-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathtraining.py
37 lines (32 loc) · 1.07 KB
/
training.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
import sagemaker
from sagemaker.huggingface import HuggingFace
import boto3
try:
role = sagemaker.get_execution_role()
except ValueError:
iam = boto3.client('iam')
role = iam.get_role(RoleName='sagemaker_execution_role')['Role']['Arn']
hyperparameters = {
'model_name_or_path': 'mosaicml/mpt-7b',
'output_dir': '/opt/ml/model'
# add your remaining hyperparameters
# more info here https://github.com/huggingface/transformers/tree/v4.26.0/examples/pytorch/language-modeling
}
# git configuration to download our fine-tuning script
git_config = {
'repo': 'https://github.com/huggingface/transformers.git', 'branch': 'v4.26.0'}
# creates Hugging Face estimator
huggingface_estimator = HuggingFace(
entry_point='run_clm.py',
source_dir='./examples/pytorch/language-modeling',
instance_type='ml.p3.2xlarge',
instance_count=1,
role=role,
git_config=git_config,
transformers_version='4.26.0',
pytorch_version='1.13.1',
py_version='py39',
hyperparameters=hyperparameters
)
# starting the train job
huggingface_estimator.fit()