diff --git a/SuperBuild/CMakeLists.txt b/SuperBuild/CMakeLists.txt index ca3bd6a76..87bf3c6db 100644 --- a/SuperBuild/CMakeLists.txt +++ b/SuperBuild/CMakeLists.txt @@ -251,6 +251,17 @@ externalproject_add(odm_orthophoto ${WIN32_CMAKE_ARGS} ${WIN32_GDAL_ARGS} ) +externalproject_add(fastrasterfilter + DEPENDS eigen34 + GIT_REPOSITORY https://github.com/OpenDroneMap/FastRasterFilter.git + GIT_TAG main + PREFIX ${SB_BINARY_DIR}/fastrasterfilter + SOURCE_DIR ${SB_SOURCE_DIR}/fastrasterfilter + CMAKE_ARGS -DCMAKE_INSTALL_PREFIX:PATH=${SB_INSTALL_DIR} + -DEIGEN3_INCLUDE_DIR=${SB_SOURCE_DIR}/eigen34/ + ${WIN32_CMAKE_ARGS} ${WIN32_GDAL_ARGS} +) + externalproject_add(lastools GIT_REPOSITORY https://github.com/OpenDroneMap/LAStools.git GIT_TAG 250 diff --git a/opendm/dem/commands.py b/opendm/dem/commands.py index 89913f6b6..b7861db4e 100755 --- a/opendm/dem/commands.py +++ b/opendm/dem/commands.py @@ -5,8 +5,6 @@ import math import time import shutil -import functools -import threading import glob import re from joblib import delayed, Parallel @@ -15,11 +13,9 @@ from opendm import io from opendm import system from opendm.concurrency import get_max_memory, parallel_map, get_total_memory -from scipy import ndimage from datetime import datetime from opendm.vendor.gdal_fillnodata import main as gdal_fillnodata from opendm import log -import threading from .ground_rectification.rectify import run_rectification from . import pdal @@ -237,106 +233,30 @@ def compute_euclidean_map(geotiff_path, output_path, overwrite=False): return output_path -def median_smoothing(geotiff_path, output_path, smoothing_iterations=1, window_size=512, num_workers=1): +def median_smoothing(geotiff_path, output_path, window_size=512, num_workers=1): """ Apply median smoothing """ start = datetime.now() if not os.path.exists(geotiff_path): raise Exception('File %s does not exist!' % geotiff_path) - # Prepare temporary files - folder_path, output_filename = os.path.split(output_path) - basename, ext = os.path.splitext(output_filename) - - output_dirty_in = os.path.join(folder_path, "{}.dirty_1{}".format(basename, ext)) - output_dirty_out = os.path.join(folder_path, "{}.dirty_2{}".format(basename, ext)) - - log.ODM_INFO('Starting smoothing...') - - with rasterio.open(geotiff_path, num_threads=num_workers) as img, rasterio.open(output_dirty_in, "w+", BIGTIFF="IF_SAFER", num_threads=num_workers, **img.profile) as imgout, rasterio.open(output_dirty_out, "w+", BIGTIFF="IF_SAFER", num_threads=num_workers, **img.profile) as imgout2: - nodata = img.nodatavals[0] - dtype = img.dtypes[0] - shape = img.shape - for i in range(smoothing_iterations): - log.ODM_INFO("Smoothing iteration %s" % str(i + 1)) - rows, cols = numpy.meshgrid(numpy.arange(0, shape[0], window_size), numpy.arange(0, shape[1], window_size)) - rows = rows.flatten() - cols = cols.flatten() - rows_end = numpy.minimum(rows + window_size, shape[0]) - cols_end= numpy.minimum(cols + window_size, shape[1]) - windows = numpy.dstack((rows, cols, rows_end, cols_end)).reshape(-1, 4) - - filt = functools.partial(ndimage.median_filter, size=9, output=dtype, mode='nearest') - - # We cannot read/write to the same file from multiple threads without causing race conditions. - # To safely read/write from multiple threads, we use a lock to protect the DatasetReader/Writer. - read_lock = threading.Lock() - write_lock = threading.Lock() - - # threading backend and GIL released filter are important for memory efficiency and multi-core performance - Parallel(n_jobs=num_workers, backend='threading')(delayed(window_filter_2d)(img, imgout, nodata , window, 9, filt, read_lock, write_lock) for window in windows) - - # Between each iteration we swap the input and output temporary files - #img_in, img_out = img_out, img_in - if (i == 0): - img = imgout - imgout = imgout2 - else: - img, imgout = imgout, img - - # If the number of iterations was even, we need to swap temporary files - if (smoothing_iterations % 2 != 0): - output_dirty_in, output_dirty_out = output_dirty_out, output_dirty_in - - # Cleaning temporary files - if os.path.exists(output_dirty_out): - os.replace(output_dirty_out, output_path) - if os.path.exists(output_dirty_in): - os.remove(output_dirty_in) + kwargs = { + 'input': geotiff_path, + 'output': output_path, + 'window': window_size, + } + system.run('fastrasterfilter "{input}" ' + '--output "{output}" ' + '--window-size {window} ' + '--radius 5 ' + '--co TILED=YES ' + '--co BIGTIFF=IF_SAFER ' + '--co COMPRESS=DEFLATE '.format(**kwargs), env_vars={'OMP_NUM_THREADS': num_workers}) log.ODM_INFO('Completed smoothing to create %s in %s' % (output_path, datetime.now() - start)) return output_path -def window_filter_2d(img, imgout, nodata, window, kernel_size, filter, read_lock, write_lock): - """ - Apply a filter to dem within a window, expects to work with kernal based filters - - :param img: path to the geotiff to filter - :param imgout: path to write the giltered geotiff to. It can be the same as img to do the modification in place. - :param window: the window to apply the filter, should be a list contains row start, col_start, row_end, col_end - :param kernel_size: the size of the kernel for the filter, works with odd numbers, need to test if it works with even numbers - :param filter: the filter function which takes a 2d array as input and filter results as output. - :param read_lock: threading lock for the read operation - :param write_lock: threading lock for the write operation - """ - shape = img.shape[:2] - if window[0] < 0 or window[1] < 0 or window[2] > shape[0] or window[3] > shape[1]: - raise Exception('Window is out of bounds') - expanded_window = [ max(0, window[0] - kernel_size // 2), max(0, window[1] - kernel_size // 2), min(shape[0], window[2] + kernel_size // 2), min(shape[1], window[3] + kernel_size // 2) ] - - # Read input window - width = expanded_window[3] - expanded_window[1] - height = expanded_window[2] - expanded_window[0] - rasterio_window = rasterio.windows.Window(col_off=expanded_window[1], row_off=expanded_window[0], width=width, height=height) - with read_lock: - win_arr = img.read(indexes=1, window=rasterio_window) - - # Should have a better way to handle nodata, similar to the way the filter algorithms handle the border (reflection, nearest, interpolation, etc). - # For now will follow the old approach to guarantee identical outputs - nodata_locs = win_arr == nodata - win_arr = filter(win_arr) - win_arr[nodata_locs] = nodata - win_arr = win_arr[window[0] - expanded_window[0] : window[2] - expanded_window[0], window[1] - expanded_window[1] : window[3] - expanded_window[1]] - - # Write output window - width = window[3] - window[1] - height = window[2] - window[0] - rasterio_window = rasterio.windows.Window(col_off=window[1], row_off=window[0], width=width, height=height) - with write_lock: - imgout.write(win_arr, indexes=1, window=rasterio_window) - - def get_dem_radius_steps(stats_file, steps, resolution, multiplier = 1.0): radius_steps = [point_cloud.get_spacing(stats_file, resolution) * multiplier] for _ in range(steps - 1):