diff --git a/CMakeLists.txt b/CMakeLists.txt index c283ef5..c55f617 100644 --- a/CMakeLists.txt +++ b/CMakeLists.txt @@ -1,9 +1,10 @@ -cmake_minimum_required(VERSION 3.1.3) +cmake_minimum_required(VERSION 3.15) enable_language(C) enable_language(CXX) set(CMAKE_CXX_STANDARD 17) +set(CMAKE_POLICY_DEFAULT_CMP0077 NEW) if(POLICY CMP0077) cmake_policy(SET CMP0077 NEW) endif() @@ -31,7 +32,7 @@ set(CROW_BUILD_DOCS Off) # add crow project to the build FetchContent_Declare(crow GIT_REPOSITORY https://github.com/CrowCpp/Crow.git - GIT_TAG v1.0+5 + GIT_TAG v1.2.0 ) if(NOT crow_POPULATED) @@ -49,16 +50,16 @@ if(NOT expected_POPULATED) endif(NOT expected_POPULATED) # add crypt++ (+cmake) library -set(CRYPTOPP_BUILD_TESTING Off) -set(CRYPTOPP_INSTALL Off) +#set(CRYPTOPP_BUILD_TESTING Off) +#set(CRYPTOPP_INSTALL Off) -if(NOT cryptopp_POPULATED) - FetchContent_Declare(cryptopp - GIT_REPOSITORY https://github.com/abdes/cryptopp-cmake.git - GIT_TAG CRYPTOPP_8_7_0) - FetchContent_Populate(cryptopp) - add_subdirectory(${cryptopp_SOURCE_DIR} ${cryptopp_BINARY_DIR}) -endif(NOT cryptopp_POPULATED) +#if(NOT cryptopp_POPULATED) +# FetchContent_Declare(cryptopp +# GIT_REPOSITORY https://github.com/abdes/cryptopp-cmake.git +# GIT_TAG CRYPTOPP_8_7_0_1) +# FetchContent_Populate(cryptopp) +# add_subdirectory(${cryptopp_SOURCE_DIR} ${cryptopp_BINARY_DIR}) +#endif(NOT cryptopp_POPULATED) include(CTest) enable_testing() @@ -91,7 +92,7 @@ set(LIB_SOURCES src/big_int.hpp src/big_int.cpp ) add_library(oc-mint-lib ${LIB_SOURCES}) -target_link_libraries(oc-mint-lib PUBLIC Crow::Crow cryptopp::cryptopp) +target_link_libraries(oc-mint-lib PUBLIC Crow::Crow) # cryptopp::cryptopp) target_include_directories(oc-mint-lib PUBLIC ${expected_SOURCE_DIR}/include src) add_executable(${PROJECT_NAME} src/main.cpp) diff --git a/test/test_crypto.cpp b/test/test_crypto.cpp index da002c5..5b5e485 100644 --- a/test/test_crypto.cpp +++ b/test/test_crypto.cpp @@ -1,252 +1,250 @@ #include -#include "cryptlib.h" -#include "integer.h" -#include "nbtheory.h" -#include "osrng.h" -#include "rsa.h" -#include "sha.h" +//#include "cryptlib.h" +//#include "integer.h" +//#include "nbtheory.h" +//#include "osrng.h" +//#include "rsa.h" +//#include "sha.h" #include #include - -CryptoPP::Integer blind_signature(const CryptoPP::SecByteBlock& orig, - CryptoPP::Integer& r, - const CryptoPP::RSA::PublicKey& pub_key, - const CryptoPP::RSA::PrivateKey& priv_key) { - using namespace CryptoPP; - using std::cout; - using std::endl; +/* +CryptoPP::Integer blind_signature(const CryptoPP::SecByteBlock &orig, + const CryptoPP::Integer &r, + const CryptoPP::RSA::PublicKey &pub_key, + const CryptoPP::RSA::PrivateKey &priv_key) { + using namespace CryptoPP; + using std::cout; + using std::endl; // Convenience - const Integer &n = pub_key.GetModulus(); - const Integer &e = pub_key.GetPublicExponent(); - const Integer &d = priv_key.GetPrivateExponent(); + const Integer &n = pub_key.GetModulus(); + const Integer &e = pub_key.GetPublicExponent(); +// const Integer &d = priv_key.GetPrivateExponent(); // For sizing the hashed message buffer. This should be SHA256 size. - const size_t sig_size = UnsignedMin(SHA256::BLOCKSIZE, n.ByteCount()); + const size_t sig_size = UnsignedMin(SHA256::BLOCKSIZE, n.ByteCount()); // Scratch - SecByteBlock buff_1, buff_2, buff_3; + SecByteBlock buff_1, buff_2, buff_3; - Integer m(orig.data(), orig.size()); - cout << "Message: " << std::hex << m << endl; + Integer m(orig.data(), orig.size()); + cout << "Message: " << std::hex << m << endl; - // Hash message per Rabin (1979) - buff_1.resize(sig_size); - SHA256 hash_1; - hash_1.CalculateTruncatedDigest(buff_1, buff_1.size(), orig, orig.size()); + // Hash message per Rabin (1979) + buff_1.resize(sig_size); + SHA256 hash_1; + hash_1.CalculateTruncatedDigest(buff_1, buff_1.size(), orig, orig.size()); - // H(m) as Integer - Integer hm(buff_1.data(), buff_1.size()); - cout << "H(m): " << std::hex << hm << endl; + // H(m) as Integer + Integer hm(buff_1.data(), buff_1.size()); + cout << "H(m): " << std::hex << hm << endl; - // Blinding factor - Integer b = a_exp_b_mod_c(r, e, n); - cout << "Random: " << std::hex << b << endl; + // Blinding factor + Integer b = a_exp_b_mod_c(r, e, n); + cout << "Random: " << std::hex << b << endl; - // Alice blinded message - Integer mm = a_times_b_mod_c(hm, b, n); - cout << "Blind msg: " << std::hex << mm << endl; + // Alice blinded message + Integer mm = a_times_b_mod_c(hm, b, n); + cout << "Blind msg: " << std::hex << mm << endl; - AutoSeededRandomPool prng; + AutoSeededRandomPool prng; - // Bob sign - Integer ss = priv_key.CalculateInverse(prng, mm); - cout << "Blind sign: " << ss << endl; + // Bob sign + Integer ss = priv_key.CalculateInverse(prng, mm); + cout << "Blind sign: " << ss << endl; - return ss; + return ss; } -CryptoPP::Integer unblind_signature(CryptoPP::Integer const & ss, - CryptoPP::Integer& r, - - const CryptoPP::RSA::PublicKey& pub_key) -{ - - const CryptoPP::Integer &n = pub_key.GetModulus(); - CryptoPP::Integer s = a_times_b_mod_c(ss, r.InverseMod(n), n); - return s; +CryptoPP::Integer unblind_signature(const CryptoPP::Integer &ss, + const CryptoPP::Integer &r, + const CryptoPP::RSA::PublicKey &pub_key) { + + const CryptoPP::Integer &n = pub_key.GetModulus(); + CryptoPP::Integer s = a_times_b_mod_c(ss, r.InverseMod(n), n); + return s; } -CryptoPP::Integer verify(CryptoPP::Integer const & ss, - CryptoPP::Integer& r, - - const CryptoPP::RSA::PublicKey& pub_key) -{ - CryptoPP::Integer s = unblind_signature(ss,r,pub_key); - CryptoPP::Integer v = pub_key.ApplyFunction(s); - return v; +CryptoPP::Integer verify(CryptoPP::Integer const &ss, + const CryptoPP::Integer &r, + const CryptoPP::RSA::PublicKey &pub_key) { + CryptoPP::Integer s = unblind_signature(ss, r, pub_key); + CryptoPP::Integer v = pub_key.ApplyFunction(s); + return v; } TEST_CASE("cryptopp1", "[crypto]") { - using namespace CryptoPP; - using std::cout; - using std::endl; - using std::runtime_error; - - // Bob artificially small key pair - AutoSeededRandomPool prng; - RSA::PrivateKey priv_key; - - priv_key.GenerateRandomWithKeySize(prng, 64U); - RSA::PublicKey pub_key(priv_key); - - // Convenience - const Integer &n = pub_key.GetModulus(); - const Integer &e = pub_key.GetPublicExponent(); - const Integer &d = priv_key.GetPrivateExponent(); - - // Print params - cout << "Pub mod: " << std::hex << pub_key.GetModulus() << endl; - cout << "Pub exp: " << std::hex << e << endl; - cout << "Priv mod: " << std::hex << priv_key.GetModulus() << endl; - cout << "Priv exp: " << std::hex << d << endl; - const char* MESSAGE = "secret"; - SecByteBlock orig((const byte *)MESSAGE, 6U); - - // Alice blinding - Integer r; - do { - r.Randomize(prng, Integer::One(), n - Integer::One()); - } while (!RelativelyPrime(r, n)); - CryptoPP::Integer ss = blind_signature(orig, - r, - pub_key, - priv_key); - // Alice checks s(s'(x)) = x. This is from Chaum's paper - Integer c = pub_key.ApplyFunction(ss); - cout << "Check sign: " << c << endl; - //if (c != mm) { - // throw runtime_error("Alice cross-check failed"); - // } - // Alice remove blinding - Integer s = unblind_signature(ss, r, pub_key); - cout << "Unblind sign: " << s << endl; - - // Eve verifies - Integer v = verify(ss, r, pub_key); - cout << "Verify: " << std::hex << v << endl; - - // Scratch - SecByteBlock buff_2, buff_3; - - // Convert to a string - size_t req = v.MinEncodedSize(); - buff_2.resize(req); - v.Encode(&buff_2[0], buff_2.size()); - - // Hash message per Rabin (1979) - const size_t sig_size = UnsignedMin(SHA256::BLOCKSIZE, n.ByteCount()); - buff_3.resize(sig_size); - SHA256 hash_2; - hash_2.CalculateTruncatedDigest(buff_3, buff_3.size(), orig, orig.size()); - - // Constant time compare - bool equal = buff_2.size() == buff_3.size() && - VerifyBufsEqual(buff_2.data(), buff_3.data(), buff_3.size()); - - if (!equal) { - throw runtime_error("Eve verified failed"); - } - cout << "Verified signature" << endl; + using namespace CryptoPP; + using std::cout; + using std::endl; + using std::runtime_error; + // Bob artificially small key pair + AutoSeededRandomPool prng; + RSA::PrivateKey priv_key; + + priv_key.GenerateRandomWithKeySize(prng, 64U); + RSA::PublicKey pub_key(priv_key); + + // Convenience + const Integer &n = pub_key.GetModulus(); + const Integer &e = pub_key.GetPublicExponent(); + const Integer &d = priv_key.GetPrivateExponent(); + + // Print params + cout << "Pub mod: " << std::hex << pub_key.GetModulus() << endl; + cout << "Pub exp: " << std::hex << e << endl; + cout << "Priv mod: " << std::hex << priv_key.GetModulus() << endl; + cout << "Priv exp: " << std::hex << d << endl; + const char *MESSAGE = "secret"; + SecByteBlock orig((const byte *) MESSAGE, 6U); + + // Alice blinding + Integer r; + do { + r.Randomize(prng, Integer::One(), n - Integer::One()); + } while (!RelativelyPrime(r, n)); + CryptoPP::Integer ss = blind_signature(orig, + r, + pub_key, + priv_key); + // Alice checks s(s'(x)) = x. This is from Chaum's paper + Integer c = pub_key.ApplyFunction(ss); + cout << "Check sign: " << c << endl; + //if (c != mm) { + // throw runtime_error("Alice cross-check failed"); + // } + // Alice remove blinding + Integer s = unblind_signature(ss, r, pub_key); + cout << "Unblind sign: " << s << endl; + + // Eve verifies + Integer v = verify(ss, r, pub_key); + cout << "Verify: " << std::hex << v << endl; + + // Scratch + SecByteBlock buff_2, buff_3; + + // Convert to a string + size_t req = v.MinEncodedSize(); + buff_2.resize(req); + v.Encode(&buff_2[0], buff_2.size()); + + // Hash message per Rabin (1979) + const size_t sig_size = UnsignedMin(SHA256::BLOCKSIZE, n.ByteCount()); + buff_3.resize(sig_size); + SHA256 hash_2; + hash_2.CalculateTruncatedDigest(buff_3, buff_3.size(), orig, orig.size()); + + // Constant time compare + bool equal = buff_2.size() == buff_3.size() && + VerifyBufsEqual(buff_2.data(), buff_3.data(), buff_3.size()); + + if (!equal) { + throw runtime_error("Eve verified failed"); + } + cout << "Verified signature" << endl; -} +} +*/ +/* TEST_CASE("cryptopp", "[crypto]") { - using namespace CryptoPP; - using std::cout; - using std::endl; - using std::runtime_error; - - // Bob artificially small key pair - AutoSeededRandomPool prng; - RSA::PrivateKey priv_key; - - priv_key.GenerateRandomWithKeySize(prng, 64U); - RSA::PublicKey pub_key(priv_key); - - // Convenience - const Integer &n = pub_key.GetModulus(); - const Integer &e = pub_key.GetPublicExponent(); - const Integer &d = priv_key.GetPrivateExponent(); - - // Print params - cout << "Pub mod: " << std::hex << pub_key.GetModulus() << endl; - cout << "Pub exp: " << std::hex << e << endl; - cout << "Priv mod: " << std::hex << priv_key.GetModulus() << endl; - cout << "Priv exp: " << std::hex << d << endl; - - // For sizing the hashed message buffer. This should be SHA256 size. - const size_t sig_size = UnsignedMin(SHA256::BLOCKSIZE, n.ByteCount()); - - // Scratch - SecByteBlock buff_1, buff_2, buff_3; - - // Alice original message to be signed by Bob - SecByteBlock orig((const byte *)"secret", 6U); - Integer m(orig.data(), orig.size()); - cout << "Message: " << std::hex << m << endl; - - // Hash message per Rabin (1979) - buff_1.resize(sig_size); - SHA256 hash_1; - hash_1.CalculateTruncatedDigest(buff_1, buff_1.size(), orig, orig.size()); - - // H(m) as Integer - Integer hm(buff_1.data(), buff_1.size()); - cout << "H(m): " << std::hex << hm << endl; - - // Alice blinding - Integer r; - do { - r.Randomize(prng, Integer::One(), n - Integer::One()); - } while (!RelativelyPrime(r, n)); - - // Blinding factor - Integer b = a_exp_b_mod_c(r, e, n); - cout << "Random: " << std::hex << b << endl; - - // Alice blinded message - Integer mm = a_times_b_mod_c(hm, b, n); - cout << "Blind msg: " << std::hex << mm << endl; - - // Bob sign - Integer ss = priv_key.CalculateInverse(prng, mm); - cout << "Blind sign: " << ss << endl; - - // Alice checks s(s'(x)) = x. This is from Chaum's paper - Integer c = pub_key.ApplyFunction(ss); - cout << "Check sign: " << c << endl; - if (c != mm) { - throw runtime_error("Alice cross-check failed"); - } - // Alice remove blinding - Integer s = a_times_b_mod_c(ss, r.InverseMod(n), n); - cout << "Unblind sign: " << s << endl; - - // Eve verifies - Integer v = pub_key.ApplyFunction(s); - cout << "Verify: " << std::hex << v << endl; - - // Convert to a string - size_t req = v.MinEncodedSize(); - buff_2.resize(req); - v.Encode(&buff_2[0], buff_2.size()); - - // Hash message per Rabin (1979) - buff_3.resize(sig_size); - SHA256 hash_2; - hash_2.CalculateTruncatedDigest(buff_3, buff_3.size(), orig, orig.size()); - - // Constant time compare - bool equal = buff_2.size() == buff_3.size() && - VerifyBufsEqual(buff_2.data(), buff_3.data(), buff_3.size()); - - if (!equal) { - throw runtime_error("Eve verified failed"); - } - cout << "Verified signature" << endl; + using namespace CryptoPP; + using std::cout; + using std::endl; + using std::runtime_error; + + // Bob artificially small key pair + AutoSeededRandomPool prng; + RSA::PrivateKey priv_key; + + priv_key.GenerateRandomWithKeySize(prng, 64U); + RSA::PublicKey pub_key(priv_key); + + // Convenience + const Integer &n = pub_key.GetModulus(); + const Integer &e = pub_key.GetPublicExponent(); + const Integer &d = priv_key.GetPrivateExponent(); + + // Print params + cout << "Pub mod: " << std::hex << pub_key.GetModulus() << endl; + cout << "Pub exp: " << std::hex << e << endl; + cout << "Priv mod: " << std::hex << priv_key.GetModulus() << endl; + cout << "Priv exp: " << std::hex << d << endl; + + // For sizing the hashed message buffer. This should be SHA256 size. + const size_t sig_size = UnsignedMin(SHA256::BLOCKSIZE, n.ByteCount()); + + // Scratch + SecByteBlock buff_1, buff_2, buff_3; + + // Alice original message to be signed by Bob + SecByteBlock orig((const byte *) "secret", 6U); + Integer m(orig.data(), orig.size()); + cout << "Message: " << std::hex << m << endl; + + // Hash message per Rabin (1979) + buff_1.resize(sig_size); + SHA256 hash_1; + hash_1.CalculateTruncatedDigest(buff_1, buff_1.size(), orig, orig.size()); + + // H(m) as Integer + Integer hm(buff_1.data(), buff_1.size()); + cout << "H(m): " << std::hex << hm << endl; + + // Alice blinding + Integer r; + do { + r.Randomize(prng, Integer::One(), n - Integer::One()); + } while (!RelativelyPrime(r, n)); + + // Blinding factor + Integer b = a_exp_b_mod_c(r, e, n); + cout << "Random: " << std::hex << b << endl; + + // Alice blinded message + Integer mm = a_times_b_mod_c(hm, b, n); + cout << "Blind msg: " << std::hex << mm << endl; + + // Bob sign + Integer ss = priv_key.CalculateInverse(prng, mm); + cout << "Blind sign: " << ss << endl; + + // Alice checks s(s'(x)) = x. This is from Chaum's paper + Integer c = pub_key.ApplyFunction(ss); + cout << "Check sign: " << c << endl; + if (c != mm) { + throw runtime_error("Alice cross-check failed"); + } + // Alice remove blinding + Integer s = a_times_b_mod_c(ss, r.InverseMod(n), n); + cout << "Unblind sign: " << s << endl; + + // Eve verifies + Integer v = pub_key.ApplyFunction(s); + cout << "Verify: " << std::hex << v << endl; + + // Convert to a string + size_t req = v.MinEncodedSize(); + buff_2.resize(req); + v.Encode(&buff_2[0], buff_2.size()); + + // Hash message per Rabin (1979) + buff_3.resize(sig_size); + SHA256 hash_2; + hash_2.CalculateTruncatedDigest(buff_3, buff_3.size(), orig, orig.size()); + + // Constant time compare + bool equal = buff_2.size() == buff_3.size() && + VerifyBufsEqual(buff_2.data(), buff_3.data(), buff_3.size()); + + if (!equal) { + throw runtime_error("Eve verified failed"); + } + cout << "Verified signature" << endl; } +*/