forked from amirhertz/geometric-textures
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtraining.py
154 lines (134 loc) · 7.12 KB
/
training.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
from custom_types import *
import options as options
from torch import nn
import models.factory as factory
from models.single_mesh_models import SingleMeshDiscriminator
from models.mesh_handler import MeshHandler, load_template_mesh
from dgts_base import DGTS
from process_data import mesh_utils
class Trainer(DGTS):
def __init__(self, opt: options.TrainOption, device: D):
super(Trainer, self).__init__(opt, device)
self.discriminator: SingleMeshDiscriminator = factory.model_lc(opt, SingleMeshDiscriminator, device=device)
self.optimizer_generator: Union[factory.OptimizerLC, N] = None
self.optimizer_discriminator: Union[factory.OptimizerLC, N] = None
self.template = MeshHandler(load_template_mesh(opt, opt.start_level)[1],
self.opt, self.opt.start_level).to(self.device)
self.real_mesh: Union[MeshHandler, N] = None
self.real_mesh_flipped: Union[MeshHandler, N] = None
self.mse = nn.MSELoss().to(device)
self.reconstruction_z = factory.NoiseMem(opt).load().to(device)
self.logger = factory.Logger(opt)
def get_z(self, reconstruction_mode: bool) -> List[Union[T, float]]:
if reconstruction_mode and self.level >= self.opt.reconstruction_start:
for i in range(len(self.reconstruction_z), self.level + 1):
self.reconstruction_z.append(0. if i else self.get_z_by_level(self.template, 0).detach())
return self.reconstruction_z
else:
return self.get_z_sequence(self.template, self.level)
def generate(self, reconstruction_mode: bool, inside_out: bool = False) -> MeshHandler:
z = self.get_z(reconstruction_mode)
template = self.template.copy()
if inside_out:
template = template.flip()
return self.generator(template, z, self.level)
def before_level(self) -> [Optimizer, Optimizer, MeshHandler]:
self.logger.start()
self.generator.dup(self.level)
self.discriminator.dup(self.level)
self.optimizer_generator = factory.OptimizerLC(self.opt, 'generator', self.generator.get_level(self.level))
self.optimizer_discriminator = factory.OptimizerLC(self.opt, 'discriminator', self.discriminator.get_level(self.level))
self.real_mesh = MeshHandler(mesh_utils.load_real_mesh(self.opt.mesh_name,self.opt.start_level + self.level),
self.opt, self.opt.start_level + self.level).to(self.device)
if self.opt.inside_out:
self.real_mesh_flipped = self.real_mesh.copy().flip()
def between_levels(self):
self.reconstruction_z.save()
self.generator.save()
self.discriminator.save()
self.opt.save()
self.logger.stop()
self.level += 1
def gradient_penalty(self, fake_mesh: MeshHandler) -> T:
fake_data = fake_mesh().data
real_data = self.real_mesh().data
alpha = torch.rand(1, device=self.device)
interpolates = alpha * real_data + ((1 - alpha) * fake_data)
interpolates = torch.autograd.Variable(interpolates, requires_grad=True)
disc_interpolates = self.discriminator.penalty_forward(self.real_mesh, self.level, interpolates)
gradients = torch.autograd.grad(outputs=disc_interpolates, inputs=interpolates,
grad_outputs=torch.ones(disc_interpolates.size(), device=self.device),
create_graph=True, retain_graph=True, only_inputs=True)[0]
gradient_penalty = (gradients.norm(2, dim=1) - 1) ** 2
return gradient_penalty.mean()
def train_level(self):
def penalty_iter():
self.optimizer_discriminator.zero_grad()
fake_mesh = self.generate(False, False).detach()
gradient_penalty = self.gradient_penalty(fake_mesh)
(self.opt.penalty_weight * gradient_penalty).backward(retain_graph=True)
self.optimizer_discriminator.step()
def discriminator_iter(inside_out: bool = False):
if inside_out and not self.opt.inside_out:
return
self.optimizer_discriminator.zero_grad()
fake_mesh = self.generate(False, inside_out).detach()
real_mesh = self.real_mesh_flipped if inside_out else self.real_mesh
out_real = self.discriminator(real_mesh.copy(), self.level)
error_real = out_real.mean()
out_fake = self.discriminator(fake_mesh, self.level)
error_fake = out_fake.mean()
gradient_penalty = self.gradient_penalty(fake_mesh)
(self.opt.penalty_weight * gradient_penalty).backward(retain_graph=True)
(error_fake - error_real).backward()
self.optimizer_discriminator.step()
self.logger.stash_iter('d_fake', error_fake, 'd_real', error_real)
def generator_iter(inside_out: bool = False):
if inside_out and not self.opt.inside_out:
return
nonlocal meshes
self.optimizer_generator.zero_grad()
fake_mesh = self.generate(False, inside_out)
rec_mesh = self.generate(True, inside_out)
out_fake = self.discriminator(fake_mesh, self.level)
error_fake = out_fake.mean()
error_rec = self.mse(rec_mesh.vs, self.real_mesh.vs)
rec_weight = self.opt.reconstruction_weight
fake_loss = - error_fake
(rec_weight * error_rec + fake_loss).backward()
self.optimizer_generator.step()
self.logger.stash_iter('g_fake', error_fake, 'g_rec', error_rec)
meshes = rec_mesh, fake_mesh
def train_iter():
for _ in range(self.opt.discriminator_iters):
discriminator_iter()
for _ in range(self.opt.generator_iters):
generator_iter()
self.logger.reset_iter()
def decay(self):
self.optimizer_generator.decay()
self.optimizer_discriminator.decay()
def mesh_paths(level: int, iteration: int) -> List[List[str]]:
return [[f'{self.opt.cp_folder}/{export_type}/{tag}_{level:02d}_{iteration + 1:04d}' for
export_type in ['generated', 'plots']] for tag in ['rec', 'fake']]
def plot(meshes: Tuple[MeshHandler, MeshHandler], paths: List[List[str]]):
for mesh, path in zip(meshes, paths):
mesh.export(path[0])
mesh.plot(path[1])
meshes: Union[Tuple[MeshHandler, ...], N] = None
for iteration in range(self.opt.level_iters[self.level + self.opt.start_level]):
train_iter()
factory.do_when_its_time(self.opt.lr_decay_every, decay, iteration, self)
factory.do_when_its_time(self.opt.export_meshes_every, plot, iteration, meshes, mesh_paths(self.level, iteration))
def train(self):
for _ in range(self.opt.num_levels):
self.before_level()
self.train_level()
self.between_levels()
if __name__ == '__main__':
opt_ = options.TrainOption()
opt_.parse_cmdline()
opt_ = opt_.load()
device_ = CUDA(0)
trainer = Trainer(opt_, device_)
trainer.train()