectionsPath = frameName.replace(
args.framesDir, args.cacheDetDir).replace('.png', '')
results = getDetections(
cachedDetectionsPath, frameName, imageForDetection)
# originalH, originalW, _ = droneImage.shape
# detectionH, detectionW, _ = imageForDetection.shape
# for result in results.object_prediction_list:
# x_min, x_max, y_min, y_max = result.bbox.minx, result.bbox.maxx, result.bbox.miny, result.bbox.maxy
# x_scale = originalW / detectionW
# y_scale = originalH / detectionH
# x_min, x_max, y_min, y_max = x_min * x_scale, x_max * \
# x_scale, y_min * y_scale, y_max * y_scale
# cv2.rectangle(droneImage, (int(x_min), int(
# y_min)), (int(x_max), int(y_max)), (0, 0, 255), 2)
# cv2.imwrite("sampleDetections.png", droneImage)
createDetectionsMask(detectionsMaskPath, imageForDetection.shape[0:2], droneImage.shape[
0:2], results.object_prediction_list, transformations.opt['resize'], rot)
transform = transformations.findTransform(
frameName, mapPath, roadMaskPath, buildingMaskPath, detectionsMaskPath, rot, args, verbose=True)
cachedTrackingPath = frameName.replace(
args.framesDir, args.cacheTrackDir).replace('.png', '')
tracks = getTracking(cachedTrackingPath,
results, droneImage, frameName)
for track in tracks:
track_id = int(track.track_id)
if track.is_tentative() and track_id not in setsOfFrames[setIdx]:
setsOfFrames[setIdx][track_id] = []
if (track.is_confirmed() or track.is_tentative()) and track.time_since_update < 1:
ltrb = track.to_ltrb()
xmin, ymin, xmax, ymax = int(ltrb[0]), int(
ltrb[1]), int(ltrb[2]), int(ltrb[3])
center = getPixelPositionInMapImage(
xmin, ymin, xmax, ymax, transform, args.homography)
dis = calculateGPSPosOfObject(
center, imgPixelCenter, google_maps_pos, zoom)
setsOfFrames[setIdx][track_id].append(dis)
numCars += 1
print(f'found {numCars} cars in {frameName}')
drawPositionsOnMap(setsOfFrames, colors, carMap)
detections = open(savePickleName, 'wb')
pickle.dump(setsOfFrames, detections)
detections.close()
carMap.save(saveHTMLName)
gpsMap.save(savegpsposHTMLName)
if __name__ == "__main__":
errs_in_gps = [50]
# errs_in_gps = [40]
for err_in_gps in errs_in_gps:
main(err_in_gps)