-
Notifications
You must be signed in to change notification settings - Fork 55
/
main.py
375 lines (346 loc) · 14.9 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
import os
import sys
import random
import numpy as np
from models.LMClass import LMClass
import torch
import time
from datautils import get_loaders
from lm_eval import evaluator
from pprint import pprint
from parallel_utils import map_layers_to_multi_gpus, get_lowest_occupied_gpu
import torch.nn as nn
from quantize.omniquant import omniquant
from tqdm import tqdm
import utils
from pathlib import Path
from categories import subcategories, categories
from models.int_llama_layer import QuantLlamaDecoderLayer
from models.int_opt_layer import QuantOPTDecoderLayer
from quantize.int_linear import QuantLinear
import pdb
torch.backends.cudnn.benchmark = True
net_choices = [
"opt-125m",
"opt-1.3b",
"opt-2.7b",
"opt-6.7b",
"opt-13b",
"opt-30b",
"opt-66b",
"llama-7b",
"llama-13b",
"llama-30b",
"llama-65b",
"Llama-2-7b",
"Llama-2-13b",
"Llama-2-70b",
"Llama-2-7b-chat",
"Llama-2-13b-chat",
"llava-llama-2-13b-chat-lightning-preview",
"falcon-180b",
"falcon-7b",
"mixtral-8x7b"
]
@torch.no_grad()
def evaluate(lm, args, logger):
results = {}
if args.multigpu:
if "opt" in args.net.lower():
map_layers_to_multi_gpus(lm.model.model.decoder.layers)
input_device = lm.model.model.decoder.layers[0].device
output_device = lm.model.model.decoder.layers[-1].device
lm._device = input_device
assert input_device == output_device
lm.model.model.decoder.embed_positions.to(input_device)
lm.model.model.decoder.embed_tokens.to(input_device)
lm.model.model.decoder.final_layer_norm.to(output_device)
lm.model.lm_head.to(output_device)
elif "llama" in args.net.lower() or "mixtral" in args.net.lower():
map_layers_to_multi_gpus(lm.model.model.layers)
input_device = lm.model.model.layers[0].device
output_device = lm.model.model.layers[-1].device
assert input_device == output_device
lm._device = input_device
lm.model.model.embed_tokens.to(input_device)
lm.model.model.norm.to(output_device)
lm.model.lm_head.to(output_device)
elif "falcon" in args.net.lower():
map_layers_to_multi_gpus(lm.model.transformer.h)
input_device = lm.model.transformer.h[0].device
output_device = lm.model.transformer.h[-1].device
assert input_device == output_device
lm._device = input_device
lm.model.transformer.word_embeddings.to(input_device)
lm.model.transformer.ln_f.to(output_device)
lm.model.lm_head.to(output_device)
else:
if "opt" in args.net.lower():
lm.model.model.decoder = lm.model.model.decoder.to(lm.device)
elif "llama" in args.net.lower() or "mixtral" in args.net.lower():
lm.model = lm.model.to(lm.device)
elif "falcon" in args.net.lower():
lm.model.transformer = lm.model.transformer.to(lm.device)
if args.eval_ppl:
# for dataset in ["wikitext2", "ptb", "c4","ptb-new",'c4-new']:
for dataset in ["wikitext2", "c4"]:
cache_testloader = f'{args.cache_dir}/testloader_{args.model_family}_{dataset}_all.cache'
if os.path.exists(cache_testloader):
testloader = torch.load(cache_testloader)
logger.info(f"load calibration from {cache_testloader}")
else:
dataloader, testloader = get_loaders(
dataset,
seed=args.seed,
model=args.model,
seqlen=lm.seqlen,
)
torch.save(testloader, cache_testloader)
if "c4" in dataset:
testenc = testloader
else:
testenc = testloader.input_ids
nsamples = testenc.numel() // lm.seqlen
use_cache = lm.model.config.use_cache
lm.model.config.use_cache = False
lm.model.eval()
nlls = []
for i in tqdm(range(nsamples)):
batch = testenc[:, (i * lm.seqlen) : ((i + 1) * lm.seqlen)].to(lm.device)
if "opt" in args.net.lower():
outputs = lm.model.model.decoder(batch)
elif "llama" in args.net.lower() or "mixtral" in args.net.lower():
outputs = lm.model.model(batch)
elif "falcon" in args.model:
outputs = lm.model.transformer(batch)
hidden_states = outputs[0]
logits = lm.model.lm_head(hidden_states)
shift_logits = logits[:, :-1, :]
shift_labels = testenc[:, (i * lm.seqlen) : ((i + 1) * lm.seqlen)][
:, 1:
].to(lm.model.lm_head.weight.device)
loss_fct = nn.CrossEntropyLoss()
loss = loss_fct(
shift_logits.view(-1, shift_logits.size(-1)),
shift_labels.view(-1),
)
neg_log_likelihood = loss.float() * lm.seqlen
nlls.append(neg_log_likelihood)
if i == args.limit:
break
ppl = torch.exp(torch.stack(nlls).sum() / (nsamples * lm.seqlen))
logger.info(f'{dataset} : {ppl.item()}')
lm.model.config.use_cache = use_cache
results[dataset] = ppl.item()
if args.tasks != "":
t_results = evaluator.simple_evaluate(
lm,
tasks=args.tasks,
num_fewshot=args.num_fewshot,
limit=None if args.limit == -1 else args.limit,
)
results.update(t_results)
logger.info(results)
pprint(results)
# for test of MMLU
if 'hendrycksTest' in args.tasks:
all_cors = []
all_cors_norm = []
subcat_cors = {subcat: [] for subcat_lists in subcategories.values() for subcat in subcat_lists}
cat_cors = {cat: [] for cat in categories}
cat_cors_norm = {cat: [] for cat in categories}
for key in t_results['results'].keys():
if not 'hendrycksTest' in key:
continue
subject = key.split('-')[-1]
cors = t_results['results'][key]['acc']
cors_norm = t_results['results'][key]['acc_norm']
subcats = subcategories[subject]
for subcat in subcats:
subcat_cors[subcat].append(cors)
for key in categories.keys():
if subcat in categories[key]:
cat_cors[key].append(cors)
cat_cors_norm[key].append(cors_norm)
all_cors.append(cors)
all_cors_norm.append(cors_norm)
for cat in cat_cors:
cat_acc = np.mean(cat_cors[cat])
logger.info("Average accuracy {:.4f} - {}".format(cat_acc, cat))
weighted_acc = np.mean(all_cors)
logger.info("Average accuracy: {:.4f}".format(weighted_acc))
return results
def main():
import argparse
parser = argparse.ArgumentParser()
parser.add_argument("--model", type=str, help="model name of model path")
parser.add_argument("--cache_dir", default="./cache", type=str, help="cache dir of dataset, leading to faster debug")
parser.add_argument("--output_dir", default="../log/", type=str, help="direction of logging file")
parser.add_argument("--save_dir", default=None, type=str, help="direction for saving fake quantization model")
parser.add_argument("--resume", type=str, default=None)
parser.add_argument("--real_quant", default=False, action="store_true", help="real quantization, which can see memory reduce. Note that due to the limitations of AutoGPTQ kernels, the real quantization of weight-only quantization can only lead memory reduction, but with slower inference speed.")
parser.add_argument("--calib_dataset",type=str,default="wikitext2",
choices=["wikitext2", "ptb", "c4", "mix","pile"],
help="Where to extract calibration data from.",
)
parser.add_argument("--nsamples", type=int, default=128, help="Number of calibration data samples.")
parser.add_argument("--batch_size", type=int, default=1, help="batch size.")
parser.add_argument("--seed", type=int, default=2, help="Seed for sampling the calibration data.")
parser.add_argument("--tasks", default="")
parser.add_argument("--eval_ppl", action="store_true")
parser.add_argument("--num_fewshot", type=int, default=0)
parser.add_argument("--wbits", type=int, default=4)
parser.add_argument("--abits", type=int, default=16)
parser.add_argument("--group_size", type=int, default=None)
parser.add_argument("--alpha", type=float, default=0.5)
parser.add_argument("--let_lr", type=float, default=5e-3)
parser.add_argument("--lwc_lr", type=float, default=1e-2)
parser.add_argument("--wd", type=float, default=0)
parser.add_argument("--epochs", type=int, default=10)
parser.add_argument("--let",default=False, action="store_true",help="activate learnable equivalent transformation")
parser.add_argument("--lwc",default=False, action="store_true",help="activate learnable weight clipping")
parser.add_argument("--aug_loss", default=False, action="store_true", help="calculate additional loss with same input")
parser.add_argument("--symmetric",default=False, action="store_true", help="symmetric quantization")
parser.add_argument("--disable_zero_point",default=False, action="store_true", help="quantization without zero_point")
parser.add_argument("--a_dynamic_method", type=str, default="per_token", choices=["per_token"])
parser.add_argument("--w_dynamic_method", type=str, default="per_channel", choices=["per_channel"])
parser.add_argument("--limit", type=int, default=-1)
parser.add_argument("--multigpu", action="store_true", help="at eval, map model to multiple gpus")
parser.add_argument("--deactive_amp", action="store_true", help="deactivate AMP when 8<=bits<16")
parser.add_argument(
"--attn_implementation",
type=str, required=False, default="eager",
choices=["eager", "sdpa", "flash_attention_2"],
help="attention implementation that the model works with",
)
parser.add_argument("--net", type=str, default=None, choices=net_choices)
parser.add_argument("--act-scales", type=str, default=None)
parser.add_argument("--act-shifts", type=str, default=None)
args = parser.parse_args()
random.seed(args.seed)
np.random.seed(args.seed)
torch.manual_seed(args.seed)
torch.cuda.manual_seed(args.seed)
# check
if args.epochs > 0:
assert args.lwc or args.let
if (args.wbits<16 and args.wbits>=8) or (args.abits<16 and args.abits>=8):
args.deactive_amp = True
# init logger
if args.output_dir:
Path(args.output_dir).mkdir(parents=True, exist_ok=True)
if args.cache_dir:
Path(args.cache_dir).mkdir(parents=True, exist_ok=True)
if args.save_dir:
Path(args.save_dir).mkdir(parents=True, exist_ok=True)
output_dir = Path(args.output_dir)
logger = utils.create_logger(output_dir)
logger.info(args)
# load model
if args.net is None:
args.net = args.model.split('/')[-1]
# assert args.net in net_choices
args.model_family = args.net.split('-')[0]
lm = LMClass(args)
lm.seqlen = 2048
lm.model.eval()
for param in lm.model.parameters():
param.requires_grad = False
args.weight_quant_params = {
"n_bits": args.wbits,
"per_channel_axes": [0],
"symmetric": args.symmetric,
"dynamic_method": args.w_dynamic_method,
"group_size": args.group_size,
"lwc":args.lwc,
"disable_zero_point": args.disable_zero_point
}
args.act_quant_params = {
"n_bits": args.abits,
"per_channel_axes": [],
"symmetric": False,
"dynamic_method": args.a_dynamic_method,
}
args.q_quant_params = {
"n_bits": args.abits,
"per_channel_axes": [],
"symmetric": False,
"dynamic_method": args.a_dynamic_method,
}
args.k_quant_params = {
"n_bits": args.abits,
"per_channel_axes": [],
"symmetric": False,
"dynamic_method": args.a_dynamic_method,
}
args.v_quant_params = {
"n_bits": args.abits,
"per_channel_axes": [],
"symmetric": False,
"dynamic_method": args.a_dynamic_method,
}
args.p_quant_params = {
"n_bits": 16,
"metric": "fix0to1",
}
if args.multigpu:
gpu_id = get_lowest_occupied_gpu(wait_memory=5000)
lm._device = f"cuda:{gpu_id}"
logger.info(f"set quantization in gpu {gpu_id}")
# act scales and shifts
if args.act_scales is None:
args.act_scales = f'./act_scales/{args.net}.pt'
if args.act_shifts is None:
args.act_shifts = f'./act_shifts/{args.net}.pt'
# quantization
if args.wbits < 16 or args.abits <16:
logger.info("=== start quantization ===")
tick = time.time()
# load calibration dataset
cache_dataloader = f'{args.cache_dir}/dataloader_{args.model_family}_{args.calib_dataset}_{args.nsamples}.cache'
if os.path.exists(cache_dataloader):
dataloader = torch.load(cache_dataloader)
logger.info(f"load calibration from {cache_dataloader}")
else:
dataloader, _ = get_loaders(
args.calib_dataset,
nsamples=args.nsamples,
seed=args.seed,
model=args.model,
seqlen=lm.seqlen,
)
torch.save(dataloader, cache_dataloader)
act_scales = None
act_shifts = None
if args.let:
act_scales = torch.load(args.act_scales)
act_shifts = torch.load(args.act_shifts)
omniquant(
lm,
args,
dataloader,
act_scales,
act_shifts,
logger,
)
logger.info(time.time() - tick)
if args.save_dir:
# delete omni parameters
for name, module in lm.model.named_modules():
if isinstance(module, QuantLinear):
del module.weight_quantizer.lowbound_factor
del module.weight_quantizer.upbound_factor
if isinstance(module,QuantLlamaDecoderLayer) or isinstance(module,QuantOPTDecoderLayer):
if args.let:
del module.qkv_smooth_scale
del module.qkv_smooth_shift
del module.out_smooth_scale
del module.out_smooth_shift
del module.fc1_smooth_scale
del module.fc1_smooth_shift
lm.model.save_pretrained(args.save_dir)
lm.tokenizer.save_pretrained(args.save_dir)
evaluate(lm, args,logger)
if __name__ == "__main__":
print(sys.argv)
main()