diff --git a/doc/analysis.rst b/doc/analysis.rst index 1f06b66..ee8aa46 100644 --- a/doc/analysis.rst +++ b/doc/analysis.rst @@ -4,7 +4,7 @@ Analysis After using PEtab Select to perform model selection, you may want to operate on all "good" calibrated models. The PEtab Select Python library provides some methods to help with this. Please request any missing methods. -See the Python API docs for the ``Models`` class, which provides some methods. In particular, ``Models.df`` can be used +See the Python API docs for the :class:`petab_select.Models` class, which provides some methods. In particular, :attr:`petab_select.Models.df` can be used to get a quick overview over all models, as a pandas dataframe. Additionally, see the Python API docs for the ``petab_select.analysis`` module, which contains some methods to subset and group models, diff --git a/doc/api.rst b/doc/api.rst index 6f11132..5a86acf 100644 --- a/doc/api.rst +++ b/doc/api.rst @@ -7,6 +7,7 @@ petab-select Python API :toctree: generated petab_select + petab_select.analyze petab_select.candidate_space petab_select.constants petab_select.criteria diff --git a/doc/examples/example_cli_famos.ipynb b/doc/examples/example_cli_famos.ipynb index 7bc4ceb..b5895ac 100644 --- a/doc/examples/example_cli_famos.ipynb +++ b/doc/examples/example_cli_famos.ipynb @@ -22,7 +22,7 @@ }, { "cell_type": "code", - "execution_count": 1, + "execution_count": null, "id": "1f04dce0", "metadata": {}, "outputs": [], @@ -44,7 +44,7 @@ }, { "cell_type": "code", - "execution_count": 2, + "execution_count": null, "id": "a81560e6", "metadata": {}, "outputs": [], @@ -109,69 +109,10 @@ }, { "cell_type": "code", - "execution_count": 3, + "execution_count": null, "id": "bb1a5144", "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Executing iteration 1\n", - "Executing iteration 2\n", - "Executing iteration 3\n", - "Executing iteration 4\n", - "Executing iteration 5\n", - "Executing iteration 6\n", - "Executing iteration 7\n", - "Executing iteration 8\n", - "Executing iteration 9\n", - "Executing iteration 10\n", - "Executing iteration 11\n", - "Executing iteration 12\n", - "Executing iteration 13\n", - "Executing iteration 14\n", - "Executing iteration 15\n", - "Executing iteration 16\n", - "Executing iteration 17\n", - "Executing iteration 18\n", - "Executing iteration 19\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "petab_select/petab_select/candidate_space.py:1160: RuntimeWarning: Model `model_subspace_1-0001011010010010` has been previously excluded from the candidate space so is skipped here.\n", - " return_value = self.inner_candidate_space.consider(model)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Executing iteration 20\n", - "Executing iteration 21\n", - "Executing iteration 22\n", - "Executing iteration 23\n", - "Executing iteration 24\n", - "Executing iteration 25\n", - "Executing iteration 26\n", - "Executing iteration 27\n", - "Executing iteration 28\n", - "Executing iteration 29\n", - "Executing iteration 30\n", - "Executing iteration 31\n", - "Executing iteration 32\n", - "Executing iteration 33\n", - "Executing iteration 34\n", - "Executing iteration 35\n", - "Executing iteration 36\n", - "Executing iteration 37\n", - "Model selection has terminated.\n" - ] - } - ], + "outputs": [], "source": [ "%%bash -s \"$petab_select_problem_yaml\" \"$output_path_str\"\n", "petab_select_problem_yaml=$1\n", @@ -217,7 +158,7 @@ }, { "cell_type": "code", - "execution_count": 4, + "execution_count": null, "id": "93caf071", "metadata": {}, "outputs": [], @@ -227,7 +168,7 @@ }, { "cell_type": "code", - "execution_count": 5, + "execution_count": null, "id": "cb61d0f7", "metadata": {}, "outputs": [], diff --git a/doc/examples/visualization.ipynb b/doc/examples/visualization.ipynb index 8010b31..13f36b4 100644 --- a/doc/examples/visualization.ipynb +++ b/doc/examples/visualization.ipynb @@ -22,7 +22,7 @@ }, { "cell_type": "code", - "execution_count": 1, + "execution_count": null, "id": "ca6ce5b4", "metadata": {}, "outputs": [], @@ -40,155 +40,10 @@ }, { "cell_type": "code", - "execution_count": 2, + "execution_count": null, "id": "54532b75-53e4-4670-8e64-21e7adda0c0e", "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
 model_idmodel_hashCriterion.NLLHCriterion.AICCriterion.AICCCriterion.BICiterationpredecessor_model_hashestimated_parameters
0M_0-000M_0-00017.487615None37.975230None1virtual_initial_model-{'sigma_x2': 4.462298422134608}
1M_1-000M_1-000-4.087703None-0.175406None2M_0-000{'k3': 0.0, 'sigma_x2': 0.12242920113658338}
2M_2-000M_2-000-4.137257None-0.274514None2M_0-000{'k2': 0.10147824307890803, 'sigma_x2': 0.12142219599557078}
3M_3-000M_3-000-4.352664None-0.705327None2M_0-000{'k1': 0.20160925279667963, 'sigma_x2': 0.11714017664827497}
4M_5-000M_5-000-4.352664None9.294673None3M_3-000{'k1': 0.20160925279667963, 'k3': 0.0, 'sigma_x2': 0.11714017664827497}
5M_6-000M_6-000-5.073915None7.852170None3M_3-000{'k1': 0.20924804320838675, 'k2': 0.0859052351446815, 'sigma_x2': 0.10386846319370771}
6M_7-000M_7-000-6.028235None35.943530None4M_3-000{'k1': 0.6228488917665873, 'k2': 0.020189424009226256, 'k3': 0.0010850434974038557, 'sigma_x2': 0.08859278245811462}
\n" - ], - "text/plain": [ - "" - ] - }, - "execution_count": 2, - "metadata": {}, - "output_type": "execute_result" - } - ], + "outputs": [], "source": [ "models.df.style.background_gradient(\n", " cmap=matplotlib.colormaps.get_cmap(\"summer\"),\n", @@ -206,7 +61,7 @@ }, { "cell_type": "code", - "execution_count": 3, + "execution_count": null, "id": "09c9df1d", "metadata": {}, "outputs": [], @@ -246,21 +101,10 @@ }, { "cell_type": "code", - "execution_count": 4, + "execution_count": null, "id": "96d99572-f74d-4e25-8237-0aa158eb29f6", "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAWwAAAFsCAYAAADon4O5AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAABBqUlEQVR4nO3deVhUZf8/8PdsgAKDgCyioqiIpflkaMqTlSuW5ZLW41auueSWW/WYWVmZWuYa7qhP7ku5Z6m4m5q5lG24iwIDgsAAyqzn9wffmZ8o6CxnmDnxfl2XV3HmLB+Ge97nnrPcRyYIggAiIvJ4cncXQEREtmFgExFJBAObiEgiGNhERBLBwCYikggGNhGRRDCwiYgkgoFNRCQRDGwiIolgYBMRSQQD2w2mT58OmUyGMWPGWKcVFRVhxIgRCA4Ohp+fH7p3746MjAyb1ykIArRaLTjSANE/FwO7nJ06dQqLFy9G48aNS0wfO3YsduzYgU2bNuHQoUNIS0tDt27dbF5vfn4+AgICkJ+fL3bJROQhGNjlqKCgAH369MHSpUsRGBhonZ6Xl4fExETMmjULbdq0QWxsLFasWIGffvoJJ06ccGPFRORJlO4uoCIZMWIEXnrpJbRr1w6fffaZdfrp06dhMBjQrl0767QGDRogMjISx48fR4sWLR5Yl06ng06ns/6s1WoBAAaDAQaDwYW/BRGJTaVS2TQfA7ucrF+/HmfOnMGpU6ceeE2j0cDLywtVqlQpMT0sLAwajabU9U2bNg1Tpkx5YPqePXtQuXJlUWomovLRpUsXm+ZjYJeDGzdu4O2338bevXvh4+MjyjonTpyIcePGWX/WarWoWbMm4uPjoVarRdkGEXkWBnY5OH36NDIzM/HUU09Zp5lMJhw+fBhff/01fvzxR+j1euTm5pboZWdkZCA8PLzUdXp7e8Pb2/uB6SqVyuavV0QkLQzsctC2bVucP3++xLQBAwagQYMGeO+991CzZk2oVCokJSWhe/fuAIDk5GSkpKQgLi7OHSUTkQdiYJcDf39/NGrUqMQ0X19fBAcHW6cPGjQI48aNQ1BQENRqNUaNGoW4uLhSTzgSUcXEwPYQs2fPhlwuR/fu3aHT6dChQwcsWLDA3WURVXgpKSnIyspyah1Vq1ZFZGSk07XI+BDefwatVouAgADk5eXxpCORSFJSUhATE4OioiKn1uPj44Pk5GSnQ5s3zhARlSErK8vpsAaKh55wtpcOMLCJiCSDgU1EJBEMbCIiiWBgExFJBAObiEgiGNhERBLBwCYikgje6UhEHsmT7jD0FAxsIvI4nnaHoafgIREi8jiedoehp2BgExFJBAObiEgiGNhERBLBwCYikggGNhGRRDCwiYgkgoFNRCQRDGwiIolgYBMRSQQDm4hIIhjYREQSwcAmIpIIBjYRkUQwsImIJIKBTUQkEQxsIiKJYGATEUkEA5uISCIY2EREEsHAJiKSCAY2EZFEMLCJiCSCgU1EJBEMbCIiiWBgExFJBAObiEgiGNhERBLBwC4HCxcuROPGjaFWq6FWqxEXF4fdu3dbXy8qKsKIESMQHBwMPz8/dO/eHRkZGW6smIg8EQO7HNSoUQPTp0/H6dOn8csvv6BNmzbo0qUL/vjjDwDA2LFjsWPHDmzatAmHDh1CWloaunXr5uaqicjTKN1dQEXQqVOnEj9PnToVCxcuxIkTJ1CjRg0kJiZi7dq1aNOmDQBgxYoVeOyxx3DixAm0aNHCHSUTkQdiYJczk8mETZs2obCwEHFxcTh9+jQMBgPatWtnnadBgwaIjIzE8ePHywxsnU4HnU5n/Vmr1QIADAYDDAaDa38JIhczGo2irsvRz0R51aFSqWxaBwO7nJw/fx5xcXEoKiqCn58ftmzZgscffxznzp2Dl5cXqlSpUmL+sLAwaDSaMtc3bdo0TJky5YHpe/bsQeXKlcUun6hcXb58WbR1HT16FOnp6R5dR5cuXWxaBwO7nMTExODcuXPIy8vD5s2b0a9fPxw6dMjh9U2cOBHjxo2z/qzValGzZk3Ex8dDrVaLUTKR25w9e1a0dbVs2RJNmjSRdB0WDOxy4uXlhXr16gEAYmNjcerUKcydOxc9evSAXq9Hbm5uiV52RkYGwsPDy1yft7c3vL29H5iuUqls/npF5KmUSvGiSalUOvyZ8JQ6LHiViJuYzWbodDrExsZCpVIhKSnJ+lpycjJSUlIQFxfnxgqJyNOwh10OJk6ciBdffBGRkZHIz8/H2rVrcfDgQfz4448ICAjAoEGDMG7cOAQFBUGtVmPUqFGIi4vjFSJEVAIDuxxkZmaib9++SE9PR0BAABo3bowff/wR7du3BwDMnj0bcrkc3bt3h06nQ4cOHbBgwQI3V01EnoaBXQ4SExMf+rqPjw8SEhKQkJBQThURkRTxGDYRkUQwsImIJIKBTUQkEQxsIiKJYGATEUkEA5uISCIY2EREEsHAJiKSCAY2EZFEMLCJiCSCgU1EJBEMbCIiiWBgExFJBAObiEgiGNhERBLBwCYikggGNhGRRDCwiYgkgoFNRCQRDGwiIolgYBMRSQQDm4hIIhjYZZg2bRqWL1/+wPTly5djxowZbqiIiCo6BnYZFi9ejAYNGjwwvWHDhli0aJEbKiKiio6BXQaNRoNq1ao9MD0kJATp6eluqIiIKjoGdhlq1qyJY8eOPTD92LFjiIiIcENFRFTRKd1dgKcaPHgwxowZA4PBgDZt2gAAkpKS8O6772L8+PFuro6IKiIGdhneeecdZGdnY/jw4dDr9QAAHx8fvPfee/jvf//r5uqIqCJiYJdBJpNhxowZmDx5Mv766y9UqlQJ0dHR8Pb2dndpRFRB8Rj2ffbv34/HH38cWq0WAODn54dmzZqhUaNGKCoqQsOGDXHkyBE3V0lEFRED+z5z5szB4MGDoVarH3gtICAAQ4cOxaxZs9xQGRFVdAzs+/z666944YUXynw9Pj4ep0+fLseKiIiKMbDvk5GRAZVKVebrSqUSt27dKseKiIiKMbDvU716dfz+++9lvv7bb7+VekMNEZGrMbDv07FjR0yePBlFRUUPvHb37l189NFHePnll91QGRFVdLys7z4ffPABvvvuO9SvXx8jR45ETEwMAODvv/9GQkICTCYTJk2a5OYqiagiYmDfJywsDD/99BPeeustTJw4EYIgACi+LrtDhw5ISEhAWFiYm6skooqIgV2KWrVq4fvvv0dOTg4uXboEQRAQHR2NwMBAd5dGRBUYj2E/RGBgIJo1a4ann37aqbCeNm0amjVrBn9/f4SGhqJr165ITk4uMU9RURFGjBiB4OBg+Pn5oXv37sjIyHD2VyCifxAGdjk4dOgQRowYgRMnTmDv3r0wGAyIj49HYWGhdZ6xY8dix44d2LRpEw4dOoS0tDR069bNjVUTkafhIZH72BqS3333nc3r/OGHH0r8vHLlSoSGhuL06dN47rnnkJeXh8TERKxdu9Y6MuCKFSvw2GOP4cSJE2jRosUD69TpdNDpdNafLbfSGwwGGAwGm2sj8kRGo1HUdTn6mSivOh5278e9GNj3CQgIcPk28vLyAABBQUEAgNOnT8NgMKBdu3bWeRo0aIDIyEgcP3681MCeNm0apkyZ8sD0PXv2oHLlyi6qnKh8XL58WbR1HT161OGHjpRXHV26dLFpHQzs+6xYseKR8zzsxppHMZvNGDNmDJ555hk0atQIQPHTbby8vFClSpUS84aFhUGj0ZS6nokTJ2LcuHHWn7VaLWrWrIn4+PhSx0EhkpKzZ8+Ktq6WLVuiSZMmkq7DgoFto/z8fKxbtw6JiYn45ZdfYDKZHFrPiBEj8Pvvv+Po0aNO1ePt7V3qUK8qlcrmr1dEnkqpFC+alEqlw58JT6nDgicdH+Hw4cPo168fqlWrhpkzZ6J169Y4ceKEQ+saOXIkdu7ciQMHDqBGjRrW6eHh4dDr9cjNzS0xf0ZGBsLDw50pn4j+QdjDLoVGo8HKlSuRmJgIrVaL//znP9DpdNi6dSsef/xxu9cnCAJGjRqFLVu24ODBg4iKiirxemxsLFQqFZKSktC9e3cAQHJyMlJSUhAXFyfK70RE0sce9n06deqEmJgY/Pbbb5gzZw7S0tIwf/58p9Y5YsQIrF69GmvXroW/vz80Gg00Gg3u3r0LoPhE56BBgzBu3DgcOHAAp0+fxoABAxAXF1fqCUciqpjYw77P7t27MXr0aLz11luIjo4WZZ0LFy4EALRq1arE9BUrVqB///4AgNmzZ0Mul6N79+7Q6XTo0KEDFixYIMr2ieifgYF9n6NHjyIxMRGxsbF47LHH8MYbb6Bnz55OrdMyHsnD+Pj4ICEhAQkJCU5ti4j+uXhI5D4tWrTA0qVLkZ6ejqFDh2L9+vWIiIiA2WzG3r17kZ+f7+4SiaiCYmCXwdfXFwMHDsTRo0dx/vx5jB8/HtOnT0doaCg6d+7s7vKIqAJiYNsgJiYGX3zxBW7evIn169eXGAOEiKi88Bi2jSw3zixbtowP4SUit2AP+xHuvXFm0qRJqFmzprtLIqIKioFdCo1Gg+nTpyM6OhodO3aE0WjExo0bkZ6eXuqAS0RE5YGHRO7TqVMnJCUloXXr1vj444/RtWtX+Pr6Wl+XyWRurI6IKjIG9n127dqF3r17Y8yYMWjatKm7yyEisuIhkfv89NNPqFSpEtq0aYOYmBh88sknoo6JS0TkKAb2fe69cea9997Dnj17UL9+fbRo0QLz58/ncxaJyG0Y2GW498aZP//8E8899xw+//zzEk+FISIqTwxsG9x748x3332Hl156yd0lEVEFxMC2g0KhQNeuXbF9+3Z3l0JEFRADm4hIIhjYREQSwcAmIpIIBjYRkUQwsImIJIKBTUQkEQxsIiKJYGATEUkEA5uISCIY2EREEsHAJiKSCAY2EZFEMLCJiCSCgU1EJBEMbCIiiWBgExFJBAObiEgiGNhERBLBwCYikggGNhGRRDCwiYgkgoFNRCQRDGwiIolgYBMRSQQDuxwcPnwYnTp1QkREBGQyGbZu3VridUEQ8OGHH6JatWqoVKkS2rVrh4sXL7qnWCLyWAzsclBYWIh//etfSEhIKPX1L774AvPmzcOiRYtw8uRJ+Pr6okOHDigqKirnSonIkyndXUBF8OKLL+LFF18s9TVBEDBnzhx88MEH6NKlCwDgm2++QVhYGLZu3YqePXuWZ6lE5MEY2G529epVaDQatGvXzjotICAAzZs3x/Hjx8sMbJ1OB51OZ/1Zq9UCAAwGAwwGg2uLpn+slJQUZGdnO72e4OBgREZGOry80Wh0uoZ71+XoZ6K86lCpVDatg4HtZhqNBgAQFhZWYnpYWJj1tdJMmzYNU6ZMeWD6nj17ULlyZXGLpArh1q1bGD58uCg7fJVKhQULFiAkJMSh5S9fvux0DRZHjx5Fenq6R9dh+Xb9KAxsiZo4cSLGjRtn/Vmr1aJmzZqIj4+HWq12Y2UkVWfPnhXt25nBYEDjxo3RpEkTh2sRS8uWLSVfhwUD283Cw8MBABkZGahWrZp1ekZGBp588skyl/P29oa3t/cD01Uqlc1fr4jupVSKGwdKpdLhtihmLf+EOix4lYibRUVFITw8HElJSdZpWq0WJ0+eRFxcnBsrIyJPwx52OSgoKMClS5esP1+9ehXnzp1DUFAQIiMjMWbMGHz22WeIjo5GVFQUJk+ejIiICHTt2tV9RRORx2Fgl4NffvkFrVu3tv5sOfbcr18/rFy5Eu+++y4KCwsxZMgQ5ObmomXLlvjhhx/g4+PjrpKJyAMxsMtBq1atIAhCma/LZDJ88skn+OSTT8qxKvIkKSkpyMrKcmodVatWdepSOvJ8DGwiN0tJSUFMTIzTd7b6+PggOTmZof0PxpOORG6WlZUlyjAERUVFTvfSybMxsImIJIKBTUQkEQxsIiKJYGATEUkEA5uISCIY2EREEsHAJiKSCAY2EZFEMLCJiCSCgU1EJBEMbCIiiWBgExFJBAObiEgiGNhERBLBwCYikggGNhGRRDCwiYgkgoFNRCQRDGwiIolgYBMRSQQDm4hIIhjYREQSwcAmIpIIBjYRkUQwsImIJIKBTUQkEQxsIiKJYGATEUkEA5uISCIY2EREEsHAJiKSCAY2EZFEMLCJiCSCgU1EJBEMbCIiiWBgExFJhNLdBdD/l5CQgC+//BIajQb/+te/MH/+fDz99NPuLusfLSUlBVlZWU6to2rVqoiMjBSpIqKyMbA9xIYNGzBu3DgsWrQIzZs3x5w5c9ChQwckJycjNDTU3eWJzhOCMiUlBTExMSgqKnKqDh8fHyQnJzO0yeUY2B5i1qxZGDx4MAYMGAAAWLRoEXbt2oXly5fjv//9r5urE5enBGVWVpbTNQBAUVERsrKyGNjkcgxsD6DX63H69GlMnDjROk0ul6Ndu3Y4fvx4qcvodDrodDrrz1qtFgBgMBhgMBjK3FZ6ejo0Go1T9YaHh6NatWoOL6/RaEQLSo1G43AtRqPR6RruXdfD3veKVocn1SKFOlQqlU3rkAmCIIhWETkkLS0N1atXx08//YS4uDjr9HfffReHDh3CyZMnH1jm448/xpQpUx6YnpeXB7Va7dJ6icg9eJWIRE2cOBF5eXnWf7m5ucjMzIS/v7+7SyMiF+EhEQ9QtWpVKBQKZGRklJiekZGB8PDwUpfx9vaGt7d3eZRHRB6CPWwP4OXlhdjYWCQlJVmnmc1mJCUllThEQkQVG3vYHmLcuHHo168fmjZtiqeffhpz5sxBYWGh9aoRIiIGtofo0aMHbt26hQ8//BAajQZPPvkkfvjhB4SFhbm7NCLyELxKhIhIIngMm4hIIhjYREQSwcAmIpIIBjYRkUQwsImIJIKBTUQkEQxsIiKJYGATEUkEA5uISCIY2EREEsHAJiKSCAY2EZFEMLCJiCSCgU1EJBEMbCIiiWBgExFJBAObiEgiGNhERBLBwCYikggGNhGRRPCp6WQlCAIEQYBc7p79+J9//olly5YhOTkZ+fn5CAoKQosWLTBw4ECEhoa6pSaz2ey290Or1WL16tVISkpCVlYWKlWqhNq1a6N///5o3rw5ZDJZuddkeWa3u7Z98OBBrF69Gjdv3oRer0dISAhefPFF9OzZE5UqVXJLTeX5meFT0ys4o9GI7Oxs3L59GwaDAQAgl8uhVqtRtWpVVK5c2eU1HDp0CJMnT8aRI0egVCphNBoBFIeCTCaDXC7Ha6+9hs8//xy1a9d2aS2CIECr1SI7OxuFhYXWgKpUqRKCg4NRpUoVl384s7OzMXnyZKxcuRJFRUXWugBY358nnngCH374IV599VWX1gIARUVFyM7ORm5uLkwmk7WOwMBABAcHw8vLy6XbFwQBK1euxLRp03Dx4sUSbUQul8NsNkOtVmPIkCH46KOP4Ofn59J6TCYTcnNzkZ2dbf37yGQy+Pn5ITg4GGq12mXbZmBXYBkZGcjMzMTDmoCvry9q1aoFpdI1X8ZWrlyJQYMGASjuzZZFqVRCrVZj7969eOqpp1xSy927d3Ht2jXrjqs0CoUCNWvWdNmH8vr162jbti2uXbtmDcfSyGQyCIKAjz/+GB999JFLajGbzbhx4wby8vIeOl9QUBCqV6/ukl632WzG6NGjkZCQYP2dy6JQKNCoUSPs2bPHZd/IcnJykJqa+tC26u3tjdq1a8Pb21v07TOwK6i0tDRkZWXZNK+3tzfq1asHhUIhag3btm3DK6+88tAP4b0UCgXUajVOnTqFunXrilrLnTt3cOXKlYd+EC1kMhkiIyMREBAgag23b9/G008/jevXr1t7kLaYPXs2xowZI2otgiDgypUrKCwstGl+tVrtkm8/kyZNwueff27z/EqlEo0bN8aRI0dE/3Z4+/Zt3Lx506Z5FQoF6tWrJ3po86SjG7Vq1Ur0D5otcnNzbQ5rANDpdEhJSRG1Bp1OhwEDBti1jMlkglarFf09M5vNuHbtmk1hDRSHWUpKCvR6vah1fPbZZ7h27ZpdYQ0AEyZMQGpqqqi1pKWl2RzWQPHx9oyMDFFr+P333+0Ka6D4EN+5c+cwb948UWu5e/euXe+xyWTC1atXbe6M2IqB7aGWLl2KZ599FoGBgQgMDES7du3w888/i7LuW7du2b1Mfn4+dDqdKNsHgM2bNyMnJ8fuBm0ymbBr1y5cv35dtFpycnLsDklBEJCdnS1aDXfu3MGyZcseehjkYbUsW7ZMtFpMJhNycnLsXi47O1vUgFq4cKFDh+LMZjO+/vprh97LsmRlZdn9u+n1emi1WtFqABjYHuvgwYPo1asXDhw4gOPHj6NmzZqIj493uid1584d3L1716FlxQyo+fPnO3zyTi6XY8mSJaLV4ujvdfv2bdECav369cjPz3doWbPZjAULFjz02Ls9cnJybP62cS+j0fjI4922ys/Px4oVK+zekVqkpqZi9+7dotRiNBqRm5vr0LJifmYABrZH2bVrFwICArBmzRqsWbMGw4cPx5NPPokGDRpg2bJlMJvNSEpKcmobjoYCANF6CwaDASdPnnQoFIDiHuC+fftEqUWv11vP9DtShz2HDR7m0KFDTp0jyMzMxOXLl0WpxZm/s1ht5OzZsw53LABApVLh0KFDotRSUFDg8I65oKDA4XZeGga2h1i7di169eqFNWvWoE+fPg+8fufOHRgMBgQFBTm1HUd7LABE+4opRi/Mka/spXH2dxLrPbn3kjln1iEGZ+rwlDYiCMI/ro0ADGyPkJCQgOHDh2PHjh14+eWXS53nvffeQ0REBNq1a+fUtpy5hlisy7Z8fHycXodYN0k4e021mO+Js7V4wnsi1jXqzrYRmUzmEe+HGMvfi3c6utnmzZuRmZmJY8eOoVmzZqXOM336dKxfvx4HDx50uiE7s7wYQQsUX9sdGBjocA9IqVQiOjpalFpUKpX15gtHiPWeREVFOVWHXC5HjRo1RKnF29vb4UM9Yl3G5uwlgiaTCVFRUaLU4szvpFKpRL0clj1sN2vSpAlCQkKwfPnyUo+TzZw5E9OnT8eePXvQuHFjp7cXEBDgcANy9nCMhUwmw+DBgx2uw2g04s033xSlFrlcjsDAQIeW9fPzE+0uvwEDBjh8uEqpVKJLly4IDg4WpRZn1iNWG4mOjsa///1vh9uIXC7H66+/LkotlStXdri3Ltb7YcHAdrO6deviwIED2LZtG0aNGlXitS+++AKffvopfvjhBzRt2lSU7TkaUCqVStQbRYYOHepwbzIyMhLx8fGi1eJoQFWtWlW0GmJiYtC6dWuHAspoNGLkyJGi1VKpUiWHbjpRq9Wi3qY+atQoh47/KpVKvPbaa6Le7ehIG5HJZAzsf6L69evjwIED+Pbbb603hcyYMQOTJ0/G8uXLUbt2bWg0Gmg0GhQUFDi9vdDQULs/WGLfelynTh306dPHoeN7H3/8sajHBX18fOwOX7VaLfrt6ZMnT7Z7J6ZQKNCiRQu0bt1a1FqqV69u13usUChQrVo1UWvo1q0bYmJi7LoW2zL+zDvvvCNqLYGBgfD19bVrmfDwcKhUKlHrYGB7iJiYGOzfvx/r1q3D+PHjsXDhQuj1erz66quoVq2a9d/MmTOd3pZSqUSdOnVsOjYnk8lcNnbG0qVLERcXZ1cwvPPOO3bfIWmLiIgIm3tRarUakZGRotfQunVrLFiwwOb5FQoFatWqhe3bt4s+jodlZEBbevxKpRJRUVGi34bt5eWFH3/8EcHBwTaFtiWs16xZgyZNmohai0wmQ+3atW0O7dDQUISEhIhaA8CxRCo0k8mErKysEiP1WchkMgQEBCAkJMSlw1bevXsX/fr1w6ZNm0qMwnYvuVwOmUyGqVOn4t1333Xp0J55eXnIysoq9aSbZcS+wMBAl9awdu1avPnmmw+M1GdheZ+eeeYZbN26VdRDM/fT6XTIysoq9WYahUKBwMBAhISEiN6TvNeNGzfw8ssv47fffiu1jVhO1vr7+2P9+vXo2LGjy2qx3OGanZ1d6p2//v7+qFq1Kvz9/V2yfQY2QRCEEreeWwZZctUIfaU5f/48Fi5ciJUrV5a4YSI8PBwjRozAm2++ifDw8HKrp6ioCIWFhTCZTJDL5ahcuXK5DDVrkZeXh2+++Qbz5s3DpUuXrNMtx2dHjBiBf//73+U2LrVlHBdLWKpUKqjV6nIbB9psNmP//v34+uuvsWPHjhI7j0aNGuHtt99Gr1697D5s4YyCggIUFRXBbDZDoVDA39/f5UPNMrDJo9y9excajQaFhYUICAhARESE6KMESokgCEhPT0dubi68vb0RFhbm8vGePV1eXh4yMzOtN5KFhYW55YEK7sDAJiKSCJ50JCKSCAY2EZFEMLCJiCSCgU1EJBEMbCIiiWBgExFJBAObiEgiGNhERBJh873HzjwLkIiIymbr2CPsYRMRSQQDm4hIIvhMR6L7GAwGfP/99zhz5gzy8/Ph6+uLBg0a4JVXXinXEfs8yZ9//okdO3YgKysLMpkMYWFh6Nq1K+rWrVuudaSlpeHbb79FamoqjEYjAgMDER8fj6ZNm1aIAaBsHvyJx7D/mQRBgFarRU5ODvR6PYDi8YUDAgIQGBhYrkOsFhYW4vbt29YhK+VyOfz8/BAUFCT64PiluX37NhYtWoRly5YhKyurxBjPBoMBfn5+6Nu3L0aOHCnaA28fxmAwICcnB1qt1jrMq5eXFwIDA13yQIn7CYKA7du3IyEhASdOnIBCobAOp2o2m2EymdC6dWuMHDkS7du3d2ktJ0+exNy5c/H9998DgHUER0EQYDQa0ahRI7z11lvo3bt3uYzuWFBQgJycnBJt1d/fH0FBQQ4NsWrrMWwGdgWWm5uLjIyMBx5eYCGTyRAYGIhq1aq5tPdy584dpKamljogvIWfnx9q1Kjhsh3I1atX0blzZ9y4ceOhj+myjBX+7bffivaczfuZzWakpaUhLy+v1AczA8VPYwkPD3dZcJtMJkyYMAGJiYlQKBRlPlvR8tq7776LSZMmuaSdLF26FBMmTIBCoSjzQcWWhxh06tQJiYmJoj3N/n62tFV/f3/UqFHDrh0HA5seKjs7G+np6TbN6+vri9q1a7vkw1hQUICUlBSbnmXo5eWFqKgo0Z9ukpGRgeeffx4ZGRk2PfRVoVDAx8cH+/fvx2OPPSZqLWazGVevXi3xEIeyyGQyREREOPzU97IIgoB33nkHS5cuLXOHUZpJkybhvffeE7WWVatWYcSIETbPL5fL0bFjR6xatUr0nnZ+fj5SUlJsek+8vb0RFRVlcweDV4lIQMeOHUVv4LYoKCiwOayB4kMVaWlpotdhMBge2aO9l16vx/Xr10WvY+zYsTaHNVDc+ywqKkL//v3tCjRb3Lx506awBoqDNS0tDXfu3BG1hr1792LJkiV2/25Tp07F6dOnRavjxo0bGD16tF3LmM1m7Ny5E998841odQDFbe/GjRs2vyc6nc4lbZWB7aG2b9+O559/HjVr1kR4eDieeeYZrFu3TpR137p1y+5lcnNzyzx04qjs7GybQ9KiqKhI1G97N2/exK5du+yuw2Qy4a+//sKJEydEq0Wn00Gr1dq1jCAIyMrKEq0GAFi0aJFDvVOFQoFly5aJVseKFSscWk4mk2HhwoWi7kyzs7PtfqL93bt3UVBQIFoNAAPbYwUGBmLChAnYt28ffvrpJ/Tp0wfDhw/Hvn37nFqvTqcr9QGzjyIIAnJycpzatljru337tmh1rFixwuFDPUqlEkuWLBGtFkd/r/z8fNF2plevXkVSUpLdOzCgeCe2adMmZGdnO12HXq9HYmKiQ3UIgoC///4bJ0+edLoOoLjXnpub69CyYrZVgIHtUX744QfUqFEDGzZswLPPPotOnTohJiYGderUwfDhw9GoUSMcP37cqW3Y24O7V15enlPbvldBQYFDH0agOKDs7e2UZdeuXQ6vy2g0Yvfu3aLUATj+/lqu9BHD3r17nVper9fj0KFDTtdx9uxZpzoISqUSP/zwg9N1AMXtzZm2KmZPn4HtITZu3IhBgwZh6dKl6NGjR4nXBEHAwYMHcfHiRTzzzDNObaess+yuXlbsdYlVi7O9wTt37lgvh3SWo6EAiPd+3L592+mTdWJ8ExOjZypW79aZ99Zy2aFYeOOMB1iyZAk+/fRTbNiwAS1btrROz8vLQ4MGDaDT6aBQKDBr1iy0adPGbXV60o0JYtUixmWCnvBUd096PzxhHTKZTLS/i7PvrZifGwa2m23btg23bt3Cnj17EBsbW+I1f39/HD16FIWFhTh06BDef/991K5dG88++6zD23Pkon4LMS+nc6YOuVwu2vXYERERSEtLc/hra3BwsGjB4OXl9dDrex9GrL9NtWrVnO4RhoWFiVKHM8xms9PrsHCmrSoUClF36Dwk4maNGzdG1apVsXr16gdCQy6Xo27dumjcuDFGjRqFLl264KuvvnJqe1WqVHF4j1+lShWntn0vX19fh+9eDAgIEK3X0qtXL4fDWqFQoHfv3qLUAcDh66kVCgUCAgJEqeGll15yKqACAwPRunVrp+to2LAhoqOjHf47m0wmvPrqq07XARTftOXoe+LM5600DGw3i4qKws6dO7Fr1y5MmDDhofOazWanj5c6+uFWKBSi36ARFBTk0HLBwcGi1dCjRw9UqlTJoWVNJhMGDhwoWi2OfrgDAgKst4yLUUPPnj0d+gajUCgwaNAgUYYRkMlkGDZsmEM7U4VCgTZt2qBOnTpO12HhaNt3tI2XhYHtAaKjo7Fr1y5s377deiPNV199hf379+Pq1atITk7G/PnzsX79+gdOSDoiJCTE7q9poaGhooWCRWBgoN0f7ipVqoh627G/vz+GDBlid1AqFAp07NhR1MGPlEolQkJCXL7Mo7z11lt2B6VMJoNKpcKAAQNEq6NHjx4ICgqyu62aTCa7b7h5FEfGs3GkfT8KA9tDREdHY+fOndi8eTPef/99FBYWYty4cWjevDnat2+Pbdu2YenSpejXr5/T2/L29katWrVs/iCEhISI2qu1kMvlqF27ts2N2t/fH9WrVxe9jg8//BDPPfeczTskhUKBunXrYtGiRaLXEhoaanOvTKlUolatWqLfqt+wYUMsWLAAgG0nzORyOWQyGVatWoWaNWuKVodlzBalUmlXaH/88cein5xXKBSoVauWzYdG1Go1IiIiRK0B4FgiFZpOp0NGRkaZ14p6e3sjJCRE1GPXpTGZTMjIyEBubm6p10SrVCoEBwejatWqLqvh7t27GDx4MLZv3w6lUlnqiTfLQEfNmjXDxo0bXbITs8jJyUFWVlapJyFlMhnUajXCwsKcOt78KJs3b8aQIUNgNpvLvFZdLpfD29sbq1evdtmIfb/88gteffVV6+WCpbVVhUIBs9mMadOmYfjw4S6pAyi+xC8zM7PMturl5YWgoCC72yoHfyKbGQwG5ObmQq/XQxAE63Hu8h772Ww2IycnBzqdrsTwqv7+/uVySaEgCDhy5AiWLFmCnTt3PvCBbNWqFYYOHYoOHTqU27CzBQUF1hs3ZDIZvL29UaVKlXLbfmpqKlasWIFly5Y9cF1zeHg4hg4dir59+4p+WOZ+eXl5WLduHRYtWoQrV66UeM3Pzw/9+/fHwIEDUa9ePZfWYWEymZCbm4uioiIIgmBtq46OnsjAJnKCRqPB+fPnrQ8wqF+/PqKiotxdltvo9XqcOnUK2dnZkMlkCA0NRdOmTcv9GnRBEHD27Fmkp6fDYDAgMDAQzZo1k/yDJRjYREQSweFViYj+YRjYREQSYfMhESIici/2sImIJIKBTUQkEQxsIiKJYGATEUkEA5uISCIY2EREEsHAJiKSCAY2EZFE8JmOBIPBgKSkJNy8edM6oE7r1q1FeTYfOSc1NRWHDx9GTk4OvL29ERkZiTZt2pT7oEt5eXnYt28fbt26BZlMhrCwMMTHx5f7oEt6vR779u1DamoqjEYjgoKC0KZNG5ePFugxBKqw0tLShI8++kgICQkRAAgABJlMJgAQlEql0KNHD+Ho0aPlVo9erxc0Go1w7do14cqVK8L169eF7OxswWQylVsNgiAIJpNJyMrKstZx7do1ISMjQzAYDOWyfbPZLCQlJQldu3YV5HJ5ib8LACEiIkKYOnWqkJmZ6fJafvvtN2Ho0KGCj4+PdfuWf/7+/sKYMWOECxcuuLyOmzdvCh988IEQHBxcalvt06ePcPz4cZfXYVFaW719+7bL2ypvTa+gDhw4gM6dO+POnTtlDk5vGch/woQJmDFjhuiPCLMwGAxIS0uDVqstc3D6oKAghIeHu3RcbLPZDI1Gg9u3b5f6nshkMgQEBCAiIsJl41EbjUaMHDkSixcvLvNBCkDxgwMCAgKwe/duNG/e3CW1fP311xg9ejQUCkWZdSgUCshkMvzvf/8T9YHE99qzZw9eeeUV6HQ6mEymUuexvFfvv/8+PvvsM5e1E71ej/T09Ie21eDgYISFhbmkBgZ2BXTkyBG0adPmoU8Sud/IkSMxb9480RuhTqfDlStXYDAYHjmvr68voqKiXLLjMJlMuHLlCu7evfvIeb28vFCnTh3Rn/YiCAL69++PVatW2fRMRYVCAS8vLxw5cgSxsbGi1jJv3jy8/fbbdi2zZs0a0UM7KSkJL7zwgl1tdcKECfjyyy9FrQMAioqKcOXKlTJ3Xvfy8/NDVFSU6J8XBrabtGrVCk8++STmzJlTrtvVarWIjIxEfn6+zR8AC7EeAmxhMplw8eJFu54Er1arUbt2bdFqsLhy5QoKCgpsnt/b2xvR0dGi7jyWLl2KIUOG2LWMpUd3/fp10R5O/PPPP6NFixZ2P4hXqVTizz//RHR0tCh13L59G7Vq1Xrot8CybNmyBV27dhWlDqD4m8/Fixdt6lhYVKlSBZGRkaLVAPAqEY/0xx9/oHv37qhduzZkMpmoob5q1SpotVq7PwByuRxfffWVaHUAQHZ2tl1hDRTvcO7cuSNqHfn5+XaFNVD8zcDyjEExCIKAmTNn2t0jM5lMyMzMxObNm0WrZe7cuQ6d1BQEAQsXLhStjpUrV6KwsNDutqpQKDBr1izR6gCK26o9YQ0Aubm5Nn1jswcD2wPduXMHderUwfTp0xEeHi7aegVBwLx58xxa1mw249SpUzhz5oxo9dz/jEBbZWdni1aDM+sTs47Dhw/jwoULdvdqgeKdqaN/1/tlZmZi48aNNn3tv5/JZMKyZctE2aGazWbMnz/foffDZDLhyJEj+PPPP52uAyj+3HhKW2Vge4hdu3YhICAAa9asQbNmzfDll1+iZ8+e8Pb2Fm0bf/zxh8OhABR/5d24caMotRQUFNjdu7Yo64nVjjCZTA4//q6oqEi0HtSGDRscPpFp2ZneuHHD6Tq2bdtW5ok9W+Tn52Pv3r1O13H27Flcu3bN4eXFbqv29q4tcnNzHf68lYaB7QHWrl2LXr16Yc2aNejTp4/LtpORkeER6wDg8AcAKO7xOBMq99fhzAfKmd/jXhqNxunfSay/r7PXeHtCO5PJZNBoNE7XATj3NzabzaK1VYCB7XYJCQkYPnw4duzYgZdfftml2xJjT89z1K7hKX8brsOz8U5HN9q8eTMyMzNx7NgxNGvWzOXbE+NusKpVq4pQCZy6jlkmk4l2p5+z11OLdT12SEjIQ693toUYf5uQkBCne4Ri1eEMQRBEu/vRU9oqwB62WzVp0gQhISFYvnx5ufQGnnjiCacuMzIajejWrZsotfj5+UGlUjm0rFqtFu1yOqVSCT8/P4eW9fLyEu3W7G7dujkc1nK5HI0aNRLlcseXX37ZqWuHfXx80L59e6freOqpp1CtWjWHlxezrfr7+zsc2lWqVBH1WmwGthvVrVsXBw4cwLZt2zBq1CiXb08ul2PUqFEOhZ1MJkPDhg0RFxcnSi0ymQxBQUEOLRscHCxKDRaO9gjFrCM+Pt7hnanZbMbo0aNFCYYaNWqgc+fODgWUUqlE//79oVarna5DqVRixIgRDrVVuVyO2NhYPPXUU07XARS31cDAQIeWFbutMrDdrH79+jhw4AC+/fZbjBkzBkDx7a/nzp3DuXPnoNfrkZqainPnzuHSpUtOb2/AgAHw8fGx+8MtCALGjRsnam8hODjY7mDw9fV1uEdcFn9/f1SqVMmuZVQqlcM7nNLI5XKMHTvW7vfXcou6mHcYjhkzxuHL+kaMGCFaHYMGDYJKpbL7PTGbzRg7dqxodQDFO3V726q/v7/og2MxsD1ATEwM9u/fj3Xr1mH8+PFIS0tDkyZN0KRJE6Snp2PmzJlo0qQJ3nzzTae3FRwcbL3cydYPgkwmw+uvv44BAwY4vf17KZVKREVF2XyMr1KlSi65y1EmkyEqKsrmSyjtrdtWo0aNQqdOnWzuVcrlcsjlcmzbtg2+vr6i1fH888/jo48+snu5+fPno1GjRqLVER4ejnXr1gGwr60OHDhQ9FvkVSoVateubVdbFfsuR4C3pldYW7ZsQc+ePWE2mx86sI/JZEK/fv2wdOlSh485P4pOp0NqamqZdxvKZDJUqVIF1atXd9kAVEBxDzE1NRV5eXllnlPw9/dH9erVRR9HxKKoqAhvvPEGNm/ebH3/S2MZR2TLli3o0KGD6HUIgoApU6ZgypQpDx2ESqlUwmQyYe7cuS47rLdx40br5a6PaquDBw/GggULXDY4V1FREVJTU1FYWFjq65bDJxEREa5pqy4dC5A82t9//y2MGDFCqFy5snWYSqVSaR22sk2bNsKWLVsEs9lcLvUUFRUJqampwqVLl4QLFy4Ily9fLtdhTS0sQ2devnxZuHDhgnDp0iUhLS1N0Ol05bJ9k8kkbNiwQXjmmWcEAIJcLrf+bfB/w5qOHTtWuHz5sstrOXjwoNCtWzdBLpcLMpmsRB2WYU1//vlnl9fxxx9/CMOGDbMO83p/W42Pjxd27NhRbm317t27ws2bN0u01czMTMFoNLp0u+xhE/Lz87F161akpqZCr9cjKCgI7du3R0xMjLtLq/B+//137N+/H7m5udYHGHTp0qXcHxyQmpqKHTt2ICsry/oAgy5dupT7gwO0Wq21rRoMBgQFBeGFF15AvXr1yrUOd2FgExFJBE86EhFJBAObiEgiGNhERBLBwCYikggGNhGRRDCwiYgkgoFNRCQRDGwiIomw+YZ7R597R0RED+fv72/TfOxhExFJBAObiEgi+ExHAgCkpKQgPT0dBoMBVapUQYMGDVw2ROXDZGVl4erVq7h79y78/f1Rv359Ucd6tlV+fj4uXryIgoICVK5cGVFRUaI/PcQWer0eycnJyM3NhZeXF2rUqIHq1auXex2CIODChQvWwZ9CQkJQr149UR9oYavr168jPT0dRqMRgYGBaNCggehjk9siMzMT169fx927d6FWqxETE2P3gzDsxcCuwPR6PXbs2IHFixfjxIkTJV4LDQ3F4MGD0a9fP4SHh7u0DkEQcPjwYSxZsgS7du2C2Wy2vla5cmW88cYbGDx4MOrXr+/SOoDi0fESExOxZs0aFBUVWacrFAp07doVQ4YMQYsWLVweVDdv3sSKFSuQmJiI27dvl3jtueeew7Bhw/DCCy+4fKeam5uLdevWYdGiRbh69WqJ1x5//HEMGzYMr732mst3qjqdDtu2bcPixYtx6tSpEq+Fh4djyJAh6Nu3L0JDQ11ah9lsxsGDB7FkyRLs3r27xLjpfn5+6NevHwYOHIjo6GiXbN/m0fp40vGf5dKlS3jllVdw/fr1MgfKtzzRZO7cuXjjjTdcUkdOTg769OmDo0ePljlQvqW+UaNG4dNPP3XJwPBGoxETJkzA8uXLy6zDMj0+Ph4rV64U/VFlFgsXLsTEiRMBoMTOy8LyftSvXx9btmxBzZo1XVLHvn378MYbb+DOnTsA8MBDHWQyGQRBQGBgIDZu3IjmzZu7pI7k5GR069YNN27cgFwuL/U9kcvlUCgUSEhIQM+ePV1SR3Z2Nnr16oUTJ06U+ZmxTB8/fjwmT55sc1u19aQjA7sCunTpEtq2bQutVlvmE03u9+WXX2Lo0KGi1qHVatG+fXtcuHDB5jpef/11JCQkiNrDNZvN6NevH7Zv327T0+vlcjmaNGmCXbt2iT4u9cyZM/HJJ5/YNK9CoUBwcDAOHjyIGjVqiFrH7t270atXLwCl7zTur0OhUGDHjh2iPaTZ4u+//0bbtm1x584dm9vI3LlzRX+cXU5ODtq2bYurV6/aXMfAgQMxe/Zsm9oqA5tKpdPpEBsbi9TUVJsbHlDcm9q5cyeeffZZ0Wrp0aMH9uzZY1cdADB9+nQMHz5ctDpmzJiBqVOn2rWMXC7Ha6+9hqVLl4pWx+7du9GjRw+7llEqlYiOjsZPP/0k2nHcS5cuIS4uDnq93qYdGFD8fvj5+eHMmTOiHZa4c+cOYmNjodFo7GojcrkcP/74o6g9/q5du+LQoUN2t9XZs2dj0KBBj5yvwl7WN2zYMGvPgB60fft2pKSk2N3w5HI5Zs2aJVodycnJ2L17t911AMCsWbMceqp3ae7evYt58+bZvZzZbMbGjRtx8+ZNUeoAinvX9h7uMRqN+Ouvv7B3717R6li8eDGMRqPNYQ0Uvx8FBQVYsWKFaHV89913dncsgOLOxZw5c0Sr47fffsP+/fsdaqszZ850aLmy/OMCe8aMGVi4cKG7y3Da9u3b0aVLF0RFRaF69epo27Yt9u3b5/R6Fy1a5NAxYJPJhP379+PKlStO1wAAy5Ytc7hHmJmZid27d4tSx3fffefwt0e5XC5aQJ0/fx6nTp165OGH0igUCixZskSUOgoKCrBq1SqHQsZsNmPp0qWi7Uydaavff/89UlNTRakjMTHR4ZO7qamponxuLf5xgR0QEIAqVaq4uwynHTt2DK1bt8bmzZtx6NAhPPfcc+jRowd+/fVXh9d55coVh0MBKA6oDRs2OLx9C0EQsHr1aod7HgqFAqtWrXK6DgD45ptvHD6JaTKZ8M0334hSx7p16xwOBZPJhKSkJGRmZjpdx86dO60nGR2RmZmJQ4cOOV3H33//jd9++82ptrpx40an6zAajVi3bp3DOyGFQoG1a9c6XYeFZAN769ataNGiBUJDQ1GrVi107twZhYWFDxwSyc/Px6BBgxAeHo7o6Gh8/fXX6NixI9577z3rPI0aNcIXX3yBIUOGoFq1amjYsCG+//57ZGVloWfPnqhWrRri4uJw5swZ6zLZ2dkYMGAAYmJiEBYWhhYtWmDTpk021Z6VlYV69eph5syZ1mknT560nkACir8pjBkzBrGxsahXrx4++ugj1K1b16mepbM9DplMJkqvJT8/H4WFhQ4vbzKZkJKS4nQdAHDjxg2HQwEoDihnlre4efOmU+sRBAHp6elO15Gamur0sXAx2oizh5rkcrkoh6tyc3NLXN5pL5PJhOvXrztdh4UkA1uj0WDgwIF4/fXXcerUKXz//ffo1KlTqcfc3n//fZw8eRLr16/Htm3bcPz48VJ7qQkJCWjRogWOHDmC+Ph4DBkyBEOGDEGPHj1w+PBhREVFYejQodZt6HQ6NGnSBJs2bcKJEyfQv39/DBkyBL/88ssj669atSoSEhIwbdo0nDlzBvn5+Rg8eDCGDBmCVq1albqM5RhhYGCgfW/WPfR6vcPLAsWh4Ow6AMBgMDi9Dp1O5/Q6AOdrEQRBlEMAer3e6eAX42+j1+udugJHJpN5RBsRq62KsQ6x2iog0RtnNBoNjEYjOnfujMjISABAw4YNH5gvPz8fa9euRWJiojUIFyxYgJiYmAfmjY+Px8CBAwEA//3vf5GYmIinnnoKr7zyCgBgzJgxaNeuHTIzMxEWFoaIiAiMHj3auvywYcOQlJSELVu2oGnTpo/8HTp06IB+/frhzTffRJMmTeDr64uPP/64zPnnzZuHgoICdOvW7ZHrLouzh4pkMpkoh5vUarXT6xDrrsMqVaogIyPD4eV9fHzg5eUlSh1lXdtrzzrEqMOZGgRBEK0OZznTuRGzDjHvkJVkD/uJJ55Aq1atEBcXh759+2LlypXIycl5YL5r167BYDAgNjbWOi0gIKDUu5AaNWpk/X/LZUn37gQs027dugWg+KvOjBkz0KJFC0RGRqJatWpISkqy62vY1KlTYTQasXXrVixbtgze3t6lzrdx40ZMnz4d//vf/xASEmLz+u/XqFEjpxqx0WhE69atHV7eQqVSoWXLlg5/9ZbL5Wjfvr3TdQDFO05H61AoFGjTpo0odbRt29apoIyIiECdOnWcrqNNmzZ2XR1yP4VCgZYtWzpdx5NPPmnzpW6lEautVq5cGc2aNXP4PIdMJkO7du2crsNCkoGtUCiwbds2fPvtt4iJicHixYsRGxuLa9euObzOe0/4WL4SqlSqB6ZZvrbOnTsXCxcuxJgxY7Br1y4cPXoUbdu2tesr1NWrV6HRaGA2m8s8Jrt582aMGjUKK1eudLoBent7Y9CgQQ4HVEREBOLj452qwWLo0KEOB5RMJkP//v1FqWPgwIEO12EymUS7mahz584O70zlcjmGDRsmynXYMTExeOaZZxxal1KpROfOnUUZyqBSpUro37+/Q3XIZDJERUWVeXjRXkOHDnX4cJVSqRT1LmFJBjZQ/Edp0aIFJk2ahKNHj8LLyws7d+4sMU/t2rWhUqlKnCzMy8vDpUuXnN7+iRMn8NJLL6Fnz5544oknEBUVZdd69Xo9Bg8ejG7duuGDDz7AyJEjrb13i02bNmH48OFYvnw5XnjhBadrBoABAwY41IMSMxQAoGPHjggNDbW756JQKNC5c2eEhYWJUkedOnXQtm1bu38vhUKB2rVr4/nnnxelDsvO1JGenEKhwOuvvy5KHUDx4T1HdmJGo1HUu2EHDhzocFAOHTpUtLthu3TpgsDAQIfaavfu3XlI5NSpU5g5cybOnDmDGzduYPv27cjKynpgcCB/f3/07t0bkydPxuHDh/HXX39h5MiRkMvlTv8x69atiwMHDuDkyZNITk7G22+//UDgPswnn3wCrVaLL774AmPHjkW9evVK3L23ceNGDB06FFOnTkXTpk2RkZGBjIwM5OXlOVV3zZo18cUXX9i1jEKhwNNPP4233nrLqW3fS6VSYcWKFZDJZDb/LRQKBUJDQzFjxgzR6gCAOXPmICAgwObQtoxbsXz5clHHNRk/fjwaNmxo985j/vz5qFq1qmh1dO7cGf/5z3/s+t1kMhmGDx+Of//736LVUbduXXz22Wd2LaNQKPDss8/izTffFK0Ob29vLF++HADsaqsRERF230H7KJIMbLVajWPHjuHVV1/FU089hU8//RRTp04t9ev6559/jmbNmuE///kPOnfujObNm6N+/frw8fFxqoZ33nkH//rXv/DKK69Ye4svvfSSTcseOXIECxYswJIlS6BWqyGXy7FkyRIcP34cy5YtAwCsXLkSRqMR48ePR3R0tPXfvZcjOmrIkCHW8SoeFQ5yuRxNmzbFhg0byjzG7qhnn30Wa9asgUqlemQdCoUC4eHh2Llzp+ijB9aqVQs7d+5EcHDwI+tQKpXw8fHBpk2bbDq5bA9fX19s3boVDRs2fGRYKhQKyGQyfPXVV+jdu7eodchkMixYsACdO3e2/lwWS50DBgwQPZwAYOTIkZg0aRKAR7dVmUyGuLg4rF27VpQTwfdq27Yt/ve//0GpVNrUVmvUqIGdO3c6dc6pNBVuLJHCwkI0aNAAU6dORd++fd1djlvt3bsXs2bNwrFjx6BUKiEIAgRBgFwuh9FotA5bOWrUKNHD+l7nz5/Hl19+iR07dli3bzabrXX4+vqib9++mDBhgugfgHulpaXhq6++wurVq1FUVASFQmGtw/Lfbt264Z133in1SiOxFBYWYu7cuVi2bBmysrKgVCphNputwWkymdC6dWuMHz8ezz33nMvqMJvNWLFiBRISEnDp0iVrGwGKw9FoNKJRo0YYPXo0evTo4dIhZ3fv3o3Zs2fjxIkTpbbViIgIDBs2DMOHDxc9rO919uxZzJw5E7t27bJ+O7y3rarVavTr1w/jxo2z61AIB3/6P7/++isuXLiA2NhYaLVazJgxA0ePHsW5c+fcMiC9J0pOTsb69euRmpoKvV6PwMBAtG/f3qkrKByh0Wiwdu1aXLp0CXfu3IFarUazZs3QvXt30UfFe5j8/Hxs3LgR586dg1arhZ+fH2JiYtC7d29RDz08isFgwM6dO3H48GHk5OTA29sbNWrUQO/evVG3bt1yq0MQBBw7dsx66FEmkyEsLAzdunVDbGxsuT7E4M8//8TGjRuRlpYGg8GAwMBAxMfHo3379uXaVtPS0rBmzRpcuXLF+gCD5s2bo1u3bg49xICB/X9+/fVXjBo1ChcvXoRKpUKTJk3w+eefl3rdtlhu3LiBp59+uszXf/75Z5eNYUxE0sPAdiOj0fjQ21Fr1arllsdvEZFnYmATEUmE6IFNRETuJcnL+oiIKiIGNhGRRDCwiYgkgoFNRCQRDGwiIolgYBMRSQQDm4hIIhjYREQSwcAmIpIIBjYRkUQwsImIJIKBTUQkEQxsIiKJYGATEUkEA5uISCL+H0gCnm/wpEwwAAAAAElFTkSuQmCC", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], + "outputs": [], "source": [ "petab_select.plot.upset(models=models, criterion=petab_select.Criterion.AICC);" ] @@ -279,21 +123,10 @@ }, { "cell_type": "code", - "execution_count": 5, + "execution_count": null, "id": "56b4a27b", "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAd8AAAF4CAYAAAAVGfMOAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAABMRElEQVR4nO3deXiU5bk/8O9Mlsk+yZCQPSSETCYJgUBIUETcQFQUPQpqUdSeWtuKKC6/A1iRaivKoWrt4apKa7Vu7VE8SgWtgksFtSZhEUgymex7CNkmC5NJMvP+/qAZefNOQtZ5Z/l+riuXzD3PTO74JLlzv8vzKARBEEBEREQOo5Q7ASIiIk/D4ktERORgLL5EREQOxuJLRETkYCy+REREDsbiS0RE5GAsvkRERA7m8cVXEAR0dnaCtzsTEZGjeHzx7erqglqtRldXl9ypEBGRh/D44ktERORoLL5EREQOxuJLRETkYCy+REREDsbiS0RE5GAsvkRERA7G4ktERORgLL5EREQOxuJLRETkYCy+REREDsbiS0RE5GAsvkRERA7G4ktERORgLL5EREQOxuJLRETkYCy+REREDsbiS0RE5GAsvkRERA7G4ktERORgLL5EREQOxuJLRETkYCy+REREDsbiS0RE5GAsvkRERA7G4ktERORgTl98n3rqKSgUCsyePVvy3DfffIPFixcjICAAUVFRuP/++9Hd3S1DlkRERKPnLXcCI6mrq8O2bdsQGBgoee7YsWO44oorkJaWhueeew51dXX47W9/i9LSUnz88ccyZEtERDQ6Tl18H3nkEVxwwQWwWCxoaWkRPffoo48iLCwMX375JUJCQgAAiYmJ+OlPf4pPP/0UV155pRwpExERnZfTHnb+6quvsHv3bvzud7+TPNfZ2Yn9+/fj9ttvtxVeALjjjjsQFBSEd955x4GZEhERjY1Tdr4WiwXr16/H3XffjczMTMnzJ06cwMDAABYsWCCK+/r6IisrC0ePHh32vc1mM8xms+1xZ2fn5CVOREQ0Ck7Z+b700kuorq7Gr3/9a7vPNzY2AgCio6Mlz0VHR6OhoWHY93766aehVqttH/Hx8WNP8NChqR1PRERuzemKb2trKx5//HFs2bIFERERdseYTCYAgEqlkjzn5+dne96ezZs3w2g02j5qa2vHluCvfgVcfDGwffvoxm/ffnb8r341ts9DRERuy+kOOz/22GPQaDRYv379sGP8/f0BQHT4eFBvb6/teXtUKpXdoj0qhw4BTzxx9t+bNp3978aNw4/fvv2HcU88ASxdCixePL7PTUREbsOpOt/S0lLs2rUL999/PxoaGlBVVYWqqir09vaiv78fVVVVaGtrsx1uHjz8fK7GxkbExMRMTYKLFwPPPPPD402bhu+Azy28wNnXsfASERGcrPjW19fDarXi/vvvR1JSku3ju+++g8FgQFJSEp588knMnj0b3t7eKCgoEL2+r68Px44dQ1ZW1tQluXHj+QuwvcI7UodMREQexakOO8+ePRvvv/++JP7YY4+hq6sLL7zwApKTk6FWq7F06VK8+eab2LJlC4KDgwEAb7zxBrq7u7F69eqpTXSwkA4W2E2bYLVaUb5qFRL/93/hs2XLD2NZeImIaAiFIAiC3Emcz6WXXoqWlhacPHnSFjty5AgWLVqE9PR03HPPPairq8Ozzz6LJUuW4JNPPhn1e3d2dkKtVsNoNIruGR6VIR2uOSgIqnOXt2ThJSIiO5zqsPNYzJ8/HwcOHIC/vz8efPBB7Nq1Cz/5yU+we/duxyWxcSPqz7kwjIWXiIhGwyU636k0oc4XQFdXF3xjYkSFd0CthndHxyRmSURE7sRlO19nEfyHP4g7XgDeRiMGtm2TKSMiInJ2LL4TYeec7yDvX/5y9AtxEBGRR2HxHa8hhbf6F7/AnldewfE1a34YM9J9wERE5LFYfMfDzn28oU8/DQDQX389CzAREY2IxXeshllAQ61WIy4uDgALMBHRlHGTjW1YfMfi0KERV65KT0+3/dtuAXbSbwIiIpfgRhvbsPiOxeLFwNatZ/9t5z7e0NBQxMbG2h7rr78ehWvXnn2wdSvXdiYiGq+hG9ucrwAP3djGyZof3uc7nvt8Dx0atpC2t7dj//79otjC/n7MuO22iaZKROTZRrtuvgusr8/OdzxG6GDDwsIkuyodCwrCwMDAVGdFROTehtnYpq+vD7Y+0gUKL8DiOyXOPfcLnN13uLy8XKZsiIjciJ0CXLNuHQ4ePIi+X//aJQovwMPOE15ecjhfffUVmpqabI/9/PxwzTXXwNvbqTaSIiJyTS6+sQ073ymSkZEhetzb24uKigqZsiEicjMbN6L3nKuYzy28lm3bnLrwAiy+U2batGmIjIwUxUpKSmCxWGTKiIjIfVitVhxctEi0rC8AWMPC4LV5s0xZjR6L7xQa2v2aTCZUVlbKlA0RkfvQ6/WIfO01ycY2yvZ2l1jUiMV3CoWHh2P69OmiWHFxMbtfIqIJaG9vh2XbNsx5+21brC84+IcBLrCqIIvvFBt65bPJZEJVVZU8yRARuTiLxYLTjzyCzLfessWOr1mDrspKu7chOSsW3yk2ffp0REREiGLsfomIxqf5kUeg/fOfbY+Pr1kDxaZNmDZt2rD3ATsjFl8HGNr9njlzBtXV1TJlQ0Tkmnq2bkX0735ne3x8zRo03nGH+HesixRgFl8HmD59OsLDw0Wx4uJiWK1WmTIiInItA19+icAnn7Q9Pr5mDQz/8R9YuHAhvLy8xIPtFWAnW9uZxdcBFAqFpPvt6elBTU2NTBkREbmWk6GhKFy1CsDZwqu//nqkp6cjNDTU/gvOLcBOuLENl1tykMjISGg0GrS1tdliRUVFSEhIgFLJv4GIiIbT3NwMg8EArF6NU5mZaNHpoNFooNPpRn7hxo3ARRc5XeEF2Pk6jEKhkNz3293djdraWpkyIiJyfv39/cjPz7c9btHpoFQqkZubO7rGxQkLL8Di61BRUVEICwsTxYqKinjul4hoGMePH0dPT48olpmZOalr8cuBxdeB7J377erqQl1dnUwZERE5r6amJsmOcOHh4UhJSZEpo8nD4utgMTExkgsEioqK4OGbSxERifT19YkONwOAl5fX6A83OznX/wpcjL3ut7Ozk90vEdE5jh07BpPJJIrNnTsXQUM2UnBVLL4yiI2NhVqtFsXY/RIRnVVfXy9ZhjcyMhLJycnyJDQFWHxlYK/7NRqNaGhokCkjIiLnYDabUVBQIIr5+PhgwYIFUCgUMmU1+Vh8ZRIXFye5Wq+wsJDdLxF5tMOHD8NsNotiWVlZCAwMlCmjqcHiKxN73W9HRwcaGxtlyoiISF41NTWS619iYmKQmJgoT0JTiMVXRnFxcQg+dw9KsPslIs9kMplw5MgRUczX1xfZ2dludbh5EIuvjJRKpaT7bW9vR1NTk0wZERE5niAIKCgoQF9fnyg+f/58+Pv7y5TV1GLxlVl8fLzk0nl2v0TkSaqqqiSn3OLj45GQkCBTRlOPxVdmSqUSaWlpolhbWxtOnTolU0ZERI7T09ODY8eOiWIqlQrz58+XJyEHYfF1AjNmzJBcycf7fonI3Q0ebu7v7xfFFyxYAJVKJVNWjsHi6wTsdb8tLS1obm6WKSMioqlXXl4uOcqXmJiI2NhYmTJyHBZfJzFjxgwEBASIYkVFRTJlQ0Q0tbq7u/H999+LYv7+/sjKypInIQdj8XUSXl5eku739OnT7H6JyO1YrVbk5eXBYrGI4jk5OfD19ZUpK8di8XUiiYmJksvq2f0SkbspLS1FS0uLKJacnIyoqCiZMnI8Fl8n4uXlBZ1OJ4o1NzdLvkmJiFxVZ2cnTpw4IYoFBgZizpw5MmUkDxZfJzNz5kz4+fmJYux+icgdWK1WfPfdd7BaraJ4bm4ufHx8ZMpKHiy+TsZe99vU1ITW1laZMiIimhx6vR7t7e2imFarRUREhEwZyYfF1wmx+yUid9Pe3o7CwkJRLDg4GLNnz5YpI3mx+Dohb29vpKamimKNjY1oa2uTKSMiovGzWCzIy8sTLRykUCiQm5sLb29vGTOTD4uvk0pOTpas8MLul4hcUVFREYxGoyim0+kwbdo0mTKSH4uvk7LX/TY0NEjOlxARObPW1lbo9XpRTK1WS3Z08zQsvk4sOTlZcsM5u18ichUDAwOSw81KpRILFy6El5eXjJnJz+mKb2FhIVavXo2ZM2ciICAA4eHhWLJkCT788EPJ2OLiYlx11VUICgqCRqPB2rVrcfr0aRmynho+Pj7QarWiWH19PTo6OuRJiIhoDE6ePImuri5RLD09HaGhofIk5EScrvhWV1ejq6sLd955J1544QVs2bIFALBy5Urs2rXLNq6urg5LlixBWVkZtm3bhkceeQT79u3DsmXLJBsyu7KUlBTJ/W/sfonI2TU3N8NgMIhiGo1Gciulp1IILrBvncViQXZ2Nnp7e23nDu6991689tpr0Ov1tg2XDxw4gGXLluHll1/GPffcM6r37uzshFqthtFoREhIyJR9DRNRWFgouUR/+fLlUKvVMmVERDS8/v5+fPrpp+jp6bHFlEolrrzySqf9PetoTtf52uPl5YX4+HjR4db33nsP1157ra3wAsDSpUuh1WrxzjvvyJDl1LHX/RYXF8uUDRHRyI4fPy4qvACQmZnJwnsOpy2+PT09aGlpQXl5OZ5//nl8/PHHuOKKKwCcPe/Z3NyMBQsWSF6Xm5uLo0ePOjrdKeXr64uUlBRRrKamBp2dnTJlRERkX1NTE8rLy0Wx8PBwye8wT+e0dzc//PDDePnllwGcPVxx4403YufOnQDOLjgBANHR0ZLXRUdHo62tDWazWXKfLACYzWaYzWbbY1cpYCkpKTAYDBgYGLDFiouLsXDhQhmzIiL6QV9fH/Lz80UxLy8v5ObmQql02l5PFk77f2PDhg3Yv38//vKXv+Dqq6+GxWKxXUhlMpkAwG5xHVyWcXDMUE8//TTUarXtIz4+foq+gsmlUqnsdr9DryQkIpLLsWPHJL97586di6CgIJkycl5OW3x1Oh2WLl2KO+64A3v37kV3dzeuu+46CIJg2/P23A52UG9vLwBI9sUdtHnzZhiNRttHbW3t1H0Rk0yr1YqWYhMEged+icgp1NfXo6qqShSLjIxEcnKyPAk5OactvkOtWrUK+fn5MBgMtsPNg4efz9XY2AiNRmO3KwbOdpAhISGiD1ehUqkk38jV1dXo7u6WKSMiorONUEFBgSjm4+ODBQsWQKFQyJSVc3OZ4jt4KMNoNCI2NhYRERGSyQaAvLw8ZGVlOTg7x0lNTRWtDMPul4jkdvjwYcmRyKysLAQGBsqUkfNzuuLb3NwsifX39+P111+Hv7+/bT3Qm266CXv37hUdNv7ss89gMBiwevVqh+XraH5+fpLut6qqSnJZPxGRI9TU1KCurk4Ui4mJQWJiojwJuQinW2TjP/7jP9DZ2YklS5YgNjYWTU1NeOutt6DX6/Hss8/ioYceAgDU1tZi3rx5CA0NxQMPPIDu7m7s2LEDcXFxyM/PH/aw81CusMjGUCaTCR999BEsFostlpycjOzsbBmzIiJPYzKZ8Mknn4hWFfT19cXy5cuHve6GznK64vu3v/0Nr7zyCk6cOIHW1lYEBwcjOzsb69evx8qVK0VjCwsL8dBDD+HQoUPw9fXFihUr8OyzzyIyMnLUn88Viy8AHD16FKWlpbbHSqUS11xzDQICAmTMiog8hSAIOHTokOTamwsuuEC0+BHZ53TF19FctfiaTCbs27cPVqvVFps1axbmz58vY1ZE5CkqKysl9/TGx8fjwgsvlCkj1+J053xpdPz9/TFz5kxRrKKiAmfOnJEpIyLyFD09PTh27JgoplKp+Mf/GLD4ujCdTidaNcZqtaKkpETGjIjI3QmCgIKCAvT394viCxYsGPW1NsTi69ICAgKQlJQkilVUVAy7uhcR0USVl5fj1KlTolhiYiJiY2Nlysg1sfi6OJ1OJ7qJ3WKxsPsloinR3d2N77//XhTz9/d367UVpgqLr4sLDAyU3E9XXl5uW2aTiGgyWK1W5OXliW5xBICcnBz4+vrKlJXrYvF1A2lpaex+iWhKlZaWoqWlRRRLTk5GVFSUTBm5NhZfNxAUFIQZM2aIYuXl5XY3niAiGiuj0YgTJ06IYoGBgZgzZ45MGbk+Fl83MbT7HRgYgMFgkDEjInIHg4ebz11TAAByc3Ph4+MjU1auj8XXTQQHB0tWlSktLWX3S0QTotfr0d7eLopptVpERETIlJF7YPF1I2lpaaLHAwMDoiUoiYjGor29HYWFhaJYcHAwZs+eLVNG7oPF142EhITY7X7PXfSciGg0LBYL8vLycO4KxAqFArm5ufD29pYxM/fA4utmhna//f397H6JaMyKiopgNBpFMZ1Oh2nTpsmUkXth8XUzarUacXFxopjBYJAsBUdENJzW1lbo9XpRTK1W2/ZTp4lj8XVDQ39A2P0S0WgNDAxIDjcrlUosXLgQXl5eMmbmXlh83VBoaKhknVV2v0Q0GidPnkRXV5colp6ejtDQUHkSclMsvm5qaPfb19eH8vJymbIhIlfQ3NwsWR9Ao9FAp9PJlJH7YvF1U2FhYYiJiRHFSkpKMDAwIFNGROTM+vv7kZ+fL4oplUrk5uaKti6lycH/o25saPdrNpvZ/RKRXcePH0dPT48olpmZiZCQEJkycm8svm5Mo9EgOjpaFGP3S0RDNTU1Sf4wDw8PR0pKikwZuT8WXzc3tPvt7e1FRUWFTNkQkbPp6+uTHG728vLi4eYpxv+zbm7atGmSLb/0er1kT04i8kxHjx6FyWQSxebOnYugoCCZMvIMLL4egN0vEdlTX1+P6upqUSwyMhLJyckyZeQ5WHw9QHh4OKZPny6Ksfsl8mxmsxkFBQWimI+PD3JyckTbk9LUYPH1EBkZGaLHJpMJlZWVMmVDRHI7fPiwZMvRrKwsBAQEyJSRZ2Hx9RARERGS/TfZ/RJ5ppqaGtTV1YliMTExSExMlCchD8Ti60GGnvs9c+aM5HwPEbk3k8mEI0eOiGK+vr7Izs7m4WYHYvH1INOnT0d4eLgoVlxcDKvVKlNGRORIgiCgoKBAssf3/Pnz4e/vL1NWnmlcxffrr7/GQw89hKamJrvPNzY24qGHHsK//vWvCSVHk0uhUEi6356eHna/RB6iqqoKjY2Nolh8fDwSEhJkyshzjav4Pvfcc/jwww8l948Oio6Oxt69e/H8889PKDmafJGRkZLNsNn9Erm/np4eHDt2TBTz8/PD/Pnz5UnIw42r+Obn52Px4sUjjlmyZAk7Xydkr/vt7u5GTU2NTBkR0VQbPNw8dFvR7OxsqFQqmbLybOMqvs3NzZL9YoeKiopCc3PzuJKiqRUVFYWwsDBRjN0vkfsqLy/HqVOnRLHExMTz/h6nqTOu4hsaGnreTqm6uprLkzkphUIhue+3q6tLcusBEbm+7u5ufP/996KYv78/srKy5EmIAIyz+F5wwQV4//33UVtba/f5mpoafPDBB1i0aNGEkqOpEx0djdDQUFGsqKgIgiDIkxARTTqr1Yq8vDzJ/fw5OTnw9fWVKSsCxll8H3roIZw5cwYXXXQRXn/9ddvVc42NjfjLX/6Ciy66CCaTCQ8//PCkJkuTx17329nZye6XyI2UlpaipaVFFEtOTh72YllyHO/xvGjJkiV47rnn8PDDD+PHP/4xgLO/zAe7JqVSiRdeeAFLliyZvExp0sXExECtVsNoNNpiRUVFiIuL4832RC7OaDTixIkTolhgYCDmzJkjU0Z0LoUwgeOMx48fx0svvYT8/HwYjUaEhoYiNzcXP//5zzF79uzJzHPKdHZ22gpQSEiI3Ok4XG1tLb799ltRbNGiRYiLi5MpIyKaKKvVis8++wzt7e2i+GWXXSZZZpbkMa7Od9CcOXPwhz/8YbJyIRnExcUhJCQEnZ2dtlhRURFiY2PZ/RK5KL1eLym8Wq2WhdeJcHlJD2fvvt+Ojg40NDTIlBERTUR7ezsKCwtFseDgYJc5GukpxlR8n3rqKTz66KOSG7XP1dfXh0cffRTPPPPMhJMjx4iLi0NwcLAoxiufiVyPxWJBXl6e6GdXoVAgNzcX3t4TOtBJk2zUxffAgQN4/PHHMW3aNPj4+Aw7ztfXF+Hh4fjlL3+JL774YlKSpKmlVCol3W97e/uwa3cTkXMqKioSXUAJADqdTrKkLMlv1MX39ddfR1hYGO67777zjl23bh00Gg1effXVCSVHjhMfHy9ZFKWwsJDdL5GLaG1thV6vF8XUarXkD2tyDqMuvt988w2WLl06qnVAVSoVli5diq+//npCyZHj2Ot+29raJEvSEZHzGRgYkBxuViqVWLhwIby8vGTMjIYz6uLb0NCAmTNnjvqNk5KSJFtXkXNLSEhAYGCgKMbul8j5nTx5El1dXaJYenq6ZBU7ch6jLr5KpXLEC62G6u/vh1LJi6ldiVKpRFpamijW2trKDTKInFhzczMMBoMoptFooNPpZMqIRmPU1TEmJgYnT54c9RufPHmSO2a4oBkzZiAgIEAUKyoqkikbIhpJf38/8vPzRTGlUonc3Fw2P05u1LNz8cUX4/PPP0dVVdV5x1ZVVeHzzz/n8pIuyMvLS9L9nj59mt0vkRM6fvw4enp6RLHMzEyPXK3P1Yy6+K5btw79/f1YtWqVZKHuc7W2tmL16tUYGBjAL37xi0lJkhwrMTGR3S+Rk2tqakJ5ebkoFh4ejpSUFJkyorEYdfGdP38+NmzYgCNHjiA9PR2PP/44vvjiC5SWlqK0tBRffvkltmzZgvT0dBw+fBgPPvgg5s+fP5W50xTx8vKSnC9qbm7G6dOnZcqIiM7V19cnOdzs5eXFw80uZEyz9Oyzz2LTpk1ob2/HU089haVLl0Kn00Gn0+GKK67AU089hba2NmzevBk7duwYV0L5+fm47777kJGRgcDAQCQkJODmm2+WXFAAAMXFxbjqqqsQFBQEjUaDtWvXskBMkqSkJPj7+4ti7H6JnMPRo0dhMplEsblz50ru1SfnNa5djcrLy/Hqq6/im2++sa2CFBUVhYsuugh33XUXkpOTx53QqlWr8PXXX2P16tWYM2cOmpqasHPnTnR3d+Nf//qXbX3Suro6zJs3D2q1Gvfffz+6u7vx29/+FgkJCcjLyxv1RtGevqvRSAwGA44dOyaKXX755QgPD5cnISJCfX29ZA2FyMhILFmyhJuhuJAJbSk4Fb755hssWLBAVDxLS0uRmZmJVatW4c033wQA3HvvvXjttdeg1+uRkJAA4OwSmMuWLcPLL7+Me+65Z1Sfj8V3eAMDA/joo4/Q29tri0VFRfFCOiKZmM1m/OMf/4DZbLbFfHx8sHz5csl1GuTcnO7kwKJFiyRda0pKCjIyMlBcXGyLvffee7j22mtthRcAli5dCq1Wi3feecdh+bozb29vpKamimJNTU1oa2uTKSMiz3b48GFR4QWArKwsFl4X5HTF1x5BEHDq1Cnb4c76+no0NzdjwYIFkrG5ubk4evTosO9lNpvR2dkp+qDhJScnS5YU5blfIserqalBXV2dKBYTE4PExER5EqIJGfUeU9dcc82Y31yhUGDfvn1jft1Qb731Furr6/Hkk08CgG3ZyujoaMnY6OhotLW1wWw2212H+umnn8YTTzwx4Zw8xWD3e/z4cVusoaEB7e3tCAsLkzEzIs9hMplw5MgRUczX1xfZ2dk8z+uiRl18//GPf4z5zSfjm0Kv12PdunW48MILceeddwKA7So/e8XVz8/PNsbe85s3b8ZDDz1ke9zZ2Yn4+PgJ5+nOkpOTodfr0dfXZ4sVFRXhoosukjErIs8gCAIKCgpEP3/A2ds/h96RQK5j1MW3srJyKvOwq6mpCStWrIBarcbu3bttu3MMfsMNPfcBwHZx0HDflCqValQ7M9EPfHx8kJqaihMnTthi9fX16Ojo4MLtRFOsqqpKsklNfHy86HoXcj2jLr4zZswY85vbK46jZTQacfXVV6OjowMHDx5ETEyM7bnBw832dk1qbGyERqNhgZ1ks2bNQklJiaT7XbRokYxZEbm3np4eye1+fn5+XMDIDUzJBVdHjhzBunXrRAVzLHp7e3HdddfBYDBg7969kn1mY2NjERERgYKCAslr8/LykJWVNa7PS8Pz8fGRLFtXV1cHo9EoU0ZE7m3wcPPQ3eSys7PZXLiBSSu+HR0d2LlzJ+bNm4ecnBy8+OKLovtDR8tiseCWW27Bt99+i3fffRcXXnih3XE33XQT9u7di9raWlvss88+g8FgwOrVq8f9ddDwUlJS4OPjI4rxymeiqVFeXo5Tp06JYomJidwtzk1MeJGNAwcO4JVXXsGePXtgNpshCAIuvPBC/PjHP8Ytt9yC4ODgMb3fhg0b8MILL+C6667DzTffLHn+9ttvBwDU1tZi3rx5CA0NxQMPPIDu7m7s2LEDcXFxyM/PH/VfhlxkY2xOnjwpKbhXXXUV/98RTaKuri58+umnsFgstpi/vz+WL18+6tX7yLmNq/jW1tbi1VdfxauvvoqamhoIgoDY2FjU19fjrrvuwp///OdxJ3TppZfin//857DPn5tuYWEhHnroIRw6dAi+vr5YsWIFnn32WURGRo7687H4jk1fXx/27t2LgYEBWywhIQEXXHCBjFkRuQ+r1Yovv/xSsnvckiVLEBUVJVNWNNlGfcFVf38/PvjgA7zyyiv47LPPYLFYEBgYiNtuuw133HEHLr/8cnh7e8Pbe9RvadeXX3456rEZGRn45JNPJvT5aGx8fX2RkpIiWm2strYWGRkZYz7KQURSpaWlksKbnJzMwutmRl0pY2Ji0NbWBoVCgcsuuwx33HEHbrzxRgQGBk5lfuSEtFotSktLbd2vIAgoLi5Gbm6uzJkRuTaj0Si6pQ8AAgMDMWfOHJkyoqky6guuWltboVAo8OCDD+Ltt9/G2rVrWXg9lEqlwqxZs0Sx6upqdHd3y5QRkeuzWq3Iy8uD1WoVxXNzcyUXOpLrG3Xxveuuu+Dv74/nnnsOcXFxWLlyJd59913JqivkGbRarW3RE+CH7peIxkev16O9vV0U02q1iIiIkCkjmkqjLr5//vOf0djYiJdffhnz58/H3r17ceuttyIyMhI/+9nPcOjQoanMk5yMn5+fpPutqqpCT0+PTBkRua729nYUFhaKYsHBwbb9y8n9jOk+36CgINx999349ttvUVhYiA0bNsDX1xd//OMfcckll0ChUKCkpATV1dVTlS85kdTUVHa/RBNksViQl5cnupNDoVAgNzd3whewkvMa9yIbaWlpePbZZ1FfX4933nkHV155JRQKBQ4ePIjk5GRcccUVeOONNyYzV3Iyfn5+mDlzpijG7pdobIqKiiQrxel0OkybNk2mjMgRJrzIxrnq6ups9/9WVVVBoVCIbhJ3RrzPd2JMJhP27dsnukgkOTkZ2dnZMmZF5BpaW1vx+eefi7petVqNpUuXio4qkfuZ1LWd4+LisGXLFlRUVODAgQO44YYbJvPtyQn5+/tLut/KykqcOXNGpoyIXMPAwIDkcLNSqcTChQtZeD3AlG2s8N577+GLL76YircnJ6PT6aBU/vCtZLVaUVJSImNGRM7v5MmT6OrqEsXS09O5TaeHmLSz+R0dHXjzzTfxyiuv4Pjx4xAEAQqFYrLenpxYQEAAkpKSUF5ebotVVFRAp9Nxs28iO5qbm2EwGEQxjUYDnU4nU0bkaBPufA8cOIAf/ehHiImJwQMPPIDjx4/jkksu4X6THmZo92uxWNj9EtnR39+P/Px8UUypVCI3N1f0M0TubVwzXVtbiyeffBJJSUlYvnw5/vd//xczZ87Etm3bUF1djc8//xzz5s2b7FzJiQUGBiIxMVEUKy8vH9e2kkTu7Pvvv5fcEZCZmckLPj3MhDZWiIqKwoYNG7B27VpuYE/Q6XSorKy0XUAy2P3OnTtX5syInENTUxMqKipEsfDwcKSkpMiUEcllzBsrBAQE4NZbb8XatWuxdOlSHiYhm6CgIMyYMQNVVVW2WFlZGVJTU+Hn5ydfYkROoK+vT3K42cvLi4ebPdSYNlZQq9X4/e9/jz/96U+48sor+Q1DEunp6aIL7SwWi+TCEiJPdPToUZhMJlFs7ty5CAoKkikjktOYNlbo7+/H3XffjaioKPz0pz8dcdN78kxBQUFISEgQxcrKymA2m2XKiEh+9fX1kmV3IyMjkZycLFNGJLdxbayg0+nwyiuv4PLLL8eMGTPwy1/+EkVFRVOZJ7mQtLQ0Ufc7MDDA7pc8ltlsRkFBgSjm4+ODnJwc3o7pwSa8sUJvby+efvppZGZmYsGCBXjhhRdw6tSpqcqXXEBISAji4+NFsbKyMm4/SR5HEAQcPnxYcuQnKysLAQEBMmVFzmDCazsPDAzYroLev38/BEGAl5cXgoOD0dHRwbWdPZTRaMQnn3wiimVkZCAjI0OmjIgcr6amBv/6179EsZiYGFx00UXsej3chK+Y8vb2xqpVq/Dxxx+jqqoKv/rVrxAfHy/ZFJo8i1qtlnS/BoOB3S95DJPJhCNHjohivr6+yM7OZuGlqdlYoby8HPv378ett946mW9PLiYtLU30uL+/H2VlZTJlQ+Q4giCgoKBA8sfm/PnzueQqAZiijRUA4IorrsBbb701VW9PLiA0NBRxcXGimMFgQH9/v0wZETlGVVUVGhsbRbH4+HjJnQDkuXijLk2pod1vX18fu19yaz09PTh27Jgo5ufnx/XuSYTFl6ZUWFgYYmJiRDF2v+SuBg83D/3+zs7OhkqlkikrckYsvjTl0tPTRY/NZrNo+0Eid1FeXi651TIxMRGxsbEyZUTOisWXppxGo0F0dLQoVlJSgoGBAZkyIpp8XV1d+P7770Uxf39/bjpDdrH4kkPY636H7u5C5KqsVivy8/Ml6xrk5OTA19dXpqzImbH4kkNMmzYNUVFRopher2f3S26htLQULS0tolhycrLke55oEIsvOczQ7re3txeVlZUyZUM0OYxGI06cOCGKBQYGYs6cOTJlRK6AxZccJjw8HJGRkaKYXq93+iVIiYZjtVqRl5cHq9Uqiufm5sLHx0emrMgVsPiSQw3tfk0mE7tfcll6vV6ylK5Wq0VERIRMGZGrYPElh4qIiJD8YmL3S66ovb0dhYWFolhwcDBmz54tU0bkSlh8yeGG7mx05swZVFVVyZMM0ThYLBbk5eXh3E3hFAoFcnNz4e3tLWNm5CpYfMnhIiIiEB4eLorp9XrJeTMiZ1VUVASj0SiK6XQ6TJs2TaaMyNWw+JLDKRQKSffb09OD6upqmTIiGr3W1lbo9XpRTK1WS65nIBoJiy/JYvr06ZIuobi4mN0vObWBgQHJ4WalUomFCxfCy8tLxszI1bD4kiwUCoWkU+ju7kZNTY1MGRGd38mTJ9HV1SWKpaenIzQ0VJ6EyGWx+JJsoqKioNFoRLGioiJ2v+SUmpubYTAYRDGNRgOdTidTRuTKWHxJNsN1v7W1tTJlRGRff38/8vPzRTGlUonc3Fwolfw1SmPH7xqSVXR0NMLCwkQxnvslZ/P999+jp6dHFMvMzERISIhMGZGrY/ElWdnrfjs7O1FfXy9TRkRiTU1Nkh24wsPDkZKSIlNG5A5YfEl2MTExkgtWCgsLRVeUEsmhr69PcrjZy8uLh5tpwvjdQ7Jj90vO6ujRozCZTKLY3LlzERQUJFNG5C5YfMkpxMbGSs6fsfslOdXX10sWfomMjERycrJMGZE7YfElp2Cv+zUajWhoaJApI/JkZrMZBQUFopiPjw9ycnKgUChkyorcCYsvOY24uDgEBweLYkVFRex+yaEEQcDhw4dhNptF8aysLAQEBMiUFbkbFl9yGkqlUtL9tre3o7GxUaaMyBPV1tairq5OFIuJiUFiYqI8CZFbYvElpxIfH8/ul2RjMplw5MgRUczX1xfZ2dk83EyTyumKb3d3N7Zu3YqrrroKGo0GCoUCr732mt2xxcXFuOqqqxAUFASNRoO1a9fi9OnTjk2YJpVSqURaWpoo1tbWhqamJpkyIk8hCAIKCgrQ19cnimdnZ8Pf31+mrMhdOV3xbWlpwZNPPoni4mLMnTt32HF1dXVYsmQJysrKsG3bNjzyyCPYt28fli1bJvnhIdeSkJCAwMBAUYzdL021qqoqySmO+Ph4xMfHy5QRuTNvuRMYKjo6Go2NjYiKikJBQQFycnLsjtu2bRt6enpw+PBhJCQkAAByc3OxbNkyvPbaa7jnnnscmTZNosHu99yrTVtbW9Hc3IzIyEgZMyN31dPTg6NHj4pifn5+mD9/vkwZkbtzus5XpVIhKirqvOPee+89XHvttbbCCwBLly6FVqvFO++8M5UpkgMkJiZKul/e90tTYfBw88DAgCienZ0NlUolU1bk7pyu+I5GfX09mpubsWDBAslzubm5kr9gz2U2m9HZ2Sn6IOejVColW7W1tLTwnD5NuvLycpw6dUoUS0xMRGxsrEwZkSdwyeI7eF4mOjpa8lx0dDTa2tok9+gNevrpp6FWq20fPJ/jvBITEyX3VRYWFsqUDbmjrq4ufP/996KYv78/srKy5EmIPIZLFt/BtVbtHRLy8/MTjRlq8+bNMBqNtg/uHeu8vLy8JN3v6dOn2f3S6B06NOxTVqsV+fn5sFgstli4Xo+cnBz4+vo6IjvyYC5ZfAcv+7fX3fb29orGDKVSqRASEiL6IOeVlJQkmcuioiKZsiGX8qtfARdfDGzfbvfp0tJStLS02B7r9uzB5Vu3IuqllxyUIHkylyy+g4eb7a181NjYCI1Gwwsl3IS97vfUqVOiX5pEEocOAU88cfbfmzZJCrDRaMSJEydsj3V79mDO22+fffDEEyN2zESTwSWLb2xsLCIiIiQLnwNAXl4ez9e4maSkJNvphEHsfmlEixcDzzzzw+NzCrDVakVeXh6sViuAIYUXOPu6xYsdmS15IJcsvgBw0003Ye/evaJztp999hkMBgNWr14tY2Y02by9vSXdb1NTE1pbW2XKiFzCxo12C7Ber0d7ezuAYQrvxo0OTpQ8kUJwwhsnd+7ciY6ODjQ0NODFF1/EjTfeiHnz5gEA1q9fD7VajdraWsybNw+hoaF44IEH0N3djR07diAuLg75+fmjPuzc2dkJtVoNo9HI879ObGBgAPv27ROd54+OjsbFF18sY1bkErZvP1t4/+34mjXQX389Cy/JyimLb2JiomQT60GVlZW23UUKCwvx0EMP4dChQ/D19cWKFSvw7LPPjmkVJBZf16HX63H8+HFRbOnSpdBoNDJlRK6i/ze/gc+WLbbH5qAgqLq7fxjAwksO5pTF15FYfF1Hf38/PvroI1H3GxMTg8U8P0fD6OjoQElJCWpra6F9/31xpzuIhZdkwOLL4utSiouLRVepAsCyZcsQFhYmU0bkbARBQFNTE0pKStDc3Cx67vqf/ETU8QoaDRS8doBk4LIXXJFnmjVrlmQBhOLiYpmyIWdisVhQUVGBTz75BAcPHpQUXt2ePeJDzQAUbW3D3gdMNJWcblcjopH4+PhAq9Xi5MmTtlhdXR2MRiPUarWMmZFczGYzysrKUFZWNuyyspKLqzQaoK3t7L8HL8bioWdyIHa+5HJmzZoFHx8fUYz3/Xqerq4uHD58GHv37kVhYeGwhTdj3z7pVc2trcPeB0zkCOx8yeX4+vpCq9WKNlmora1Feno6u183JwgCTp8+DYPBgIaGhhHHhoSEIOeLLzDt9dd/CJ57cdXgfwc7X3bA5EAsvuSSUlJSYDAY0N/fb4sVFxfjggsukDErmipWqxV1dXUoKSmxLZAxnOnTpyM1NRVRf/kLFP/93z88Ye+qZhZgkgmvdubVzi7rxIkTooutFAoFli9fznl0I319faisrERpaSnOnDkz7DiFQoGEhARotdqzV74fOnR2U4VB57udaMhCHDh4kEtM0pRi50suS6vVorS0FAMDAwDOHpIsLi7GwoULZc6MJqqnpwelpaWoqKiwza89Pj4+SE5OxqxZs8R7Py9eDGzdenaThNHcx3tuB7x1KwsvTTl2vux8Xdrx48eh1+ttjxUKBa666ioEBwfLmBWNV1tbG0pKSlBXV4eRfjUFBgYiJSUFSUlJkovvRA4dGlshHet4onFi8WXxdWlmsxn79u0TdUdJSUnIycmRMSsaC0EQ0NDQAIPBgNOnT484dtq0adBqtYiNjYVSyZs1yHXxsDO5NJVKheTkZJSUlNhiVVVVSEtLQ1BQkIyZ0fkMDAygqqoKpaWl6OrqGnacQqFAbGwstFotwsPDHZgh0dRh8SWXl5qairKyMlgsFgBnOym9Xo8FCxbInBnZ09vbi9LSUpSXl6Ovr2/Ycd7e3khMTIRWq+UfUuR2WHzJ5fn5+SE5ORkGg8EWG+x+AwMDZcyMzmU0GmEwGFBdXW3byN4ef39/zJo1C8nJyZKlRIncBYsvuYXB7nfwl7rVaoVer0d2drbMmXk2QRDQ3NyMkpISNDU1jThWrVYjNTUV8fHx8PLyclCGRPJg8SW34O/vj5kzZ6KsrMwWq6ysRFpamvgWFHIIi8WC2tpaGAwGdHR0jDg2KioKqampmD59OhQKhWMSJJIZiy+5DZ1Oh4qKCkn3O3/+fJkz8xx9fX0oLy9HWVkZTCbTsOOUSiVmzJgBrVbLJUHJI7H4ktsICAhAUlISysvLbbGKigqkpaXB399fxszcX3d3NwwGAyorK20Xvtnj6+uLWbNmYdasWfDz83NghkTOhcWX3IpOp0NlZaWk+503b57MmbmnlpYWlJSUoKGhYcRFMYKCgqDVapGYmAhvb/7aIeJPAbmVwMBAJCYmoqKiwharqKiATqdj9ztJrFYr6uvrYTAY0NraOuLYiIgIaLVaxMTE8Hwu0TlYfMntpKWlobKy0taJWSwWGAwGzJ07V+bMXFt/f79tk4Oenp5hxykUCsTFxSE1NRUajcaBGRK5DhZfcjuD3W9lZaUtVlZWhtTUVJ5nHIczZ86grKwM5eXloi0ch/L29sbMmTORkpLC+6uJzoPFl9xSWloaqqqqJN3vnDlzZM7MdXR0dKCkpAQ1NTUjns8NCAiwbXLARTGIRofFl9xSUFAQZsyYgaqqKltssPtVqVTyJebkBEFAU1MTSkpK0NzcPOLYsLAwpKamIi4ujpscEI0Riy+5rbS0NFRXV9u6toGBARgMBmRmZsqcmfOxWCyorq6GwWBAZ2fniGNjYmKQmpqK8PBwXkRFNE4svuS2goODER8fj5qaGlustLQUqampPDz6b2azGWVlZSgrK4PZbB52nJeXl22TA+6VTDRxLL7k1tLT00XFd7D7nT17toxZya+zs9O2ycFIi2KoVCrbohg8XE80eVh8ya2FhIQgPj4etbW1tlhpaSm0Wq3Hdb+CIOD06dMwGAxoaGgYcWxISAi0Wi1mzJjBTQ6IpgCLL7m99PR0UfHt7+9HWVkZ0tPTZczKcaxWK+rq6lBSUoL29vYRx0ZGRkKr1SIqKornc4mmEIsvuT21Wo24uDjU1dXZYgaDASkpKfDx8ZExs6nV19eHiooKlJWV4cyZM8OOUyqViI+PR2pqKkJDQx2XIJEHY/Elj5Ceni4qvn19fSgrK0NaWpqMWU2Nnp4elJaWoqKiAgMDA8OO8/HxQXJyMmbNmsVtF4kcjMWXPEJoaChiY2NRX19vi5WUlGDWrFlu0/22tbWhpKQEdXV1Iy6KERgYaNvkwF2+diJXw+JLHiM9PV1UfAf3ntXpdDJmNTGCIKChoQElJSVoaWkZcey0adOQmpqKmJgYLopBJDMWX/IYYWFhiI6ORmNjoy022P262jZ3AwMDqKqqgsFgQHd397DjFAoFYmNjodVqER4e7sAMiWgkrvUbh2iCMjIyRMXXbDajvLwcqampMmY1eiaTybbJQV9f37DjvL29bYtiBAUFOTBDIhoNFl/yKBqNBlFRUWhqarLFSkpKkJyc7NTdr9FotG1yYLVahx3n7++PWbNmITk52ePuYyZyJc7724ZoiqSnp4uKb29vLyoqKqDVamXMSkoQBJw6dQoGg0GUrz2hoaHQarWIj4/nohhELoDFlzxOeHg4IiMjcerUKVtssPt1hsJlsVhQW1uLkpISGI3GEcdGRUUhNTUV06dP56IYRC6ExZc8Unp6uqj4mkwmVFZWYtasWbLlZDabUVFRgdLSUvT29g47TqlUYsaMGdBqtVCr1Q7MkIgmC4sveaSIiAhMnz5dtGdtcXExkpKSHN79dnd3w2AwoLKycsRNDnx9fW2bHPj5+TkwQyKabCy+5LHS09NFxddkMqGqqgrJyckO+fwtLS0oKSkR3XtsT3BwsG2TA2e+KIyIRo8/yeSxpk+fjoiICJw+fdoWG+x+p2oRCqvVivr6ehgMBrS2to44NiIiAqmpqYiOjub5XCI3w+JLHi09PR3//Oc/bY/PnDmDqqoqzJw5c1I/T39/PyorK1FaWoqenp5hxykUCsTHx0Or1UKj0UxqDkTkPFh8yaNNnz4d06ZNE3WhxcXFSExMnJTu98yZM7ZNDvr7+4cd5+3tjZkzZyIlJQWBgYET/rxE5NxYfMmjKRQKZGRk4KuvvrLFenp6UFNTg8TExHG/b3t7OwwGA2pqakbc5CAgIAApKSmYOXMmNzkg8iAsvuTxIiMjkdTQgMqYGFusqKgICQkJw3e/hw4BixeLQoIgoKmpCSUlJaILuewJCwtDamoq4uLiuMkBkQfiTz15PMUTTyDnwQeh27PHFuvu7kZtba39F2zfDlx8MfCrXwE4uyhGRUUFPvnkExw8eHDEwhsTE4PLLrsMS5cuHbm4E5FbUwgjHRPzAJ2dnVCr1TAajQgJCZE7HXK0Q4fOFtJ/O75mDfTXXw/g7C0+y5cvFxfI7duBTZtsDytffx3HQ0JgNpuH/RReXl62TQ6Cg4Mn/2sgIpfj0n92m81mbNy4ETExMfD398fChQuxf/9+udMiV7J4MfDMM7aHc95+29YBd3V1oa6u7oexQwrvidtuQ75KNWzh9fPzw+zZs3HttdciOzubhZeIbFz6nO9dd92F3bt3Y8OGDUhJScFrr72Ga665Bl988QUWDzkfRzSsjRvP/vffhXXO228DAPTXX4+ioiLEx8cD27dDsXmz7SXH16yBfuVKu28XEhJiWxTDGdaKJiLn47KHnfPy8rBw4ULs2LEDjzzyCICzu9PMnj0b06dPxzfffDOq9+FhZ7IZ0tkOHoK+6OuvEfv730viQ0VGRkKr1SIqKoqLYhDRiFy28929eze8vLxwzz332GJ+fn74yU9+gkcffRS1tbVnOxai0dq4EYIg2DrcOW+/jdS//x2q7m7bkKGFV6lUIiEhAVqtFqGhoY7OmIhclMsW36NHj0Kr1Uq61dzcXADAsWPH7BZfs9ksOkfX2dk5tYmSS1Fs2oQOoxGh/z4PPFzh9fX1tS2K4e/vL0uuROS6XPaCq8bGRkRHR0vig7GGhga7r3v66aehVqttH+yOaaiQp55C35CLo8xBQdBffz0CAwMxb948rFixAnPmzGHhJaJxcdniazKZoFKpJPHBrdZMJpPd123evBlGo9H2Mey9nOSxlDt2wLerSxRTdXdj+bFjuPrqq5GSksLVqIhoQlz2sLO/v7/dWzwGNyEfriNRqVR2izYRAMlFV5bQUHh1dAAA1E8/DajVP1wdTUQ0Ti7b+UZHR6OxsVESH4zFnLNUINGoDCm8eOYZeLW3i+4DxqZNZ8cREU2AyxbfrKwsGAwGyQVT3333ne15olGzU3htHe7GjSzARDSpXLb4rlq1ChaLBbt27bLFzGYzXn31VSxcuJAXUtHojVR4B7EAE9EkctlFNgDg5ptvxvvvv48HH3wQs2bNwl/+8hfk5eXhs88+w5IlS0b1Hlxkw8MNWdvZbuE919BCffCgZHcjIqLzcdnOFwBef/11bNiwAW+88Qbuv/9+9Pf3Y+/evaMuvERYvBjYuvXsv89XeAFxB7x1KwsvEY2LS3e+k4GdLwGwuz/vpI4nIjoHiy+LLxEROZhLH3YmIiJyRSy+REREDsbiS0RE5GAsvkRERA7G4ktERORgLL5EREQOxuJLRETkYCy+REREDsbiS0RE5GAsvkRERA7G4ktERORgLL5EREQOxuJLRETkYCy+REREDsbiS0RE5GAsvkRERA7G4ktERORgLL5EREQOxuJLRETkYCy+REREDuYtdwJyEwQBANDZ2SlzJkRE5AyCg4OhUCim9HN4fPHt6uoCAMTHx8ucCREROQOj0YiQkJAp/RwKYbD181BWqxUNDQ0T/kuns7MT8fHxqK2tnfJJI8fgnLonzqv7mew5ZefrAEqlEnFxcZP2fiEhIfyBdjOcU/fEeXU/rjSnvOCKiIjIwVh8iYiIHIzFd5KoVCps3boVKpVK7lRoknBO3RPn1f244px6/AVXREREjsbOl4iIyMFYfImIiByMxZeIiMjBWHyJiIgcjMWXiIjIwVh8J6i7uxtbt27FVVddBY1GA4VCgddee03utGic8vPzcd999yEjIwOBgYFISEjAzTffDIPBIHdqNAGFhYVYvXo1Zs6ciYCAAISHh2PJkiX48MMP5U6NJtFTTz0FhUKB2bNny53KeXn88pIT1dLSgieffBIJCQmYO3cuvvzyS7lTognYvn07vv76a6xevRpz5sxBU1MTdu7cifnz5+Nf//qXS/xQk1R1dTW6urpw5513IiYmBmfOnMF7772HlStX4uWXX8Y999wjd4o0QXV1ddi2bRsCAwPlTmVUeJ/vBJnNZrS3tyMqKgoFBQXIycnBq6++irvuukvu1GgcvvnmGyxYsAC+vr62WGlpKTIzM7Fq1Sq8+eabMmZHk8lisSA7Oxu9vb3Q6/Vyp0MTdOutt+L06dOwWCxoaWnByZMn5U5pRDzsPEEqlQpRUVFyp0GTZNGiRaLCCwApKSnIyMhAcXGxTFnRVPDy8kJ8fDw6OjrkToUm6KuvvsLu3bvxu9/9Tu5URo2HnYnOQxAEnDp1ChkZGXKnQhPU09MDk8kEo9GIv//97/j4449xyy23yJ0WTYDFYsH69etx9913IzMzU+50Ro3Fl+g83nrrLdTX1+PJJ5+UOxWaoIcffhgvv/wygLPbid54443YuXOnzFnRRLz00kuorq7GgQMH5E5lTFh8iUag1+uxbt06XHjhhbjzzjvlTocmaMOGDVi1ahUaGhrwzjvvwGKxoK+vT+60aJxaW1vx+OOPY8uWLYiIiJA7nTHhOV+iYTQ1NWHFihVQq9XYvXs3vLy85E6JJkin02Hp0qW44447sHfvXnR3d+O6664Drzt1TY899hg0Gg3Wr18vdypjxuJLZIfRaMTVV1+Njo4O/OMf/0BMTIzcKdEUWLVqFfLz83kftwsqLS3Frl27cP/996OhoQFVVVWoqqpCb28v+vv7UVVVhba2NrnTHBaLL9EQvb29uO6662AwGLB3716kp6fLnRJNEZPJBODsH1vkWurr62G1WnH//fcjKSnJ9vHdd9/BYDAgKSnJqa/T4DlfonNYLBbccsst+Pbbb7Fnzx5ceOGFcqdEk6C5uRnTp08Xxfr7+/H666/D39+ff2C5oNmzZ+P999+XxB977DF0dXXhhRdeQHJysgyZjQ6L7yTYuXMnOjo60NDQAAD48MMPUVdXBwBYv3491Gq1nOnRGDz88MP4+9//juuuuw5tbW2SRTVuv/12mTKjifjZz36Gzs5OLFmyBLGxsWhqasJbb70FvV6PZ599FkFBQXKnSGMUHh6OG264QRIfvNfX3nPOhCtcTYLExERUV1fbfa6yshKJiYmOTYjG7dJLL8U///nPYZ/nj4tr+tvf/oZXXnkFJ06cQGtrK4KDg5GdnY3169dj5cqVcqdHk+jSSy91iRWuWHyJiIgcjBdcERERORiLLxERkYOx+BIRETkYiy8REZGDsfgSERE5GIsvERGRg7ll8f3v//5v6HQ6WK1WuVOZUhdccAH+67/+S+40HMJT5vTWW2/FzTffLHcaDuMp87pp0yYsXLhQ7jQcwlPm9KWXXkJCQgLMZvP43kBwM0ajUdBoNMKf//xnWwyAAED4yU9+Yvc1jz76qG3M6dOnx/T5LBaLsH37diExMVFQqVRCZmam8Pbbb9sdW1RUJCxfvlwIDAwUwsLChNtvv11obm4e93v+3//9nxAQECA0NjaOKWdX4+g5/c1vfiNcd911wvTp0wUAwtatW4cdW1dXJ6xevVpQq9VCcHCwsHLlSqG8vNzu2D/96U+CTqcTVCqVMGvWLOH3v/+9ZMyRI0cEpVIpHDt2bEw5uyJnnVe9Xi9s2LBBuPDCCwWVSiUAECorK4d93z179gjz5s0TVCqVEB8fLzz++ONCf3+/aExjY6OgUqmEPXv2jClnV+MOc/q3v/1NuO2224RZs2YJAIRLLrnE7jiTySRERkYKL7zwwphyHuR2xff5558XQkJCBJPJZIsBEPz8/ITQ0FDBbDZLXpOUlCT4+fmNa/I3bdokABB++tOfCrt27RJWrFghABD++te/isbV1tYK4eHhQnJysvDCCy8ITz31lBAWFibMnTtXktNo39NisQhRUVHCli1bxpSzq3H0nAIQoqKihOXLl4/4A93V1SWkpKQI06dPF7Zv3y4899xzQnx8vBAXFye0tLSIxr700ksCAOGmm24Sdu3aJaxdu1YAIDzzzDOS983NzRXWrl07ppxdkbPO66uvvioolUph9uzZQlZW1oi/qD/66CNBoVAIl112mbBr1y5h/fr1glKpFH7+859Lxt58883CxRdfPKacXY07zOkll1wiBAUFCZdddpkQFhY2bPEVBEH4r//6L2HGjBmC1WodU96C4IbFd86cOcLtt98uigEQbrjhBkGpVAoffPCB6Lmvv/7a9ktxrJNfV1cn+Pj4COvWrbPFrFarcPHFFwtxcXHCwMCALf6LX/xC8Pf3F6qrq22x/fv3CwCEl19+eVzvKQiCcN9994178l2FI+dUEATbD+Xp06dH/IHevn27AEDIy8uzxYqLiwUvLy9h8+bNttiZM2eEadOmCStWrBC9/rbbbhMCAwOFtrY2Ufy3v/2tEBgYKHR1dY0pb1fjrPPa2toqdHZ2CoIgCDt27BjxF3V6erowd+5cUaf7y1/+UlAoFEJxcbFo7O7duwWFQjHskRF34A5zWlNTI1gsFkEQBCEjI2PE4ltQUCAAED777LMx5S0IguBW53wrKytx/PhxLF26VPJcbGwslixZgrffflsUf+utt5CZmYnZs2eP+fPt2bMH/f39uPfee20xhUKBX/ziF6irq8O3335ri7/33nu49tprkZCQYIstXboUWq0W77zzzrjeEwCWLVuG6upqHDt2bMz5uwJHzymAUa/FvXv3buTk5CAnJ8cW0+l0uOKKK0Rz+sUXX6C1tVU0pwCwbt069PT0YN++faL4smXL0NPTg/37948rf1fgzPOq0WgQHBx83nFFRUUoKirCPffcA2/vH/aouffeeyEIAnbv3i0aP/i17tmzZ/RJuxB3mFMAiI+Ph1I5utKYnZ0NjUYzrjl1q+L7zTffAADmz59v9/k1a9bgww8/RHd3NwBgYGAA7777LtasWTOuz3f06FEEBgYiLS1NFM/NzbU9D5zdd7K5uRkLFiyQvEdubq5t3Fjec1B2djYA4Ouvvx7X1+DsHD2no2W1WnH8+PFh57S8vBxdXV0AfpizoWOzs7OhVColc5qeng5/f3+3nVPAeed1LIab15iYGMTFxUnmVa1WIzk52W3n1R3mdDzmz58/rjl1q+Kr1+sBAElJSXafX7VqFSwWCz744AMAwKeffoqWlhb86Ec/Gtfna2xsRGRkJBQKhSgeHR0NALYtBhsbG0XxoWPb2tpsV8yN9j0HxcbGwtfXF0VFReP6Gpydo+d0tAbnbLg5BcTz7+XlJdlP1tfXF9OmTZPMqbe3N+Lj4912TgHnndexON/P9dB5BYCZM2e67by6w5yOx3jn1K2Kb2trK7y9vYfdmzMsLAxXXXUV/vrXvwIA3n77bSxatAgzZswY1+czmUxQqVSSuJ+fn+35c/872rGjGXeusLAwtLS0jOdLcHqOntPRGuuc+vr62n0fPz8/j5tTwHnndSzO9z3gafPqDnM6HmFhYTCZTDhz5syYXudWxXc01qxZg/3796OmpgYffPDBhA55+Pv7273Hq7e31/b8uf8d7djRjDuXIAiSTtmTTOacjtZY57Svr8/u+/T29nJOhyHHvI7F+b4HOK9Szj6n4yH8e1fesc6rWxXfadOmYWBgwHauzZ6VK1dCpVLhzjvvhNlsntCCBtHR0WhqapJssD54OComJsY27tz40LEajcb21/No3/NcHR0dCA8PH/fX4cwcPaejNThnw80pIJ5/i8WC5uZm0bi+vj60trbandP29na3nVPAeed1LM73c+1p8+oOczoe7e3tCAgIsPvH1kjcqvjqdDoAZ6+6G46/vz9uuOEGfPnll1i2bNmEfhCysrJw5swZFBcXi+Lfffed7Xng7HnZiIgIFBQUSN4jLy/PNm4s7zmovr4efX19kgu03IWj53S0lEolMjMz7c7pd999h5kzZ9qurhycs6FjCwoKYLVaJXM6MDCA2tpat51TwHnndSyGm9eGhgbU1dVJ5hU4+/W667y6w5yOx3jn1K2K74UXXghA+sMw1COPPIKtW7diy5YtE/p8119/PXx8fPCHP/zBFhMEAS+99BJiY2OxaNEiW/ymm27C3r17UVtba4t99tlnMBgMWL169bjeEwAOHz4MAJK4u3D0nI7FqlWrkJ+fL8qtpKQEn3/+uWhOL7/8cmg0Grz44oui17/44osICAjAihUrRPGioiL09va67ZwCzj2vo5WRkQGdToddu3bBYrHY4i+++CIUCgVWrVolGm80GlFeXu628+oOczoeR44cGdecep9/iOuYOXMmZs+ejQMHDuA///M/hx03d+5czJ07d8KfLy4uDhs2bMCOHTvQ39+PnJwcfPDBBzh48CDeeusteHl52cY++uijePfdd3HZZZfhgQceQHd3N3bs2IHMzEz8+Mc/Htd7AsD+/fuRkJCAefPmTfjrcUaOnlMAeOONN1BdXW27gOKrr77Cb37zGwDA2rVrbReI3HvvvfjjH/+IFStW4JFHHoGPjw+ee+45REZG4uGHH7a9n7+/P379619j3bp1WL16NZYvX46DBw/izTffxFNPPQWNRiP6/Pv370dAQACWLVs2KV+PM3LmeTUajfif//kfAD/cwrdz506EhoYiNDQU9913n+09d+zYgZUrV+LKK6/ErbfeipMnT2Lnzp24++67Jd3QgQMHIAgCrr/++kn5epyNu8zpV199ha+++goAcPr0afT09Njec8mSJViyZIlt7OHDh9HW1ja+OR3zshxO7rnnnhOCgoKEM2fO2GIARCtG2bN169Zxr+28bds2YcaMGYKvr6+QkZEhvPnmm3bHnjx5UrjyyiuFgIAAITQ0VLjtttuEpqamcb+nxWIRoqOjhccee2xMObsaR8/pJZdcYltrdujHF198IRpbW1srrFq1SggJCRGCgoKEa6+9VigtLbX7vrt27RJSU1MFX19fITk5WXj++eftrky2cOFCySpB7shZ57WysnLYcTNmzJC87/vvvy9kZWUJKpVKiIuLEx577DGhr69PMu6WW24RFi9ePKacXY07zOlgLvY+hq6gtXHjRiEhIYHLSwqCIHR0dAgajUb405/+JHcqU+79998X/P39hYaGBrlTmVKeNKdHjx4VFAqFcPToUblTmXKeNK+NjY2Cn5+fZHlFd+NJc9rb2ytERUUJv/vd78b1ercrvoIgCM8884yQmppqW5/TXV1wwQXC//t//0/uNBzCU+b0lltuEVavXi13Gg7jKfO6ceNGIScnR+40HMJT5vTFF18U4uPjhd7e3nG9XiEIQ+5pIZhMJhiNxhHHaDSaYRdOIOfDOXVPnFf34zFzOql/CriJV199ddhj/rBzPoGcH+fUPXFe3Y+nzCk7XzsaGxtRWFg44pjs7GyEhYU5KCOaKM6pe+K8uh9PmVMWXyIiIgdzq0U2iIiIXAGLLxERkYOx+BIRETkYiy8REZGDsfgSERE5GIsvERGRg7H4EhEROdj/B3jKilAyAVNPAAAAAElFTkSuQmCC", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], + "outputs": [], "source": [ "petab_select.plot.line_best_by_iteration(\n", " models=models,\n", @@ -314,21 +147,10 @@ }, { "cell_type": "code", - "execution_count": 6, + "execution_count": null, "id": "862a78ef", "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA7YAAAOwCAYAAAAKo+iFAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAACXaklEQVR4nOzdd3xb9dn//7fkkTge2XsPh+wdxz52YscmkSFLZjSsUCj87tJAuWmhBcrd0lBooUAXKVBaSGmhlFGshOxgO8sje5EQskP2HpK3Lf3+yNcqJgnYjuUjya/n49FHydHx0eUQQG9fn8/1sXg8Ho8AAAAAAAhQVrMLAAAAAADgWhBsAQAAAAABjWALAAAAAAhoBFsAAAAAQEAj2AIAAAAAAhrBFgAAAAAQ0Ai2AAAAAICARrAFAAAAAAS00Jrc5Ha7dfToUUVHR8tisfi6JgAAAABAI+fxeOR0OtWpUydZrd/ck61RsD169Ki6du1aL8UBAAAAAFBThw4dUpcuXb7xnhoF2+joaO8DY2Jirr0yAAAAAAC+wcWLF9W1a1dvHv0mNQq2VcuPY2JiCLYAAAAAgAZTk+2wDI8CAAAAAAQ0gi0AAAAAIKARbAEAAAAAAY1gCwAAAAAIaARbAAAAAEBAI9gCAAAAAAIawRYAAAAAENAItgAAAACAgEawBQAAAAAENIItAAAAACCgEWwBAAAAAAGNYAsAAAAACGgEWwAAAABAQCPYAgAAAAACGsEWAAAAABDQCLYAAAAAgIBGsAUAAAAABDSCLQAAAAAgoBFsAQAAAAABjWALAAAAAAhoBFsAAAAAQEAj2AIAAAAAAhrBFgAAAAAQ0Ai2AAAAAICARrAFAAAAAAQ0gi0AAAAAIKARbAEAAAAAAY1gCwAAAAAIaARbAAAAAEBAI9gCAAAAAAIawRYAAAAAENAItgAAAACAgEawBQAAAAAENIItAAAAACCgEWwBAAAAAAGNYAsAAAAACGgEWwAAAABAQCPYAgAAAAACGsEWAAAAABDQCLYAAAAAgIBGsAUAAAAABLRQswsAAAAA/Nnu3bvldDrNLsPvREdHKzY21uwyAEkEWwAAAOCqdu/erb59+5pdht/atWsX4RZ+gWALAAAAXEVVp/ahhx5S586dTa7Gfxw5ckSzZ8+mkw2/QbAFAAAAvkXnzp3Vq1cvs8sAcBUMjwIAAAAABDSCLQAAAAAgoBFsAQAAAAABjWALAAAAAAhoBFsAAAAAQEBjKjJMxYHnl+OwcwAAAKB2CLYwDQeeXx2HnQMAAAA1R7CFaTjw/HIcdg4AAADUHsEWpuPAcwAAAADXguFRAAAAAICARrAFAAAAAAQ0gi0AAAAAIKARbAEAAAAAAY1gCwAAAAAIaARbAAAAAEBAI9gCAAAAAAIawRYAAAAAENAItgAAAACAgEawBQAAAAAENIItAAAAACCgEWwBAAAAAAGNYAsAAAAACGgEWwAAAABAQCPYAgAAAAACWqjZBQAAAADBYPny5XrttdckSbNmzVK/fv2qve7xePTggw/qzJkzGjFihB5//PEaPffo0aNatmyZ9uzZo/3796u8vFyvvPKK2rVrd8X7169frw8//FBHjhxRTEyMUlJSdPPNNyskJMR7z7lz57Ro0SLt3r1b+/btU0lJiX7xi19o4MCBdfzuAXPRsQUAAADqUVhYmFavXn3Z9R07dujMmTMKCwur1fN27dqlRYsWqbi4WJ07d/7Gezdt2qSXXnpJkZGRuvfeezV69Gh9/PHHmjNnTrX7jh49qrlz5+rcuXPq1q1breoB/BEdWwAAAKAeDR8+XAUFBbr33nurdUlzc3PVq1cvOZ3OWj1v1KhRmjNnjiIiIvTJJ5/owIEDV733nXfeUbdu3fTUU0953zsiIkIOh0M33HCDNxj36tVLb775pqKiolRQUKBdu3bV/hsF/AgdWwAAAKAeJSYmyuVyaevWrd5rFRUVKigoUGJiYq2fFxUVpYiIiG+97/Dhwzp8+LDS0tKqBeqJEyfK4/GooKDAey0iIkJRUVG1rgXwVwRbAAAAoB61bdtWsbGxys3N9V7btGmTioqKZBiGz953//79kqTevXtXu96qVSu1bt36Gzu9QKAj2AIAAAD1LCkpSevXr1dZWZkkafXq1RowYIBatWrls/c8f/68JKlFixaXvdaiRQudO3fOZ+8NmI1gCwAAANSzhIQElZWVacOGDSouLtbGjRvrtAy5NqpC9JWGU4WFhXlfB4IRw6MAAACAehYTE6PBgwcrNzdXZWVlcrvdio+P9+l7hoeHS5LKy8sve628vNz7OhCM6NgCAAAAPpCYmKjNmzdr2bJlGjZsmCIjI336flVLkKuWJH/V+fPn1bJlS5++P2AmOrbwe7467FySzp49q7fffltbt26Vx+PRwIEDdffdd6t9+/bV7lu6dKk+++wz7dmzR2fOnFFycrJmzpx5xWcWFhbq3Xff1dq1a1VWVqbevXtrxowZ6tWrVy2/cwAAEMji4uL017/+Vbt379Yjjzzi8/fr0aOHJGnv3r3q06eP9/rZs2d15swZpaWl+bwGwCx0bBEw6vuw85KSEj3zzDP6/PPPZbfbdeutt2r//v2aNWvWZefLzZs3T9u3b1fXrl2rjc//Orfbreeff16rV6+WzWbTnXfeqYsXL+qZZ57RsWPHalUfAAAIbE2bNtX999+vW265RSNHjvT5+3Xt2lWdOnVSVlaW3G639/qyZctksVg0ZswYn9cAmIWOLQJGfR92vmTJEh07dkzPPfec96eaw4YN02OPPab58+fr9ttv99779NNPq02bNrJYLLr77ruv+sw1a9Zo165d+tGPfuTdR5OQkKBHHnlEH374oR5++OFa1QgAAAJbcnLyNT+jqKhIixYtkiTt2rVL0qXPMc2aNVNkZKTS09O9995111168cUX9dxzz8kwDB06dEiLFy9WamqqunTpUu25//nPfyRdOv9WklatWqWdO3dKkm6++eZrrhtoSARbBIzExEStW7dOW7du1fDhwyX997Dzm266SYsXL67V89asWaPevXtXW6rTuXNnDRo0SPn5+dWCbdu2bWv0zIKCAjVv3lxxcXHeazExMYqPj9fq1atVXl5e684yAABo3Fwulz744INq1+bPny/p0meUrwbbkSNH6tFHH9VHH32kOXPmKCYmRhkZGVcMql9/Zk5OjvevCbYINARbBIyvHnZeFWy/eth5bYKt2+3Wl19+qZSUlMte69Onj7Zu3ari4mJFRETUqsYDBw6oZ8+eslqrr/Lv06ePsrKydOzYMXXr1q1WzwQAAIEhJSXlip8tvm727Nm1em67du30/vvv1/j+0aNHa/To0d96X22eCfg79tgioNTXYecul0vl5eVXnA5YNVGwLoeYnzt37orPrLp29uzZWj8TAAAAwDcj2CKg1Ndh51XBODT08kULVWe81eUQ87Kysis+s2r58ZXOlQMAAI2Ty+XS+fPnr/q/ixcvml0iEDBYioyAUl+HnVeF14qKisteqwq0dTnEPDw8/IrPrAq07K8FAABVXn75Ze3YseOqr7dt27bWy5aBxopgi4CTmJioN954Q+fPn6/zYedRUVEKCwu74nLjqkPN63KIecuWLa/4zKprtV0yDQAAgteMGTPkcrmu+npdfsgONFYEWwSc+jjs3Gq1qmvXrtq3b99lr+3Zs0ft27ev9eAoSerevbt27twpt9tdbYDUnj171KRJE3Xs2LFO9QIAgODTq1cvs0sAggZ7bBFw6uuw8/j4eO3du1d79+71Xjt69Kg+++yzOi1vrnrmhQsXtHbtWu+1ixcvqqCgQCNGjGApMgAAAOADdGwRkOrjsPOJEycqKytLL7zwgiZPnqyQkBAtWLBAzZs31+TJk6vdu2HDBh04cECSVFlZqYMHD3oPNR81apS6d+8u6VKwXbhwoV577TUdPnxY0dHRWrp0qdxut77zne9cc80AAAAALkewRaMVERGhp59+Wm+//bY+/vhjeTweDRgwQN/97ncVExNT7d41a9ZoxYoV3l8fOHDAG3Rbt27tDbZWq1VPPPGE3nnnHS1evFhlZWXq3bu3Zs6cqU6dOjXY9wYAAAA0JgRb+D1fHXYuXQqlP/7xj7/1vpkzZ2rmzJk1emZUVJQeeOCBWtcCAAAAoG7YYwsAAAAACGh0bBF0XC7XFc+SrWK1Wi9bagwAAAAgcBFsEXQ47BwAAABoXAi2CDocdg4AAAA0LgRbBB0OOwcAAAAaF4ZHAQAAAAACGsEWAAAAABDQCLYAAAAAgIBGsAUAAAAABDSCLQAAAAAgoBFsAQAAAAABjWALAAAAAAhoBFsAAAAAQEAj2AIAAAAAAhrBFgAAAAAQ0Ai2AAAAAICARrAFAAAAAAQ0gi0AAAAAIKARbAEAAAAAAS3U7AIAAAAAf3fkyBGzS/Ar/H7A3xBsAQAAgKuIjo6WJM2ePdvkSvxT1e8PYDaCLQAAAHAVsbGx2rVrl5xOp9ml+J3o6GjFxsaaXQYgiWALAAAAfCPCG+D/GB4FAAAAAAhoBFsAAAAAQEAj2AIAAAAAAhrBFgAAAAAQ0BgeBdNxDtp/8XsBAAAA1B7BFqbhXLir40w4AAAAoOYItjAN58JdGWfCAQAAALVDsIWpCHAAAAAArhXDowAAAAAAAY1gCwAAAAAIaARbAAAAAEBAI9gCAAAAAAIawRYAAADwU06nU61atdIrr7xidimAXyPYAgAAAH7q17/+tc6dO6c//OEPZpcC+DWCLQAAAOCHDh06pN/97neSpH379mnNmjUmVwT4L4ItAAAA4IeefPJJVVZWSpJCQkL0+9//3uSKAP9FsAUAAAD8zPr16/Xuu+96g21lZaU+/PBDHTp0yOTKAP9EsAUAAAD8zCOPPHLZNbfbrdmzZzd8MUAAINgCAAAAfsZisSgmJkYhISHVrufk5JhUEeDfCLZALT311FNatGiR2WUAAIAgtmrVKl24cEHvvfeeJGnv3r06cOCAsrKyTK4M8E+hZhcABJLS0lL95je/UXh4uPbu3avOnTubXRIAAAhiLpdLktStWzeFhvLRHbgaOrZALaxbt04ej0elpaWaPHmyiouLzS4JAAAEMafTqaZNmxJqgW9BsAVqYcWKFbJaL/1js3XrVn3ve9+Tx+MxuSoAABCsXC6XoqOjzS4D8HsEW6AWcnJyvEHW7Xbr3//+t1588UWTqwIAAMHK6XQqKirK7DIAv0ewBWqovLxcubm5l3Von3jiCRUUFJhUFQAACGZ0bIGaYbE+UEMbNmxQSUmJrFar3G63JCkyMlIJCQlq1aqVydUBAIBg5HQ6CbZADRBsgRqKiorS8OHDNWTIEDmdTi1atEhnz55VeHi42aUBAIAgxVJkoGYItkANDRo0SBs3bpQkrV69Wh9//LG2b9+u4cOHm1wZAAAIVi6XSzExMWaXAfg99tgCdTBy5EiFhYUpLy/P7FIAAEAQo2ML1AzBFqiDiIgIjRgxgmALAAB8iuFRQM0QbIE6MgyDYAsAAHyKji1QMwRboI4Mw9CBAwd07Ngxs0sBAABBio4tUDMEW6COEhISJEn5+fkmVwIAAIIVHVugZgi2QB117txZ3bp1YzkyAADwifLycpWWltKxBWqAYAtcA/bZAgAAX3G5XJJEsAVqgGALXAPDMLRhwwaVlJSYXQoAAAgyTqdTkliKDNQAwRa4BoZhqKysTBs3bjS7FAAAEGTo2AI1R7AFrsGQIUPUrFkzliMDAIB6R8cWqDmCLXANwsLCFBcXR7AFAAD1jo4tUHMEW+AaJSQkKD8/Xx6Px+xSAABAEKFjC9QcwRa4RoZh6Pjx4zpw4IDZpQAAgCBCxxaoOYItcI3i4+MlieXIAACgXjmdToWEhKhJkyZmlwL4PYItcI3atGmj6667jmALAADqlcvlUnR0tCwWi9mlAH6PYAvUA8MwCLYAAKBeOZ1OliEDNUSwBeqBYRjaunWrd8gDAADAtXI6nQyOAmqIYAvUA8Mw5Ha7tXbtWrNLAQAAQaJqKTKAb0ewBepBv3791KJFC5YjAwCAekPHFqg5gi1QD6xWq+Lj45Wfn292KQAAIEjQsQVqjmAL1BPDMJSfny+32212KQAAIAjQsQVqjmAL1BPDMHT+/Hnt3LnT7FIAAEAQoGML1BzBFqgncXFxslqt7LMFAAD1go4tUHMEW6CeREdHa8iQIQRbAABQL+jYAjVHsAXqkWEYBFsAAFAvnE4nwRaoIYItUI8Mw9AXX3yhM2fOmF0KAAAIYG63Wy6Xi6XIQA0RbIF6lJCQIEkqKCgwuRIAABDIioqKJImOLVBDBFugHvXs2VPt27dnOTIAALgmTqdTkujYAjVEsAXqkcViYZ8tAAC4Zi6XSxIdW6CmCLZAPTMMQ2vXrlV5ebnZpQAAgABFxxaoHYItUM8Mw1BRUZG2bt1qdikAACBA0bEFaodgC9SzESNGKDw8nOXIAACgzujYArVDsAXqWdOmTTVy5EiCLQAAqDM6tkDtEGwBH2CAFAAAuBZVHdvIyEiTKwECA8EW8IGEhAR9+eWXOnLkiNmlAACAAOR0OhUZGSmrlY/rQE3wTwrgAwkJCZKk/Px8kysBAACByOVysQwZqAWCLeADnTp1Uo8ePViODAAA6sTpdDI4CqgFgi3gI+yzBQAAdUXHFqgdgi3gI4ZhaOPGjSouLja7FAAAEGDo2AK1Q7AFfMQwDJWXl2vDhg1mlwIAAAIMHVugdgi2gI8MHjxYkZGRLEcGAAC1RscWqB2CLeAjoaGhGjNmDMEWAADUGh1boHYItoAPJSQkKD8/Xx6Px+xSAABAAHE6nQRboBYItoAPGYahkydPat++fWaXAgAAAghLkYHaIdgCPhQfHy9JLEcGAAC1wlJkoHYItoAPtWrVSv379yfYAgCAGvN4PHRsgVoi2AI+ZhgGwRYAANRYWVmZKioq6NgCtUCwBXzMMAxt27ZNFy9eNLsUAAAQAJxOpyTRsQVqgWAL+JhhGPJ4PFqzZo3ZpQAAgADgcrkkiY4tUAsEW8DH+vbtq5YtWyo/P9/sUgAAQACgYwvUHsEW8DGr1aqEhAT22QIAgBqhYwvUHsEWaACGYSg/P19ut9vsUgAAgJ+r6tgSbIGaI9gCDcAwDF28eFE7duwwuxQAAODnWIoM1B7BFmgAo0ePVkhICMuRAQDAt6paikywBWqOYAs0gKioKA0dOpRgCwAAvpXT6VR4eLjCw8PNLgUIGARboIEYhkGwBQAA38rlcrG/Fqglgi3QQAzD0O7du3Xq1CmzSwEAAH7M6XSyDBmoJYIt0EASEhIkSQUFBSZXAgAA/BkdW6D2CLZAA+nevbs6duzIcmQAAPCN6NgCtUewBRqIxWJhny0AAPhWdGyB2iPYAg3IMAytXbtW5eXlZpcCAAD8lNPpJNgCtUSwBRqQYRgqKSnR5s2bzS4FAAD4KZYiA7VHsAUa0PDhw9WkSROWIwMAgKtiKTJQewRboAE1adJEo0aNItgCAICromML1B7BFmhgCQkJys/PN7sMAADgp+jYArVHsAUamGEYOnTokA4dOmR2KQAAwA/RsQVqj2ALNLCEhARJomsLAAAuU1lZqeLiYjq2QC0RbIEG1qFDB/Xq1Yt9tgAA4DIul0uSCLZALRFsARMYhkGwBQAAl6kKtixFBmqHYAuYwDAMbdq0SUVFRWaXAgAA/IjT6ZRExxaoLYItYALDMFRRUaH169ebXQoAAPAjVcGWji1QOwRbwASDBg1SVFQUy5EBAEA17LEF6oZgC5ggJCREY8aMYTIyAACoho4tUDcEW8AkVQOkPB6P2aUAAAA/QccWqBuCLWASwzB0+vRp7dmzx+xSAACAn3A6nbJarYqIiDC7FCCgEGwBk8THx0sS+2wBAICXy+VSVFSULBaL2aUAAYVgC5ikRYsWGjhwIMEWAAB4OZ1OliEDdUCwBUxUtc8WAABA+m/HFkDtEGwBExmGoe3bt+vChQtmlwIAAPwAHVugbgi2gIkMw5DH49GaNWvMLgUAAPgBp9NJxxaoA4ItYKLY2Fi1bt2a5cgAAEDSpaXIdGyB2iPYAiayWCxKSEgg2AIAAEl0bIG6ItgCJjMMQwUFBaqsrDS7FAAAYDI6tkDdEGwBkxmGIafTqe3bt5tdCgAAMBkdW6BuCLaAyUaPHq2QkBCWIwMAADq2QB0RbAGTNWvWTMOHDyfYAgAAjvsB6ohgC/gBwzAItgAANHIej0cul4ulyEAdEGwBP5CQkKC9e/fq5MmTZpcCAABMUlxcLLfbTccWqAOCLeAHDMOQJOXn55tcCQAAMIvT6ZQkOrZAHRBsAT/QtWtXde7cmeXIAAA0Yi6XS5Lo2AJ1QLAF/IDFYmGfLQAAjRwdW6DuCLaAnzAMQ+vWrVNZWZnZpQAAABPQsQXqjmAL+AnDMFRaWqpNmzaZXQoAADABHVug7gi2gJ8YNmyYmjZtynJkAAAaKTq2QN0RbAE/ER4ertGjRxNsAQBopOjYAnVHsAX8SEJCgvLy8uTxeMwuBQAANDCXy6WIiAiFhISYXQoQcAi2gB8xDENHjx7VoUOHzC4FAAA0MKfTyTJkoI4ItoAfSUhIkCSWIwMA0Ag5nU6WIQN1RLAF/Ei7du3Up08fgi0AAI2Qy+WiYwvUEcEW8DOGYRBsAQBohOjYAnVHsAX8jGEY2rx5swoLC80uBQAANCA6tkDdEWwBP2MYhiorK7Vu3TqzSwEAAA2Iji1QdwRbwM8MGDBA0dHRys/PN7sUAADQgOjYAnVHsAX8TEhIiOLj49lnCwBAI8NxP0DdEWwBP1Q1QMrj8ZhdCgAAaCAsRQbqjmAL+CHDMHT27Fnt2rXL7FIAAEADYSkyUHcEW8APjRkzRhaLheXIAAA0InRsgboj2AJ+qHnz5ho0aBDBFgCARqKsrExlZWV0bIE6ItgCfqpqny0AAAh+LpdLkujYAnVEsAX8lGEY2rFjh86dO2d2KQAAwMeqgi0dW6BuCLaAn0pISJAkrVmzxuRKAACArzmdTkl0bIG6ItgCfqpPnz5q06YNy5EBAGgE6NgC14ZgC/gpi8XCPlsAABqJqo4twRaoG4It4McMw9CaNWtUUVFhdikAAMCHWIoMXBuCLeDHDMOQy+XSZ599ZnYpAADAh1iKDFwbgi3gx0aNGqXQ0FCWIwMAEOScTqdCQ0MVHh5udilAQCLYAn4sIiJCI0aMINgCABDkXC6XoqOjZbFYzC4FCEgEW8DPGYah/Px8s8sAAAA+5HQ62V8LXAOCLeDnEhIStG/fPh0/ftzsUgAAgI9UdWwB1A3BFvBzhmFIEl1bAACCGB1b4NoQbAE/16VLF3Xt2pV9tgAABDE6tsC1IdgCAcAwDIItAABBzOl0EmyBaxBqdgEAvp1hGPrJT36i0tJSNWnSxOxyAABAPXM6nerevbvZZQSN3bt3y+l0ml2GX4mOjlZsbKzZZfgMwRYIAIZhqKysTBs3blRCQoLZ5QAAgHrGUuT6s3v3bvXt29fsMvzSrl27gjbcEmyBADB06FBFREQoLy+PYAsAQBBieFT9qerUPvTQQ+rcubPJ1fiHI0eOaPbs2UHdxSbYAgEgLCxMo0ePZjIyAABBio5t/evcubN69epldhloIAyPAgKEYRjKzc2Vx+MxuxQAAFDP6NgC14ZgCwQIwzB0/PhxHTx40OxSAABAPXK73SosLKRjC1wDgi0QIKr21nLsDwAAwaWwsFCS6Nj6oeXLl2v69Ok6efKk2aVcZtasWZo1a5bZZfgNgi0QINq0aaO+ffsSbAEACDIul0uS6Ng2kN/+9reaMWOGiouLr3rPn/70J91xxx21HraUmZmpdevWXWuJqAOCLRBADMMg2AIAEGSqwhPBtmEkJSWprKxMa9euveLrpaWlWr9+vYYNG6ZJkybpn//8p9q2bVujZxNszUOwBQKIYRjasmWL9ye7AAAg8FUFW5YiN4xRo0YpIiJCubm5V3x9/fr1Ki0tVVJSkqxWq8LDw2WxWK76PI/Ho7KyMl+VixriuB8ggBiGIbfbrbVr1yo1NdXscgAAQD1gKXLDCg8PV1xcnFavXq0LFy6oefPm1V5fvXq1IiIiNGrUKC1fvlyvvfaaXnnlFbVr107SpfNxu3btKpvNpvfff1+HDh3S7bffrn/84x+SpBUrVmjFihWSpOTkZM2cOVOvvvqqduzYodmzZ1d7rw8//FAfffSR3n//fe+1nJwcrVq1SocOHVJRUZHat2+v9PR0TZw40Ze/LQGPji0QQPr376/mzZtzni0AAEGEjm3DS0pKUmVl5WWfqVwul7Zs2aLRo0crPDz8ql9/9OhR/elPf9LgwYP13e9+Vz169NBDDz2ksLAw9evXTw899JAeeughXX/99bWubdmyZWrTpo3sdrtmzJih1q1b680339SSJUtq/azGhI4tEECsVqvi4+PZZwsAQBChY9vwBg0apJYtWyo3N1fp6ene6/n5+aqsrFRSUtI3fv3x48f15JNPatiwYdWu//Wvf1X79u01duzYOtf2y1/+slqoTk9P169//WstWLBANputzs8NdnRsgQBjGIby8/PldrvNLgUAANSDqo5ts2bNTK6k8bBarTIMQ7t27ap2lE9ubq6aN2+uwYMHf+PXt2vX7rJQW1++GmqLiop08eJF9e/fXydOnFBRUZFP3jMY0LEFAoxhGHr66af1xRdfqH///maXAwAArpHL5VJUVJSsVnpODSkpKUkLFixQbm6uMjIydObMGe3cuVPp6enf+veiar+tL+zcuVMffvihdu/erdLS0mqvFRUV8QOQqyDYAgEmLi5OVqtVeXl5BFsAAIKA0+lkf60JevXqpU6dOnmDbW5urjwez7cuQ5b0jftva+PrK/COHz+uZ599Vp06ddKMGTPUpk0bhYSEaPPmzVqwYAEr9r5B0Afb3bt31/pg5WAXHR2t2NhYs8tAHcXExGjw4MHKy8vTfffdZ3Y5AADgGrlcLvbXmiQpKUkffPCBDh48qNzcXHXs2FF9+vSp8/OudixQVFSUCgsLL7t+6tSpar/esGGDysvL9dOf/lRt2rTxXt+xY0eda2osgjrY7t69W3379jW7DL+0a9cuwm0AMwxDOTk5ZpcBAADqgdPpJNiaZOzYsfrggw/0wQcf6MCBA7rllluu6XlNmjS5YoBt3769ioqKdPDgQXXv3l2SdO7cOa1bt67afVVLoD0ej/daUVGRli9ffk11NQZBHWyrOrUPPfSQOnfubHI1/uHIkSOaPXs2XewAl5CQoNdee01nz55Vq1atzC4HAABcA5Yim6ddu3bq27ev1q9fL0nXNM1YurS8edu2bZo/f75atmypdu3aKTY2VoZh6N1339XLL7+s9PR0lZaWatmyZerYsaP279/v/fqhQ4cqNDRUv/3tb3X99derpKREWVlZiomJ0blz566ptmAX1MG2SufOndWrVy+zywDqjWEYki6NpJ80aZLJ1QAAgGvBUmRzJSUladeuXerTp486dOhwTc+6++679cYbb+j9999XWVmZkpOTFRsbq+joaD322GP6xz/+oXfffVft2rXT7bffruPHj1cLtp06ddKPf/xj/fvf/9Y///lPtWjRQhMmTFBMTIxef/31a/1Wg1qjCLZAsOnVq5fatWtHsAUAIAg4nU61bdvW7DIaLZvNdtXzYVNSUpSSklLt2uzZs6/6rE6dOumXv/zlFV8bMmSIXnrppcuu33rrrdV+PXLkSI0cOfKy+8aPH1/t108//fRV62iMmCkOBCCLxSLDMJSXl2d2KQAA4BrRsQWuHcEWCFCGYWjNmjWqqKgwuxQAAHAN2GMLXDuCLRCgDMNQUVGRtm7danYpAADgGtCxBa4dwRYIUCNHjlRYWBjLkQEACHB0bIFrR7AFAlTTpk01cuRIgi0AAAHM4/HQsQXqAcEWCGAJCQnKz883uwwAAFBHpaWlqqioINgC14hgCwQwwzB04MABHT161OxSAABAHTidTkliKXKAmz59uj788MMa3fvQQw/p1VdfrfV7nDx5UtOnT9fy5ctr/bWNAcEWCGCGYUgSXVsAAAKUy+WSJDq2fmD58uWaPn269u7de83P+uKLL/Thhx+qsLCwHipDTYSaXQCAuuvUqZO6d++uvLw83XzzzWaXAwAAaomObXD45z//qZCQEO+vd+3apY8++kjJycmKjIysdu/vf/97WSyWhi4x6BFsgQBnGAYDpAAACFB0bINDeHh4je8NCwvzYSWNF8EWCHCGYeijjz5SSUmJmjZtanY5AACgFujY+q9XX31VBQUF+sMf/qA333xT27ZtU3h4uJKTk3XnnXfKav3vrs7p06frlltu0a233qoPP/xQH330kSTphz/8ofeeV155Re3atdNDDz2kAQMGaObMmZIu/XAjMzNTW7Zs0cmTJ2W1WnXdddfp9ttvV48ePRr0ew5kBFsgwBmGofLycm3YsEGJiYlmlwMAAGqBjq1/c7vdeu655xQbG6sZM2Zo27Ztmj9/vtq3b6+JEyde8Wvi4uJ07Ngx5ebm6u6771ZMTIwkef//606cOKF169YpPj5e7dq104ULF/Tpp59q1qxZevnll9WqVSuffX/BhGALBLghQ4aoWbNmysvLI9gCABBg6Nj6t/LychmG4Z1lMmHCBD3++OPKycm5arDt3r27evbsqdzcXI0ePVrt2rX7xvfo1q2b/vCHP1TrAI8dO1Y//vGPlZOTwxyVGmIqMhDgQkNDFRcXx2RkAAACkMvlUpMmTdh36ccmTJhQ7df9+/fXiRMn6u35YWFh3lDrdrvldDrVtGlTdezYUfv376+39wl2dGyBIGAYht588015PB6m7AEAEECcTifLkP1YWFjYZUuIIyMj6/UYH7fbrUWLFmnp0qU6efKk3G639zX+bNQcwRYIAoZh6Ne//rX279+vXr16mV0OAACoIafTyTJkP/bV5cG+kpmZqQ8++EDjx4/Xd77zHUVFRclisejtt9+Wx+Px+fsHC4ItEATi4+MlSXl5eQRbAAACiMvloivXyK1Zs0YDBw7UAw88UO16UVHRVQdO4XLssQWCQOvWrdWvXz/OswUAIMDQsQ1OVUcwFhUVfeu9Vqv1ss5sfn6+zp4965PaghUdWyBIGIZBsAUAIMDQsQ1OPXv2lCT9+9//lmEYCgkJ0ciRI72B96tGjBih//znP3r11Vd13XXX6csvv9Tq1avVvn37hi47oNGxBYKEYRjatm2b99gAAADg/+jYBqc+ffroO9/5jg4ePKhXX31Vf/rTn3Tx4sUr3puRkaHJkydr69at+vvf/679+/fr8ccfV+vWrRu46sBGxxYIEgkJCXK73Vq7dq3S0tLMLgcAANSAy+VShw4dzC4DklJSUpSSkuL99cyZMzVz5szL7rv11lt16623Vrv2/vvvX3bfzTfffMUzaGfPnl3t12FhYZoxY4ZmzJhR7frTTz9d7dft2rW74vvgEjq2QJDo16+fWrRowXJkAAACCMf9APWDYAsECavVqoSEBIItAAABxOVysRQZqAcsRZa0fPlyvfbaa5KkWbNmqV+/ftVe93g8evDBB3XmzBmNGDFCjz/+eI2ee/ToUS1btkx79uzR/v37VV5erldeeUXt2rW77N68vDxt2LBBe/bs0fHjxzVgwIDLlh9UKS8v1wcffKBVq1bJ5XKpe/fumj59uoYMGVLL7xzBxjAMvfTSS3K73Q1y7hoAALg2dGyB+sEn368ICwvT6tWrL7u+Y8cOnTlzRmFhYbV63q5du7Ro0SIVFxerc+fO33jvsmXLtH79erVu3VqRkZHfeO+rr76qBQsWKCkpSffcc4+sVquef/557dy5s1b1IfgYhqELFy7o888/N7sUAABQAwyPAuoHwfYrhg8froKCAlVWVla7npubq169eqlFixa1et6oUaM0Z84cvfTSS0pKSvrGex988EHNmTNHv/jFL9SyZcur3rdnzx7l5eXp9ttv11133aXrr79eP//5z9WmTRu9++67taoPwScuLk5Wq5XlyAAABICKigqVlJTQsQXqAcH2KxITE+VyubR161bvtYqKChUUFCgxMbHWz4uKilJERESN7m3Tpk2Nlo4WFBTIarVWm3obHh6u8ePHa9euXTp9+nSt60TwiIqK0tChQwm2AAAEAJfLJUl0bIF6QLD9irZt2yo2Nla5ubnea5s2bVJRUZEMwzCxsv86cOCAOnbsqGbNmlW73qdPH0nSwYMHzSgLfsQwDIItAAABoCrY0rFtnKZPn64PP/yw1l938uRJTZ8+XcuXL6//ogIYwfZrkpKStH79epWVlUmSVq9erQEDBqhVq1YmV3bJuXPnrrhUuera2bNnG7ok+JmEhAS69wAABACn0ymJjq3Zli9frunTp2v69OlXnFnj8Xg0c+ZMTZ8+XS+88IIJFaImCLZfk5CQoLKyMm3YsEHFxcXauHFjnZYh+0p5eblCQy8fZl012KoqkKPxqlpdUFBQYHIlAADgm9CxvbqSkhJ98sknuu+++zR27FiVlJT4/D3re5AsGhbB9mtiYmI0ePBg5ebmau3atXK73YqPjze7LK+wsDBVVFRcdr28vFzSpf22aNx69OihDh06sBwZAAA/V9WxJdhecv78eb377ru65ZZb1KZNG02dOlWrVq3ShAkTGuQzbn0PkkXD4hzbK0hMTNQbb7yh8+fPa9iwYd96/E5Datmy5RWXG587d06S/GbJNMxjsVjYZwsAQABgKbJ05MgRzZ07Vw6HQzk5OaqoqNCoUaP0s5/9THa7Xf3795fFYmmQWhITE7Vu3Tpt3bpVw4cPl/TfQbI33XSTFi9eXO3+kpISffDBByooKNCFCxfUtm1bpaWlafLkydVqLi8v17/+9S+tWrVK5eXlGjhwoO67774r1nD27Fm9//772rRpkwoLC9WhQwdNnjxZ48eP9903HiTo2F5BXFycLBaLdu/e/a3H9DS0Hj166NixYyoqKqp2fc+ePZKk7t27m1EW/IxhGFq7dq23kw8AAPxPY12KvHPnTj3//PMaM2aMunTpoocfflhut1t/+MMf9OWXX2rdunX62c9+pgEDBjRYqJVqN0jW4/HoxRdf1MKFCzV06FDdfffd6tSpk9555x394x//qHbvX/7yFy1cuFBDhgzRHXfcoZCQED3//POXvf/58+f1f//3f9q2bZtsNpvuuecedejQQa+//roWLFjgm286iNCxvYKmTZvq/vvv18mTJzVy5Eizy6lmzJgx+uSTT5SVlaUpU6ZIuvRToOXLl6tPnz5q06aNyRXCHxiGoeLiYm3ZskWjRo0yuxwAAHAFTqdTVqtVTZs2NbsUn3K73Vq/fr0yMzPlcDi0c+dONWvWTOnp6XrooYc0adIkv1l1mJSUpPfee09lZWUKDw+/6iDZ9evX67PPPtP06dN10003SZJsNpt+97vfadGiRbLZbOrQoYMOHDigVatWaeLEid4urc1m05/+9Cd9+eWX1Z7573//W263Wy+++KL3hx0TJkzQH//4R3300UcNtiQ7UBFsryI5Ofman1FUVKRFixZJknbt2iVJWrJkiZo1a6bIyEilp6d7792xY4c+//xzSZf+JVdaWqr//Oc/kqT+/ftrwIABkqTY2FjFx8frvffe04ULF9ShQwetWLFCp06d0ve///1rrhnBYcSIEQoPD1deXh7BFgAAP+VyuRQdHd2gXcmGUtV4cTgcmjt3ro4cOaLWrVtrypQpeuGFF3T99ddfdnylP0hISNDbb7+tDRs2aNiwYdq4caPuueeey+7btGmTrFarbrjhhmrXJ0+erDVr1mjz5s1KT0/Xpk2bJOmy+2688cZqnWGPx6O1a9cqPj5eHo9HFy9e9L42dOhQ5eXlad++ferXr189frfBhWDrQy6XSx988EG1a/Pnz5d0aanDV4Pt9u3b9dFHH1W7t+prb7nlFm+wlaQHH3xQH3zwgVatWqXCwkJ169ZNP/3pT6vdg8atSZMmGjVqlPLy8vTwww+bXQ4AALgCp9MZVPtrXS6XlixZoszMTC1YsEDnz59Xt27ddMstt8hutyspKemKp3v4k68Oki0rK7vqINnTp0+rZcuWioiIqHa9S5cu3ter/t9isah9+/bV7uvUqVO1X1+8eFGFhYXKyspSVlbWFWv7atjF5fz7T1YDSUlJUUpKyrfeN3v27Fo9t127dnr//fdrdO+tt96qW2+9tUb3hoeH66677tJdd91Vq3rQuCQkJNTp0G8AANAwqjq2gezUqVP65JNP5HA4tGzZMpWUlGjw4MH64Q9/qIyMDA0bNizgOtJmDJL1eDySpLFjx2rcuHFXvIdZOt+MYAsEKcMw9PLLL+vw4cPenx4CAAD/Eagd2wMHDsjhcCgzM1OrV6+Wx+ORYRh69tlnNW3aNPXp08fsEq9JXFyc/vrXv2r37t165JFHrnhPmzZttG3bNhUXF1fr2h45csT7etX/ezwenThxolqX9ujRo9WeFxMTo4iICLndbg0ZMqSev6PGganIdeByuXT+/Pmr/o9lAvAHCQkJkqT8/HyTKwEAAFcSKB1bj8ejrVu3atasWRo+fLh69uypxx9/XJGRkXr99dd19OhRrV69Wo8++mjAh1rpv4Nkb7nllqsOkh0+fLjcbvdlRwAtWLBAFotFw4YN894nyTt3p8rChQur/dpqtSouLk5r1qy5bKiUxDLkmqBjWwcvv/yyduzYcdXX27ZtW+tly0B969ixo3r27Km8vLwaL3MHAAANx+l0+m2wraysVF5enhwOhxwOh/bt26fo6GhNmjRJTz75pNLT0xUTE2N2mT7zbYNkR44cqYEDB+r999/XqVOn1L17d23dulXr16/XjTfeqA4dOki6dFRnYmKili5dqqKiIvXt21efffaZjh8/ftkz77jjDu3YsUP/93//p9TUVHXp0kUul0v79+/Xtm3b9NZbb/nkew0WBNs6mDFjhvfcsSthDDf8hWEYysvLM7sMAABwBU6nU507dza7DK+SkhJlZWXJ4XBo3rx5OnnypDp06KBp06bJbrdr/PjxatKkidll+gWr1aqf/vSn+uCDD5SXl6fly5erXbt2uuuuuzR58uRq9z7wwAOKiYnR6tWrtW7dOg0aNEhPPPGEZs6cWe2+Fi1a6LnnntN//vMfrV27VkuXLlV0dLS6dOmiO++8syG/vYBEsK2DXr16mV2CX/HnnzY2doZh6P33379s/wcAADCfPyxFvnDhghYuXKjMzEwtWrRILpdLffr00Xe/+11lZGRozJgxslqDe/diXQfJNm3aVHfffbfuvvvub/y68PBw3XPPPZcdG3SlIbPNmzfX9773PX3ve9+76vNqM6C2MSHYolaKioq0ceNGrV27VmvWrFFeXp4OHz6st956S/fee6/Z5eFrDMNQRUWF1q9fr7Fjx5pdDgAA+AqzhkcdPXpU8+bNk8PhUHZ2tsrLyzVy5Eg98cQTstvtGjBgQMBNMgYItqixHj166ODBg5IuLb+wWCyqrKyUdPlZXPAPgwYNUmRkpPLz8wm2AAD4mYbs2O7atUuZmZlyOBwqKChQSEiIkpOT9fLLL2vatGnq1q1bg9QB+ArBFjUWGxvrDbZut9t73Wq1BsUEvGAUGhqqMWPGsM8WAAA/5MuOrcfj0fr1673H8nz++eeKiIiQzWbT22+/rUmTJql169Y+eW/ADMG9YB71aunSpXrhhRcuu+52u9WnTx8NGDBAP/zhD+VwOHT+/PmGLxBXVDVAqurgbwAAYD6Px1PvHdvy8nJlZWXpoYceUrdu3RQXF6fXX39dcXFxyszM1OnTp5WZmam7776bUIugQ8cWNWaxWPTTn/5U3bp104wZM+R2u2WxWPToo49q+PDhys7O1sKFCzV79mxZrVaNGDFCaWlpSktLU2Jiopo1a2b2t9AoVR2YvnfvXjrrAAD4iaKiInk8nmvu2BYWFmrJkiVyOByaP3++zp07p65duyojI0MZGRkaO3asQkP5yI/gx59y1Nptt92mTp06afLkyXI6nZo6daoSExN12223SZIOHDigrKwsZWVl6e9//7teeOEFhYeHyzAMpaamKi0tTaNHj1ZYWJjJ30njEB8fL0nKy8sj2AIA4Ceqjo6sS8f29OnTmj9/vjIzM7V06VKVlJRo4MCBevDBB2W32zVixAiGP6HRIdiiTsaNG6e1a9fqww8/1JgxY6q91qNHD913332677775PF4tGPHDm/Qfemll/SLX/xCUVFRSk5OVlpamlJTUzV48OCgHyVvlpYtW2rAgAHKy8v71nH0AACgYTidTkk1D7YHDx6Uw+GQw+HQypUr5fF4lJCQoGeeeUZ2u12xsbG+LBfwewRb1Fm/fv3085///BvvsVgsGjhwoAYOHKiHH35YFRUV2rhxozfo/uxnP1NJSYnatm2r8ePHe5cu9+rVi5801qOqfbYAAMA/VAXbqy1F9ng82r59u3eS8caNGxUWFqa0tDS99tprmjp1qjp06NCQJQecI0eOmF2C32gMvxcEWzSo0NBQxcXFKS4uTk8++aRKSkqUl5en7OxsZWVlaebMmaqsrFS3bt28ITc1NVUdO3Y0u/SAZhiG3nzzTV24cEHNmzc3uxwAABq9Ky1FrqysVEFBgXeS8d69exUdHa0bb7xRP/nJT3TjjTcqJibGrJIDRtXv6ezZs02uxP801PFSZiDYwlRNmzZVamqqUlNT9eyzz+rChQtauXKlsrKylJ2drTlz5kiSBgwY4N2fm5KSohYtWphbeIBJSEiQx+PR2rVrNWHCBLPLAQCg0avq2IaFhWnRokXKzMzUvHnzdOLECbVr107Tpk3TK6+8otTUVDVp0sTkagNLbGysdu3a5f09xiXR0dFBvWSdYAu/0rx5c02ZMkVTpkyRJJ04cUI5OTnKysrSggULvBOXR44cWW3ickREhMmV+7e+ffuqVatWysvLI9gCAGCyixcvasmSJZKkoUOHyuVyqXfv3poxY4bsdrvi4+MVEhJicpWBLZgDHK6MYAu/1r59e912223eicv79+/3LlueM2eOnn/+ee/E5aqgO3r0aMbaf43ValVCQgL7bAEAMMnx48c1b948ZWZmKisrS+Xl5ZKkxx57TDfffLMGDhzIfBHgGjCGFgGlZ8+euu+++/Svf/1Lx44d07Zt2/Tb3/5WMTExevHFF2UYhlq1aqXJkyfr97//vbZu3Sq322122X7BMAwVFBSosrLS7FIAAGgUdu/erRdffFGJiYnq1KmTfvCDH6ikpMR7SkSzZs309NNPa9CgQYRa4BrR1kLAslgsGjRokAYNGqT//d//VUVFhTZs2OCduPzkk0+qtLRUbdu29e7jbcwTlw3D0MWLF7Vjxw4NHjzY7HIAAAg6Ho9HGzdu9E4y3r59u5o2bSqbzaa33npLkydPVps2bSRJzz77bFAP8gEaGsEWQSM0NFRjxozRmDFjvMcI5eXleYPuD37wA7ndbnXv3r3axOXGMip/9OjRCgkJUV5eHsEWAIB6UlFRoZUrV3rPmD106JBatmypyZMn61e/+pUmTpyoyMjIy77O5XJd9agfALVHsEXQ+urE5eeee67axOWsrCy99dZbki5NXK4KusnJyUE7cTkyMlLDhg1TXl6evv/975tdDgAAAauoqEhLly5VZmam5s+fr7Nnz6pLly6y2+2y2+0aN26cwsLCvvEZTqeTji1Qjwi2aDSuNHE5Oztb2dnZmj9/vl555ZWgn7hsGIYWL15sdhkAAAScs2fPav78+crMzNSSJUtUXFysAQMG6IEHHlBGRoZGjhxZq61OTqeTji1Qjwi2aLTat2+v22+/XbfffrukSxOXv9rNff7559WkSRMZhuHdnxvoE5cTEhL0yiuv6NSpU2rbtq3Z5QAA4NcOHTrkXWK8YsUKVVZWKj4+Xr/85S9lt9vVt2/fOj/b5XLRsQXqUeB+QgfqWc+ePXX//ffr/vvvl8fj0fbt271B98UXX9TPf/5zRUdHKzk52bs/d9CgQbJaA2e4uGEYkqT8/HxNnTrV5GoAAPAvHo9HO3bskMPhUGZmpjZs2KCwsDClpqZq9uzZmjZtmjp27Fgv7+V0OtWyZct6eRYAgi1wRd82cfmJJ56oNnG5aulyr169zC79G3Xr1k2dOnVSXl4ewRYAAElut1tr1qzxTjLevXu3oqKidMMNN+jRRx/VjTfeqObNm9f7+7pcLnXr1q3enws0VgRboAa+PnG5uLjYO3E5OztbDzzwgNxut3r06OENuv44cdliscgwDOXl5ZldCgAApikrK1N2drYcDofmzp2r48ePq23btpo2bZp+//vfKy0tTU2bNvVpDeyxBeoXwRaog4iICG+XVpIuXLigFStWXDZxeeDAgd6Qm5KS4pOf+NaWYRj62c9+prKyMoWHh5tdDgAADcLpdGrRokXKzMzUwoULdfHiRfXs2VN33HGHMjIylJCQoJCQkAarhz22QP0i2AL1oHnz5po6dap3eW/VxOWsrCzNmzdPf/rTn2S1WjVq1ChvIDYMw5SJy4ZhqKSkRJs3b1ZcXFyDvz8AAA3lxIkTmjdvnhwOhz799FOVlZVp2LBhevTRR2W32zV48OBaTTKuTxz3A9SvRhFsjxw5YnYJfoPfi4bx9YnL+/bt8wbdN998U7/5zW+8E5ergu6oUaMaZOLy8OHD1aRJE+Xl5RFsAQBBZ+/evd7hT3l5ebJYLBo7dqxeeOEF2e129ejRw+wSJV3q2LIUGag/Fo/H4/m2my5evKjmzZvrwoULiomJaYi66sXu3buvaQx7MNu1a5diY2PNLqNR8ng8+uyzz7z7c5cvX+79qW3VxOW0tDQNGjTIZz9FTkpKUufOnfX+++/75PkAADQUj8ejTZs2ecPsZ599piZNmmjixInKyMjQ5MmT/e6Iu7KyMjVp0kRvv/227r77brPLAfxWbXJoUHdsY2NjtWvXLjmdTrNL8SvR0dGEWhNZLBYNHjxYgwcP1iOPPKKKigqtX7/+sonL7dq1U2pqqncYVX1OXDYMQ++99169PQ8AgIZUUVGh1atXe8+YPXjwoFq0aKHJkyfrl7/8pWw2m193Q6s+m/pzjUCgCeqOLRCIvjpxOSsrS+vXr/dOXK7q5o4fP/6aJi47HA5lZGToyy+/VNeuXeuxegAAfKO4uFjLli1TZmamPvnkE505c0adOnWS3W5XRkaGkpOTFRYWZnaZNXLw4EH16NFDS5cu1YQJE8wuB/BbdGyBAPb1icvnz5/XypUrvUH3zTfflPTfictpaWlKTk6u1cTlhIQESVJeXp6mT59e/98EAAD14Ny5c5o/f74cDocWL16soqIi9evXT//zP/8ju92uUaNGyWq1ml1mrdGxBeofwRbwcy1atKg2cfn48ePKzs5WdnZ2nScut2/fXr179ybYAgD8zuHDhzV37lxlZmZq+fLlqqys1JgxY/Tzn/9cdrtd/fr1M7vEa+ZyuSSJqchAPSLYAgGmQ4cOuuOOO3THHXdIujRxuaqb+7e//c07cTkxMdG7P/dKE5cNw1BeXp4Z3wIAAF4ej0c7d+5UZmamHA6H1q1bp9DQUI0fP16vvPKKpk6dqs6dO5tdZr2iYwvUP/bYAkHE7XZr+/bt3qC7YsUKOZ1OxcTEVJu4PHDgQP3lL3/RQw89pAsXLigyMtLs0gEAjYjb7dbatWu9k4x37dqlyMhI3XDDDbLb7Zo0aZJatGhhdpk+k5mZqZtuukmnT59W69atzS4H8FvssQUaKavV+o0Tlx9//HHvxOURI0aosrJSn3zyiW677TazSwcABLmysjItX75cmZmZmjt3ro4dO6Y2bdpo6tSpevnll5WWlvaN22iCSVXHlqXIQP2hYws0Il+duPzpp59q3bp1kqSePXt6ly2npqaqffv2JlcKAAgGLpdLixYtksPh0IIFC3ThwgX16NFDGRkZstvtSkxMVEhIiNllNrg///nP+tGPfqSysjKzSwH8Wm1yKMEWaMRSUlJUVFSk+Ph4ZWdna/v27ZKkQYMGeUNubScuAwAat5MnT+qTTz5RZmamPv30U5WWlmro0KHeMDtkyBBZLBazyzTVCy+8oN/+9rc6c+aM2aUAfo2lyABqJDk5WX/+85+1Zs0aWSwW78TlrKwsORwO/fGPf1RISMhlE5ebNm1qdukAAD+yf/9+7/Cn3NxcSVJSUpJ+85vfyG63q2fPniZX6F+cTieDo4B6RscWaMSWLFmi9PR0ffHFF+rbt2+11zwej/bv3+/dn5udna1Tp055Jy5XBd2RI0deNnEZABDcPB6PtmzZ4h3+tHXrVjVp0kQTJkyQ3W7XlClT1K5dO7PL9FuPPPKIPv30U3322WdmlwL4NZYiA6iR8+fPq1WrVnrrrbd0zz33fOO9brdbn332mbej+00Tlxv7EjMACEaVlZXKzc31dmYPHDig5s2ba9KkScrIyJDNZmMYUg3dd9992r59uwoKCswuBfBrBFsANTZ48GAlJCTojTfeqNXXlZeXeycuZ2dnKzc3V2VlZWrfvr1SU1O9w6hYfgYAgau4uFiffvqpHA6H5s2bp9OnT6tjx46y2+2y2+1KSUlReHi42WUGnOnTp+vs2bNatmyZ2aUAfo09tgBqzDAM736o2ggLC1NCQoISEhL0f//3fyouLlZubq536fL7778vt9utnj17eru548ePZ+IyAPi58+fPa8GCBcrMzNTixYtVWFiovn376r777lNGRoZGjx4tq9VqdpkBjT22QP0j2AKNnGEY+utf/6rz58+rRYsWdX5ORESErr/+el1//fWSLn0wWrFihTfo/u1vf5P034nLaWlpSk5OZhUIAPiBI0eOaO7cuXI4HMrJyVFFRYXi4uL01FNPyW63q3///maXGFRcLpfatGljdhlAUCHYAo1cQkKCPB6P1qxZI5vNVm/PbdGihaZNm6Zp06ZJko4dO6acnJzLJi6PHj3au2yZicsA0HB27tzpHf60du1ahYaGKiUlRX/84x81depUdenSxewSg5bT6WQ/MlDPCLZAIxcbG6vWrVsrLy+vXoPt13Xs2FF33HGH7rjjDnk8Hu3bt8+7P/evf/2rfv3rX6tp06beicupqalMXAaAeuR2u7V+/Xrv8KedO3eqWbNmuuGGG/TDH/5QkyZNUsuWLc0us1FgKTJQ//jECDRyFotFhmEoLy+vQd+zd+/e6t27t/7nf/7HO3G5atnyr3/9a/3sZz9TTEyMUlJSvEuXBwwYwMRlAKiF8vJyLV++XA6HQ3PnztWRI0fUunVrTZ06Vb/97W91/fXXKyIiwuwyGx2Xy0XHFqhnBFsAMgxDzz33nCorKxUSEtLg72+1WjVkyBANGTJEP/rRj6pNXM7KytJPfvKTahOXq4Jujx49GrxWAPB3LpdLS5YsUWZmphYsWKDz58+re/fuuvXWW2W325WYmMhqGJPRsQXqH/9WAyDDMORyufTZZ59p6NChZpdz2cTloqIi5ebmes/QrZq43KtXL2/QTU1NVbt27cwuHQBMcerUKX3yySdyOBxatmyZSkpKNHjwYD388MOy2+0aNmwYK178RGVlpYqKiujYAvWMYAtAo0aNUmhoqPLy8vwi2H5ds2bNNGHCBE2YMEHSpYnLy5cv9+7RrZq4PHjwYG/IZeIygGB34MAB7/Cn1atXy+PxKDExUc8++6zsdrt69+5tdom4gsLCQkmiYwvUM4vH4/F82021ORgXQGCKi4vTddddp3/+859ml1Jrx44d83Zzs7Ky9OWXX3onLlctW05ISGDiMoCA5vF4tG3bNu/wp82bNys8PFwTJkyQ3W7XlClTOCs8ABw9elSdO3fWggULdOONN5pdDuDXapNDCbYAJEn/+7//qwULFmjPnj1ml3JNvjpxuaqje/r06WoTl9PS0jRy5EhT9hMDQG1UVlYqLy9PDodDDodD+/btU0xMjCZNmqSMjAylp6ezpDXAfPHFF+rXr59WrFihcePGmV0O4NcItgBq7f3339dtt92m48ePB9VP/N1ut7Zt2+bt6K5YsUIul0vNmzdXcnIyE5cB+J2SkhJlZWUpMzNT8+bN06lTp9ShQwfZ7XbZ7XaNHz9e4eHhZpeJOtqwYYNGjRqljRs3avjw4WaXA/i12uRQ9tgCkHRpgJQk5efny263m1tMPbJarRo6dKiGDh3qnbi8bt06bze3auJyhw4dlJqa6h1GxcRlAA3pwoULWrBggRwOhxYtWiSXy6XY2Fjde++9ysjIUFxcnKxWq9lloh44nU5JotMO1DOCLQBJUteuXdWlSxfl5eUFVbD9urCwMBmGIcMw9POf/9w7cblq6fJ7770nj8ejXr16ebu548ePZ+IygHp39OhRzZs3T5mZmcrJyVF5eblGjRqlJ598Una7Xf3792clSRCqCrYMjwLqF8EWgJdhGMrLyzO7jAb19YnL586d04oVK7xB969//auk/05cTktL07hx49iWAaBOdu3a5R3+VFBQoJCQEKWkpOh3v/udpk2bpq5du5pdInzM5XJJomML1DeCLQAvwzD0+OOPq7S0VE2aNDG7HFO0bNnSu49NutRRycnJUVZWlj7++GP94Q9/UEhIiOLi4rzLlpm4DOBqPB6P1q9f7z2W5/PPP1dERITS09P1j3/8Q5MmTVKrVq3MLhMNyOl0ymKxqFmzZmaXAgQVgi0AL8MwVFpaqk2bNik+Pt7scvxCp06ddOedd+rOO++Ux+PR3r17vd3cv/zlL3ruuefUtGlTJSUlec/QZeIy0LiVl5dr5cqVyszM1Ny5c3X48GG1atVKU6dO1W9+8xtNmDCBUNOIuVwuRUVFscwcqGcEWwBew4YNU0REhPLy8gi2V2CxWNSnTx/16dNH3//+970Tl6uC7nPPPacnn3xSzZs3V0pKinfpMvvkgOBXWFioJUuWyOFwaP78+Tp37py6deumm266SRkZGUpKSlJoKB+7cKljy/5aoP7xb1gAXmFhYRo1apTy8/PNLiUgfHXi8o9//ONqE5ezsrL02GOPVZu4XBV0u3fvbnbpAOrB6dOnNX/+fGVmZmrp0qUqKSnRoEGD9NBDD8lut2v48OH8UAuXcblc7K8FfIBgC6AawzD0z3/+Ux6Phw9ktXSlicurV6/2nqFbNXG5d+/e3qCbmpqqtm3bml06gBo6ePCgHA6HHA6HVq5cKY/HI8Mw9Ktf/Up2u119+vQxu0T4OTq2gG8QbAFUYxiGXnjhBX355Zd0Fq9Rs2bNNHHiRE2cOFHSpYnLy5cv956hWzVxeciQId6Qm5yczE/yAT/i8Xi0fft27yTjjRs3Kjw8XGlpaXr99dc1ZcoUdejQwewyEUDo2AK+QbAFUE1CQoIkKS8vj2Bbz1q2bKmMjAxlZGRIujRxuaqb+9FHH+n3v/+9d+Jy1bLlhISERjuhGjBLZWWlCgoKvGF27969io6O1qRJk/TTn/5UN9xwA0d+oc6cTifBFvABi8fj8XzbTRcvXlTz5s114cIF/kUONAJ9+/aVzWbTK6+8YnYpjcbXJy5nZ2frzJkz1SYup6WlacSIEUxcBnygtLRUWVlZcjgcmjt3rk6ePKn27dtr2rRpysjI0Pjx4/khE+pFamqq2rdvr/fee8/sUgC/V5scSrAFcJl77rlH27Zt04YNG8wupdFyu93aunWrt6O7YsUKFRYWqkWLFkpJSfHu0WXiMlB3Fy5c0KJFi5SZmamFCxfK5XKpT58+ysjIkN1uV3x8vKxWq9llIsjExcVp2LBheuONN8wuBfB7tcmhLEUGcBnDMPTOO++osLBQkZGRZpfTKFmtVg0bNkzDhg3zTlxeu3att5v76KOPqry8XB07dqw2iIrl48A3O378uObOnSuHw6GsrCyVl5dr5MiRevzxx5WRkaEBAwbwwyL4FMOjAN8g2AK4TEJCgiorK7Vu3TqlpKSYXQ50aeJyYmKiEhMT9Ytf/MI7cblq6fK//vUv78TlqmXL48ePZ+IyIGnPnj3KzMxUZmamCgoKZLVaNW7cOL388suaNm2aunXrZnaJaEQYHgX4BsEWwGUGDBigmJgY5eXlEWz91NcnLp89e1YrVqzwBt2qJW5VE5fT0tI0btw4PkyhUfB4PNq4caN3+NP27dsVEREhm82mOXPmaPLkyWrdurXZZaKRomML+AbBFsBlQkJCFB8fr7y8PLNLQQ21atWq2sTlI0eOKDs7W9nZ2d6Jy6GhoYqLi/MuXWbiMoJJRUWFVq5c6T1j9tChQ2rZsqWmTJmiZ599VhMmTGBrBUzn8Xjo2AI+QrAFcEWGYehPf/qT3G43w1MCUOfOnTVjxgzNmDFDHo9He/bs8XZzX3vtNT377LOKiIjwTlxOTU1l4jICTlFRkZYuXarMzEzNnz9fZ8+eVdeuXWW322W32zV27FiFhYWZXSbgVVJSosrKSoIt4ANMRQZwRcuWLdPEiRP1+eefq1+/fmaXg3pUNXG5KuiuXLmy2sTlqqXL/fr1Y4gO/M6ZM2c0f/58ORwOLVmyRMXFxRo4cKDsdrsyMjI0YsQI/tzCb1UdI+VwODRt2jSzywH8HlORAVyzMWPGyGKxKC8vj2AbZL46cfnRRx9VWVmZ1q1b5w26VVOYvzpxOS0tjQE7MM2XX36puXPnKjMzUytXrpTb7VZ8fLxmzZolu92u2NhYs0sEasTlckkSHVvAB+jYAriqoUOHavTo0frb3/5mdiloQIWFhVq9erX3DN2NGzfK4/GoT58+3qDLxGX4ksfj0Y4dO7zDnzZs2KCwsDClpaXJbrdr6tSp6tixo9llArW2ZcsWDRs2TGvWrFFcXJzZ5QB+j44tgHphGIZWrFhhdhloYJGRkbLZbLLZbJIuTVxevny59wzdqonLQ4cO9XZzx44dSwcC18TtdqugoEAOh0OZmZnas2ePoqKidOONN+qxxx7TDTfcoObNm5tdJnBN6NgCvkOwBXBVCQkJev3113Xu3Dm1bNnS7HJgklatWummm27STTfdJOm/E5ezsrL0wQcf6He/+5134nJV0I2Pj2fiMr5VaWmpcnJylJmZqblz5+rEiRNq166dpk2bpj/+8Y9KS0vjzxGCitPplCSO+wF8gKXIAK5qz549io2N1cKFC3XDDTeYXQ780NcnLufk5OjMmTPVJi6npaVp+PDhTFyGpEufKRYtWiSHw6GFCxfq4sWL6tWrl/e4qvj4eP6sIGh99NFHuvXWW3Xu3Dm1aNHC7HIAv1ebHEqwBXBVHo9H7du31/e//3396le/MrscBAC3260tW7Z4ly0zcRmSdOLECc2bN0+ZmZnKyspSWVmZhg8froyMDNntdg0aNIg/D2gU5syZo+9973sqLy9XaCgLJ4Fvwx5bAPXCYrHIMAzl5eWZXQoChNVq1fDhwzV8+HA99thjKisr09q1ay+buNypUyfvIKrU1FQmLgehvXv3eoc/5eXlyWKxaNy4cfrtb38ru92u7t27m10i0OBcLpeaNm1KqAV8gH+qAHwjwzD0zDPPqKKigv8Qo9bCw8OVlJSkpKQkPf30096Jy1VB99133/VOXK7q5o4fP15t2rQxu3TUksfj0aZNm7zDnz777DM1bdpUEydO1FtvvaXJkyfz9xWNntPpZHAU4CN8SgXwjQzDUGFhobZt26bhw4ebXQ4C3DdNXM7KytJf/vIXSdUnLo8bN45BK36qoqJCq1ev9nZmv/zyS7Vo0UJTpkzRrFmzZLPZFBkZaXaZgN9wOp38+wzwEYItgG80cuRIhYWFKS8vj2CLevf1icuHDx9Wdna2srOzq01cHjNmjHfpMhOXzVVcXKylS5fK4XDok08+0ZkzZ9S5c2fZ7XZlZGRo3LhxCgsLM7tMwC+5XC46toCPMDwKwLeKj49X79699e6775pdChoRj8ej3bt3V5u4fPbsWUVERGjs2LHe/blMXPa9s2fPasGCBcrMzNSSJUtUVFSk/v37e4c/jRo1iuFPQA3cc8892r17t3Jzc80uBQgITEUGUK9+9KMfae7cudq3b5/ZpaAR++rE5aysLK1cuVJFRUVq2bJltYnL1113HSGrHhw+fFgOh0MOh0PLly9XZWWl4uPjZbfbZbfbdd1115ldIhBwbrnlFrlcLi1evNjsUoCAQLAFUK8+/PBDfec739HRo0fVsWNHs8sBJOmyicsFBQWXTVxOS0tT165dzS41IHg8Hn3++efe4U/r169XaGioUlNTlZGRoalTp6pTp05mlwkENJvNpujoaH300UdmlwIEBIItgHp1+PBhde3aVf/5z3+8eyEBf1NYWKhVq1YpOztbWVlZ2rRpkzwej2JjY73Llpm4XJ3b7dbatWu9w5927dqlqKgo3XDDDbLb7brxxhvVokULs8sEgkZiYqL69u2rOXPmmF0KEBA4xxZAverSpYu6deumvLw8gi38VmRkpNLT05Weni5JOnPmjHficnZ2tl5//XVJ0rBhw7zd3LFjxza6CaVlZWXKycmRw+HQ3LlzdezYMbVt21bTpk3T7373O6Wlpalp06ZmlwkEJaYiA75DsAVQI4ZhKC8vz+wygBpr3bq1br75Zt18882S/jtxOSsrS//+97/18ssveycuVwXd+Ph4hYeHm1x5/XM6nVq8eLEyMzO1YMECXbx4UT179tTtt9+ujIwMJSQkMIALaABMRQZ8h2ALoEYMw9DHH3+skpISujkISF26dNHdd9+tu+++Wx6PR7t27fJ2c2fPnq1nnnlGzZo1U1JSkjfoDhs2LGAD38mTJzVv3jw5HA59+umnKi0t1bBhw/Too4/Kbrdr8ODBDNkCGpjT6STYAj7CHlsANbJhwwaNGjVKubm5MgzD7HKAeuV2u7V582bvIKpVq1Z5Jy6PHz/eO4zK3ycu79u3zzv8KTc3VxaLRUlJScrIyNC0adPUs2dPs0sEGrWmTZvqxRdf1A9/+EOzSwECAntsAdS7IUOGKCIiQvn5+QRbBB2r1aoRI0ZoxIgR+slPfqKysjKtWbPGG3QfeeQRVVRUqFOnTt5ubmpqqukTlz0ej7Zs2eId/rR161Y1adJEEydO1N/+9jdNmTJFbdu2NbVGAJeUl5ertLSUji3gI3RsAdRYSkqKWrdurf/85z9mlwI0KJfLpdWrV3uD7ubNm6tNXE5LS9P48ePVunVrn9dSUVGh3Nxc7xmzBw4cUIsWLTR58mTZ7XbZbDaG0wB+6Ny5c2rVqpU+/PBD3XLLLWaXAwQEOrYAfMIwDM2ZM0cej8evl2MC9S0qKuqyics5OTneYVSvv/66LBaLhg4d6pOJy8XFxfr000+VmZmpTz75RKdPn1anTp1kt9uVkZGh5ORkhYWF1ct7AfANl8slSXRsAR+hYwugxubPn68pU6Zo37597NUDvuLQoUPekJuVlaWjR48qNDRU8fHx3v25tZ24fO7cOS1YsEAOh0OLFy9WYWGh+vXrp4yMDNntdo0aNUpWq9WH3xWA+rRjxw4NHDhQq1evVmJiotnlAAGhNjmUYAugxk6fPq22bdvqnXfe0Z133ml2OYBf+urE5aysLOXk5OjcuXNq1qyZxo4d6+3oDh069LKJy0eOHNHcuXOVmZmp5cuXq6KiQmPGjJHdbpfdble/fv1M+q4AXKu1a9dqzJgx2rJli4YMGWJ2OUBAINgC8Jl+/fopLS1Nf/7zn80uBQgIlZWV2rx5s7ej+/WJywMHDvTu4V23bp1CQ0M1fvx4ZWRkaOrUqercubPZ3wKAepCVlaXrr79ee/fuVa9evcwuBwgI7LEF4DOGYSgvL8/sMoCAERISopEjR2rkyJH6yU9+opKSEv3973/XO++8o0WLFunjjz+WJEVERCgpKUl33HGHpkyZoi5duphcOYD6xB5bwLcItgBqxTAMvf322xwyD9RCWVmZVqxYoczMTM2dO1dHjx5VmzZtdPvttys9PV1hYWHeqcszZ87UzJkz1bdvX++y5aqJ5AACl9PplESwBXyFYAugVhISEuR2u7Vu3TqlpqaaXQ7gt1wulxYvXqzMzEwtWLBAFy5cUI8ePTR9+nTZ7XYlJiZW22Nrt9slXdrLvnz5cmVlZenTTz/Va6+9JovFomHDhlWbuBwZGWnSdwagLpxOp0JCQtSkSROzSwGCEsEWQK30799fzZs3V15eHsEW+JpTp05p3rx5cjgcWrZsmUpLSzV06FA98sgjysjI0JAhQ771qKw2bdrolltu8Z5z+dWJy//617/00ksvKSwsTGPGjPEG3TFjxtRq4jKAhudyuRQdHc1xeYCPMDwKQK3dcMMNslgsWrhwodmlAKbbv3+/HA6HMjMzlZubK4/Ho6SkJGVkZGjatGn1OiTG4/Hoiy++UFZWlrKzs70TlyMjIzV27Fjv0ULDhg3jKCDAz/ziF7/QnDlzdOjQIbNLAQIGw6MA+JRhGPrd734nt9vNh2c0Oh6PR1u3bvWG2S1btqhJkyaaMGGC3njjDU2ZMkXt2rXzyXtbLBb169dP/fr104MPPuiduFx1tNDTTz+tn/70p2rVqpXGjx/v7ejGxsbSJQJMVtWxBeAbdGwB1FrVkQXbt2/XgAEDzC4H8LnKykrl5eUpMzNTDodD+/fvV/PmzTVp0iRlZGTIZrP5xQfW0tJSrVmzxht016xZo4qKCnXp0sXbzU1LS+MIIcAE/9//9/9py5YtWrt2rdmlAAGDji0An4qLi5PValVeXh7BFkGrpKREn376qRwOh+bNm6dTp06pY8eOstvtstvtSklJ8bt9rU2aNNG4ceM0btw4zZo1S06n0zttOSsrS//4xz8kSdddd5036I4fP16tWrUyuXIg+NGxBXyLji2AOhk+fLiGDx+ut956y+xSgHpz/vx5LViwQA6HQ4sWLVJhYaH69u2rjIwMZWRkaPTo0QG9/P706dPKycnx7tHdvXu3LBaLhg8frrS0NKWmpjJxGfCRyZMnKyQkRHPnzjW7FCBg0LEF4HOGYSgrK8vsMoBrdvToUc2dO1eZmZnKyclRRUWFRo8eraeeekp2u139+/c3u8R606ZNG91666269dZbJUlffvmld+LyO++8oxdffFFhYWGKj4/3LluOi4vzu840EIhcLpe6dOlidhlA0KJjC6BO3nnnHc2YMUOnT59W69atzS4HqJUvvvjCu192zZo1Cg0NVUpKiux2u6ZNm9YoP3x+deJyVlaWcnJydP78ee/E5aqgO3To0IDuWgNmGTlypOLi4vTaa6+ZXQoQMGqTQwm2AOpk37596t27t+bPn69JkyaZXQ7wjdxut9avX++dZLxz5041a9ZM6enpysjI0KRJk9SyZUuzy/QrlZWV2rRpk3fZ8qpVq1RcXMzEZaCO+vbtq2nTpunFF180uxQgYLAUGYDP9ezZU+3bt1deXh7BFn6pvLxcK1asUGZmpubOnasjR46odevWmjp1ql544QVNmDBBERERZpfpt0JCQjRq1CiNGjVKjz/+uEpLS1VQUODt6D788MPeictV+3OZuAxcHcOjAN8i2AKoE4vFIsMwlJeXZ3YpgFdhYaEWL14sh8Oh+fPn6/z58+revbtuueUWZWRkKDExUaGh/KevLpo0aaLk5GQlJyfrmWeekdPp1KpVq7xB9+2335Z0aeJyVTc3JSWFicvA/+N0OhUVFWV2GUDQ4r/uAOrMMAw9/fTTqqioICzANKdPn9Ynn3yizMxMLVu2TCUlJRo8eLAefvhh2e12DRs2jKWyPhAdHa0bb7xRN954oyTp1KlTWr58ubKysrR06VK9+uqr1SYup6WlKSkpiYnLaJTcbrcKCwvp2AI+xCdRAHV2++2369ChQwoJCTG7FDQyBw4ckMPhkMPh0KpVq+TxeJSYmKhnn31WdrtdvXv3NrvERqdt27aXTVyu6uZ+deJyQkKCd9nymDFjFBYWZnLlgO8VFRXJ4/HQsQV8iOFRAAC/5/F4tG3bNu/wp82bNys8PFzXX3+9MjIyNGXKFLVv397sMnEVHo9HO3fu9Abd5cuXeycujxs3zrtHl4nLCFYVFRWaNm2a/vjHP6pPnz5mlwMEDKYiAwACXmVlpfLz873H8uzbt08xMTGaNGmS7Ha7brjhBpb1BaivTlzOysrS6tWrVVxcrNatW1ebuNynTx+WkQNAI0awBQAEpJKSEmVlZcnhcGjevHk6efKkOnTooGnTpikjI0Pjx49XeHi42WWinpWWlio/P1/Z2dnKysrSmjVrVFlZqa5du3qXLaelpalTp05mlwoAaEAEWwBAwLhw4YIWLlyozMxMLVq0SC6XS7GxscrIyJDdbteYMWNYntrIOJ1OrVy50nuG7pYtWyRJ/fr18wZdJi4DQPAj2AIA/NqxY8c0d+5cORwOZWdnq7y8XKNGjZLdbldGRob69+/PElR4nTp1Sjk5Od6ly3v37pXFYtGIESO8+3OZuAwAwYdgCwDwO7t27fIOfyooKFBISIiSk5OVkZGhadOmqWvXrmaXiABx8OBB77LlrKwsHT9+3DtxuWrZclxcHBOXASDAEWwBAKbzeDzasGGDd/jTjh07FBERofT0dNntdk2ePJmlpLhmHo9Hn3/+uTfo5uTk6MKFC9UmLqelpWnIkCEsaQeAAEOwBQCYory8XCtXrvSeMXv48GG1atVKU6ZMUUZGhiZMmKBmzZqZXSaCWGVlpTZu3Ojdn7tq1SqVlJQwcRkAAhDBFgDQYAoLC7V06VJlZmZq/vz5OnfunLp16ya73S673a6xY8cqNDTU7DLRSFVNXK5atrx27VrvxOWqkJuamsrEZQDwQwRbAIBPnTlzRp988okcDoeWLl2q4uJiDRo0yDv8afjw4XTD4JcuXryoVatWeYPu1q1bJV2auFwVdFNSUtSyZUuTKwUAEGwBAPXu4MGDmjt3rjIzM7Vq1Sq53W4lJCR4j+Xp06eP2SUCtXby5Enl5OR49+h+feJyWlqakpKSWEIPACYg2ALw2r17t5xOp9ll+J3o6GjFxsaaXYZf83g82r59u3f408aNGxUeHq60tDTZ7XZNnTpVHTp0MLtMoF4dPHjQ283Nzs7W8ePHFR4e7p24nJqaysRlAGggBFsAki6F2r59+5pdht/atWsX4fZrKisrVVBQ4D2WZ+/evYqOjtakSZNkt9t1ww038N8BNBpVE5ergu7y5ct14cIFRUVFVZu4PHjwYCYuA4APEGwBSJI2btyokSNH6q6/3KX2fdubXY7fOLHrhN75/jvasGGDRowYYXY5pistLVV2drYyMzM1b948nThxQu3bt9e0adOUkZGh8ePHq0mTJmaXCZiuoqJCmzZt8gbd1atXq6SkRG3atKk2cbl3797sMTcZq5WujNVKCDS1yaGMqQQagfZ926vr0K5mlwE/cvHiRS1cuFAOh0MLFy6U0+lUnz59dPfdd8tutys+Pp4OFPA1oaGhGj16tEaPHq0nnnhCJSUl3onL2dnZevDBB1VZWalu3bopNTXVG3Q7duxodumNCquVvhmrlRCsCLYA0EgcP35c8+bNU2ZmprKyslReXq6RI0fqpz/9qTIyMjRgwAC6TEAtNG3aVOPHj9f48eMlXfqB0cqVK70d3b///e+SpP79+3tDbnJyMhOXfayqU/vQQw+pc+fOJlfjP44cOaLZs2fTyUbQItgCQBDbs2ePd/hTfn6+rFarxo0bp5deekl2u13dunUzu0QgaMTExGjy5MmaPHmypP9OXM7KytLChQs1e/ZsWa3WahOXExMTmbjsI507d1avXr3MLgNAAyHYAkAQ8Xg82rhxo3f40/bt29W0aVPZbDbNmTNHkydPVuvWrc0uE2gU2rVrp+nTp2v69OmSpAMHDniXLf/973/XCy+8UG3iclpamkaPHs3EZQCoA4ItAAS4iooKrVq1ytuZPXTokFq2bKkpU6boV7/6lSZOnKjIyEizywQavR49eui+++7TfffdJ4/Hox07dniXLb/00kv6xS9+oaioKCUnJ3v36DJxGQBqhmALAAGoqKhIS5cuVWZmpubPn6+zZ8+qa9eustvtstvtGjt2LF0fwI9ZLBYNHDhQAwcO1MMPP6yKigpt3LjRG3SfeuopPfroo2rTpo035KampjJxGQCugmALAAHi7Nmzmj9/vjIzM7VkyRIVFxdr4MCB+sEPfqCMjAyNGDGCD7xAgAoNDVVcXJzi4uL05JNPVpu4nJWVpZkzZ3onLlctW05NTWXiMgD8PwRbAPBjhw4dksPhkMPh0IoVK1RZWamEhATNmjVLdrudIxuAIPXVicvPPvusLl68qBUrVig7O1tZWVmaM2eOpOoTl1NSUtSiRQtzCwcAkxBsAcCPVO27qxr+tGHDBoWFhSktLU1//vOfNXXqVDo0QCMUExOjKVOmaMqUKZKkEydOXHHi8siRI71Ll5m4DKAxIdgCgMncbrfWrFnjHf60e/duRUVF6cYbb9Rjjz2mG264Qc2bNze7TAB+pH379rrtttt02223SfrvxOWq83OrJi4bhuFdtszEZQDBjGALACYoLS1VTk6OHA6H5s6dq+PHj6tdu3aaNm2a/vCHPygtLU1NmjQxu0wAAeKbJi6/+OKL+vnPf67o6GiNGzfOu3R50KBBTFwGEDQItgDQQC5evKhFixbJ4XBo4cKFunjxonr16qU777xTGRkZio+PV0hIiNllAghwV5q4vGHDBu8Zuk8++aRKS0vVtm1bjR8/3ht0e/XqxQA6AAGLYAsAdXT69GlJUps2ba56z4kTJzRv3jxlZmYqKytLZWVlGj58uB577DHZ7XYNGjSID5IAfCo0NFRjxozRmDFj9LOf/UwlJSXKy8vzdnR/8IMfyO12q3v37t5ly0xcBhBoCLYAUAdbtmzR+PHjNXjwYK1YsaLaa3v37vXul83Ly5PFYtG4ceP029/+Vna7Xd27dzepagC4NHG5Krw+99xzunDhglauXOkNum+99ZYkacCAAd5ubnJyMhOXAfg1gi0A1NL69euVlpYmp9OpVatW6eTJkzp8+LB3kvFnn32mpk2bauLEiXrrrbc0efLkb+zqAoCZmjdvftWJy/Pnz9crr7zinbhcFXQTExMVERFhcuUA8F8EWwCohby8PE2cOFElJSXyeDySLnU1zpw5oxYtWmjKlCmaNWuWbDabIiMjTa4WAGrv6xOX9+/f792f+9Zbb+n555+vNnE5LS1No0ePVmgoHysBmId/AwFADS1dulRTpkxRWVlZtetRUVF6//33NW7cOI7SABB0evbsqfvvv1/333+/PB6Ptm/ffsWJy8nJyd4zdJm4DKChEWwBoAZOnjwpm812xdeOHj2qMWPGEGoBBD2LxaJBgwZp0KBB+t///d9qE5ezsrKqTVyuCrmpqalMXAbgcwRbAKiBNm3a6OGHH9apU6d0+PBhbd++XWfPnpUklZeXa82aNUpLSzO5SgBoWF+fuFxcXKz8/Hxv0H3ggQeqTVyuCrodOnQwu3QAQYZgCwA1YLVa9cc//rHatbNnz+rzzz/X4cOHFR8fb1JlAOA/IiIiLpu4vGLFCmVnZzNxGYBPEWwBoI5atWqlxMREs8sAAL/VvHlzTZ06VVOnTpV0aeJyVcj95JNPvBOXR40a5V26zMRlAHVBsAUAAECDaN++vW6//XbdfvvtkqR9+/ZV6+Y+//zzatKkSbWJy6NGjWLiMoBvxbg6AAAAmKJXr166//779d577+n48ePaunWrnn/+eUVFRemFF15QQkKC2rRpo82bN5tdKgA/x4+/AAAAYDqLxaLBgwdr8ODBeuSRR1RRUaH169drw4YN6tq1q9nlAfBzBFsAAAD4ndDQUMXHxzOcD0CNEGwBSJLW/GuN3nvoPUnSwwsfVq/4XtVe93g8mjV4ls4fPa8BEwfof/79PzV+9vmj5+V4yqGdOTvlcXsUOzZW9ufsatOjzWX3FvyzQNmzs3X2y7Nq0bmFxv3POI37n3HX9EwAAAAEN/bYAqgmrGmYNny04bLre3L36PzR8wptUrufh5W6SvXnaX/Wnrw9mvDjCbrhiRt0eOthzZ48W4VnC6vdm/v3XP37f/+tjv066ubnb1aP0T308RMf69M/flrnZwIAACD40bEFUE3/6/tr89zNuun5mxQSGuK9vvGjjeo6rKtcZ1y1et7qt1br1N5T+vGnP1a3Ed287/FC4gvK+XOOJv98siSprLhMC59dqAETB+jet++VJCV8N0Eet0dLX1oq47uGmrVoVqtnAgDwTZYvX67XXntNkjRr1iz169ev2usej0cPPvigzpw5oxEjRujxxx+v0XOPHj2qZcuWac+ePdq/f7/Ky8v1yiuvqF27dle8f/369frwww915MgRxcTEKCUlRTfffLNCQkKq3VdYWKh3331Xa9euVVlZmXr37q0ZM2aoV69eV3wu0JjQsQVQzYibR6jobJG+yPnCe62irEJb5m3RiJtH1Pp5W+ZtUbcR3bwBVJLa922v2HGx2uzY7L22Z/UeFZ4tVNJ9SdW+Pum+JJUVlmnH0h21fiYAADURFham1atXX3Z9x44dOnPmjMLCwmr1vF27dmnRokUqLi5W586dv/HeTZs26aWXXlJkZKTuvfdejR49Wh9//LHmzJlT7T63263nn39eq1evls1m05133qmLFy/qmWee0bFjx2pVHxCMCLYAqmnVrZV6jO6hjR9v9F77/NPPVXyxWCNuql2wdbvdOrr9qLoOu3yaZfcR3XV6/2mVOEskSYe3Hpaky+7tOqyrLFaL9/XaPBMAgJoYPny4CgoKVFlZWe16bm6uevXqpRYtWtTqeaNGjdKcOXP00ksvKSkp6Rvvfeedd9StWzc99dRTSktL07333iu73a5PP/1UR44c8d63Zs0a7dq1SzNnztStt94qm82mp59+WlarVR9++GGt6gOCEcEWwGVG3DJC2xZsU1lxmSRpw4cb1Cexj5p3bF6r5xSdK1JFaYVi2sdc9lpMh0vXLhy/IEm6eOKirCFWRbeNrnZfaHioIltFeu+rzTMBAKiJxMREuVwubd261XutoqJCBQUFSkxMrPXzoqKiFBER8a33HT58WIcPH1ZaWlq1ZccTJ06Ux+NRQUGB91pBQYGaN2+uuLg477WYmBjFx8dr/fr1Ki8vr3WdQDAh2AK4zHD7cJWXlGvHkh0qcZZo+9LtdVqGXF586T+yVxo4VXWtvKTce29IeMhl91Xd+9X7avpMAIB/W7Nmjd555x3TQ1nbtm0VGxur3Nxc77VNmzapqKhIhmH47H33798vSerdu3e1661atVLr1q114MAB77UDBw6oZ8+eslqrf3zv06ePSktLWY6MRo/hUQAuE9UmSn2T+2rDfzaorLhM7kq3hk4bWuvnhEVc2pNUUVpx2WtV18KahnnvrSyrvOy+qnu/el9Nn1nfzpw5oz//+c8qKyuTxWKRxWKR1Wq94l9/02s1+euG+ppgek8AgeeFF15QZmamnnrqKc2aNUt33XWXQkPN+XialJSk9957T2VlZQoPD9fq1as1YMAAtWrVymfvef78eUm64lLnFi1a6Ny5c95fnzt3Tv3797/svpYtW0qSzp49q27dul32OtBYEGwBXNHIW0bq/Ufe18UTF9X/+v5q1rxZrZ/RrGUzhTYJ1cUTFy977eLxS9ead7i0vDmmfYzclW45TzmrLUeuKKtQ4dlC7321eWZ9O3r0qP71r3+ppKREbrdbHo9HHo+nRn9d0/vcbrdPam8sGkOA5z15z2+7z2IJnB/0VO1pPXTokO69917NmjVLzzzzjG6//fYGD7gJCQl6++23tWHDBg0bNkwbN27UPffc49P3LCu7tOXnSsOpwsLCVFxcXO3eK/2eVH2t2V1vwGwEWwBXNGTSEH3w4w90cP1BfffN79bpGVarVR0HdNShzYcue+3ghoNq3aO1mkY3lSR1HnxpauShzYc0YMIA732HNh2Sx+3xvl6bZ9a3wYMHa+fOnT559tfVNgxfa5i+lq9pLO/pT3W63e5G8X16PJ4G+ectGAVKgN+1a5ckef9eHzhwQHfffbd+8IMfaNu2berZs2eD/Z7FxMRo8ODBys3NVVlZmdxut+Lj4336nuHh4ZKuHErLy8u9r1fdW1Fx+Wqlqq+t7eRmINgQbAFcUZOoJrr1pVt19suzGpg+sM7PGTp1qObPmq8vN32pbsMvLZE6sfuEdq/arfEPjffeFzs2Vs1aNlPuW7nVgm3unFyFNwvXgIkDav3MQPbVD39AY1aT8BsMAd5fv97X73nkyJFqy20tFos8Ho+io6PVtKlvfkj5TRITE/XGG2/o/PnzGjZsmCIjI336flVLkM+fP682bdpUe+38+fPV9t62bNmy2u9VlaprvlwyDQQCgi2Aq4q7Pe7bb/oWSd9LUsE/CvTGbW8o9cFUWcOsWv7qckW3i9b4B/8bQsMjwnXjz27URz/5SHPumaN+qf20r2Cf1n+wXpP+b5IiW0bW+pkAAt9Xl9Z+dWosgsOkSZN0+PBhhYSEqLKyUuPGjdOsWbOUnJxsSj1xcXH661//qt27d+uRRx7x+fv16NFDkrR371716dPHe/3s2bM6c+aM0tLSvNe6d++unTt3yu12V/uh5549e9SkSRN17NjR5/UC/oxgC8CnmkY31UPzHlLmU5la+vJSeTwe9UnsI/tzdkW1iap2b9J9SQoJDVHOqzn6bPFnatm5pezP2ZX8QHKdnwkA8F9Vy2eTk5M1a9asbz3z1deaNm2q+++/XydPntTIkSN9/n5du3ZVp06dlJWVpQkTJngD67Jly2SxWDRmzBjvvfHx8VqzZo3Wrl3rXSJ98eJFFRQUaMSIESxFRqNHsAUgSRpzxxiNuWPMt9739Jana/3sFp1b6N6/31ujexO+m6CE7ybU6zMBAP7ppZde0s9//vMGCZE1VR/d4qKiIi1atEiSvPuIlyxZombNmikyMlLp6enee++66y69+OKLeu6552QYhg4dOqTFixcrNTVVXbp08d4XHx+vhQsX6rXXXtPhw4cVHR2tpUuXyu126zvf+c411wwEOoItAAAATPHV5bfBxOVy6YMPPqh2bf78+ZIunZn71WA7cuRIPfroo/roo480Z84cxcTEKCMjQzfffHO1r7darXriiSf0zjvvaPHixSorK1Pv3r01c+ZMderUyfffFODnCLYA6qTwXOFVz52VJGuIlWXBAAC/lpKSopSUlG+9b/bs2bV6brt27fT+++/X+P7Ro0dr9OjR33pfVFSUHnjggVrVAjQWBFsAdfLW3W9pb+7eq77esmvLOi1bBgAAAGqLYAugTuy/sqvofNFVXw9ryhALAEBwcblcVzxLtorValVMTEwDVgSgCsEWQJ10HdbV7BIAAGhQL7/8snbs2HHV19u2bVvrZcsA6gfBFgAAAKiBGTNmyOVyXfX18PDwBqwGwFcRbAEAAIAa6NWrl9klALgKq9kFAAAAAABwLQi2AAAAAICARrAFAAAAAAQ0gi0AAAAAIKARbAEAAAAAAY1gCwAAAAAIaARbAAAAAEBAI9gCAAAAAAIawRYAAAAAENAItgAAAACAgEawBQAAAAAENIItAAAAACCgEWwBAAAAAAGNYAsAAAAACGgEWwAAAABAQCPYAgAAAAACGsEWAAAAABDQCLYAAAAAgIBGsAUAAAAABDSCLQAAAAAgoBFsAQAAAAABLdTsAgD43oldJ8wuwa/w+wEAABBcCLZAEIuOjpYkvfP9d0yuxD9V/f4AAAAgsBFsgSAWGxurXbt2yel0ml2K34mOjlZsbKzZZQAAfOTIkSNml+BX+P1AsCPYAkGO8AYAaEyqVuPMnj3b5Er8E6uVEKwItgAAAAgarFa6OlYrIZgRbAEAABBUCG9A48NxPwAAAACAgEawBQAAAAAENIItAAAAACCgEWwBAAAAAAGNYAsAAAAACGgEWwAAAABAQCPYAvBbhYWFmjt3rjwej9mlAAAAwI8RbAH4rW3btslut2vbtm1mlwIAAAA/RrAF4LeGDRumZs2aacmSJWaXAgAAAD9GsAXgt5o2baqUlBSCLQAAAL4RwRaAX7PZbFq1apUKCwvNLgUAgFrbu3evvvzyS7PLAIIewRaAX7PZbCorK9Py5cvNLgUAgFr70Y9+pJ/97GdmlwEEPYItAL/Wt29f9ejRg+XIAICAVFFRoaKiIrPLAIIewRaAX7NYLLLZbFq8eLHZpQAAUGuhoaGqqKgwuwwg6BFsAfg9m82m3bt3a//+/WaXAgBArRBsgYZBsAXg91JTUxUaGspyZABAwCHYAg2DYAvA7zVv3lwJCQkEWwBAwCHYAg2DYAsgINhsNmVlZam8vNzsUgAAqDGCLdAwCLYAAkJ6erqcTqfy8/PNLgUAgBoj2AINg2ALICAMHz5cbdu2ZTkyACCgEGyBhkGwBRAQrFarJkyYwLE/AICAQrAFGgbBFkDAsNls2rhxo06ePGl2KQAA1AjBFmgYBFsAAWPixImSpGXLlplcCQAANUOwBRoGwRZAwOjQoYOGDRvGPlsAQMAICQkh2AINgGALIKDYbDYtWbJEbrfb7FIAAPhWoaGhqqysNLsMIOgRbAEElPT0dJ08eVJbtmwxuxQAAL4VS5GBhkGwBRBQDMNQVFQUy5EBAAGBYAs0DIItgIASHh6u8ePHc+wPACAgEGyBhkGwBRBw0tPTlZubK6fTaXYpAAB8I4It0DAItgACjs1mU0VFhXJycswuBQCAb0SwBRoGwRZAwOndu7d69+7NcmQAgN8j2AINg2ALICBVHfsDAIA/I9gCDYNgCyAgpaena9++fdqzZ4/ZpQAAcFUEW6BhEGwBBKTx48crLCyMri0AwK+FhobK7XbL7XabXQoQ1Ai2AAJSVFSUEhMT2WcLAPBroaGhkqTKykqTKwGCG8EWQMBKT09XTk6OysrKzC4FAIArqgq2LEcGfItgCyBg2Ww2FRYWKjc31+xSAAC4IoIt0DAItgAC1pAhQ9S+fXuWIwMA/BbBFmgYBFsAActqtXLsDwDArxFsgYZBsAUQ0Gw2m7Zs2aJjx46ZXQoAAJch2AINg2ALIKBNmDBBFotFS5cuNbsUAAAuw1RkoGEQbAEEtLZt22rEiBEsRwYA+KWQkBBJdGwBXyPYAgh46enpWrZsmdxut9mlAABQDUuRgYZBsAUQ8Gw2m06fPq2NGzeaXQoAANUQbIGGQbAFEPDi4+MVHR3NsT8AAL9DsAUaBsEWQMALCwvT9ddfzz5bAIDfIdgCDYNgCyAo2Gw25efn68KFC2aXAgCAF8EWaBgEWwBBwWazqbKyUllZWWaXAgCAF8EWaBgEWwBBoUePHrruuutYjgwA8CsEW6BhEGwBBA2bzaYlS5bI4/GYXQoAAJIItkBDIdgCCBo2m00HDx7UF198YXYpAABIItgCDYVgCyBoJCcnKzw8nOXIAAC/QbAFGgbBFkDQiIyM1Lhx4wi2AAC/QbAFGgbBFkBQsdlsWr58uUpKSswuBQAAgi3QQAi2AIKKzWZTcXGxVq1aZXYpAAAQbIEGQrAFEFQGDRqkTp06sRwZAOAXqoJtZWWlyZUAwY1gCyCoWCwW77E/AACYjY4t0DAItgCCjs1m02effabDhw+bXQoAoJEj2AINg2ALIOhcf/31slgsWrp0qdmlAAAauZCQEEkEW8DXCLYAgk7r1q0VFxfHcmQAgOksFousVivBFvAxgi2AoGSz2bRs2TKGdQAATBcaGkqwBXyMYAsgKNlsNp07d07r1q0zuxQAQCNHsAV8j2ALICjFxcWpRYsWLEcGAJiOYAv4HsEWQFAKDQ3V9ddfT7AFAJiOYAv4HsEWQNCy2Wxas2aNzp07Z3YpAIBGjGAL+B7BFkDQstlscrvd+vTTT80uBQDQiBFsAd8j2AIIWl27dtWAAQNYjgwAMBXBFvA9gi2AoGaz2bR48WJ5PB6zSwEANFIEW8D3CLYAgprNZtORI0e0Y8cOs0sBADRSBFvA9wi2AILauHHj1LRpU5YjAwBMQ7AFfI9gCyCoRUREKDk5WYsXLza7FABAI0WwBXyPYAsg6NlsNq1cuVJFRUVmlwIAaIRCQ0NVWVlpdhlAUCPYAgh66enpKi0t1cqVK80uBQDQCNGxBXyPYAsg6PXr109du3Zlny0AwBQEW8D3CLYAgp7FYvEe+wMAQEMj2AK+R7AF0Cikp6dr586d+vLLL80uBQDQyBBsAd8j2AJoFNLS0hQSEsJyZABAgwsJCSHYAj5GsAXQKLRo0UJjxoxhOTIAoMHRsQV8j2ALoNGw2WzKysriwwUAoEERbAHfI9gCaDTS09N14cIFrVmzxuxSAACNCMEW8D2CLYBGY+TIkWrVqhXLkQEADYpgC/gewRZAoxESEqIJEyYwQAoA0KAItoDvEWwBNCrp6elav369Tp8+bXYpAIBGgmAL+B7BFkCjMnHiRHk8Hn366admlwIAaCQItoDvEWwBNCqdOnXS4MGD2WcLAGgwBFvA9wi2ABqd9PR0LV26VB6Px+xSAACNAMEW8D2CLYBGx2az6dixY9q2bZvZpQAAGgGCLeB7BFsAjU5SUpKaNWvGcmQAQIMIDQ1VZWWl2WUAQY1gC6DRadKkiVJSUjj2BwDQIOjYAr5HsAXQKKWnp2v16tUqLCw0uxQAQJAj2AK+R7AF0CjZbDaVlZVp+fLlZpcCAAhyBFvA9wi2ABql2NhY9ejRg322AACfI9gCvkewBdAoWSwWpaens88WAOBzBFvA9wi2ABotm82m3bt3a9++fWaXAgAIYgRbwPcItgAardTUVIWGhtK1BQD4VEhICMEW8DGCLYBGKyYmRoZhEGwBAD5FxxbwPYItgEbNZrMpOztbZWVlZpcCAAhSBFvA9wi2ABo1m80mp9Op/Px8s0sBAAQpgi3gewRbAI3a8OHD1bZtW5YjAwB8JjQ0VG63W2632+xSgKBFsAXQqFmtVk2cOJFgCwDwmdDQUElSZWWlyZUAwYtgC6DRs9ls2rhxo06ePGl2KQCAIFQVbFmODPgOwRZAozdx4kRJ0tKlS02uBAAQjAi2gO8RbAE0eu3bt9fw4cNZjgwA8AmWIgO+R7AFAF1ajrx06VIGewAA6h0dW8D3CLYAoEvB9uTJk9q8ebPZpQAAggzBFvA9gi0ASDIMQ1FRUSxHBgDUO4It4HsEWwCQFB4ertTUVIItAKDeEWwB3yPYAsD/Y7PZlJubq4sXL5pdCgAgiBBsAd8j2ALA/2Oz2VRRUaGcnByzSwEABBGCLeB7BFsA+H969+6tPn36sBwZAFCvCLaA7xFsAeArbDabFi9eLI/HY3YpAIAgQbAFfI9gCwBfYbPZtH//fu3Zs8fsUgAAQYJgC/gewRYAvmL8+PEKCwtjOTIAoN6EhIRIItgCvkSwBYCviIqKUlJSEsEWAFBv6NgCvkewBYCvsdlsys7OVmlpqdmlAACCAMEW8D2CLQB8TXp6uoqKipSbm2t2KQCAIECwBXyPYAsAXzNkyBB16NCB5cgAgHpBsAV8j2ALAF9jsVg0ceJELV682OxSAABBgGAL+B7BFgCuwGazaevWrfr/27v3ICvLO8Hjv9PnNJeGxgYEBhE0hEbFUbmogEAEFc5xYm2sqFW7ZrJZN9nMWlpumVSSqcymLGs3O5qapJwKmVSyVXE2m9pJsprJGlflongBRcPNG2rTXgMEoiDSTQNNd5/9w6V3ERr69p633+bz+cfiPQ+vv+YvvjzPed8//vGPaY8CQMYdDdv29vaUJ4HBS9gCnMDSpUsjl8vFypUr0x4FgIyzYwvJE7YAJzBu3LiYM2eO79kC0GfCFpInbAG6UCwWY+XKlY6OAdAnwhaSJ2wBulAqlWLPnj2xadOmtEcBIMOELSRP2AJ0Ye7cuTFq1CjHkQHok3w+HxHCFpIkbAG6UF1dHVdffbXX/gDQJ7lcLvL5vLCFBAlbgJMoFouxfv36+Oijj9IeBYAMKxQKwhYSJGwBTqJYLEZ7e3s8/vjjaY8CQIYJW0iWsAU4iXPPPTfOO+88x5EB6BNhC8kStgCnUCwWY8WKFVEul9MeBYCMEraQLGELcAqlUinee++9eOONN9IeBYCMEraQLGELcApXXnllDB061Gt/AOg1T0WGZAlbgFOoqamJRYsW+Z4tAL1mxxaSJWwBuqFUKsVTTz0Vhw4dSnsUADJI2EKyhC1ANxSLxTh48GA888wzaY8CQAYVCoVob29PewwYtIQtQDdceOGFMWnSJMeRAegVO7aQLGEL0A25XC6WLVvmAVIA9IqwhWQJW4BuKpVK8eqrr8b27dvTHgWAjBG2kCxhC9BN11xzTVRVVdm1BaDHhC0kS9gCdNOYMWPisssuE7YA9JiwhWQJW4AeKJVKsXr1ak+2BKBHhC0kS9gC9ECxWIwPP/wwfv/736c9CgAZUigU4siRI2mPAYOWsAXogcsuuyzq6uq89geAHvEeW0iWsAXogUKhEEuXLvU9WwB6xFFkSJawBeihYrEYL7zwQuzduzftUQDICGELyRK2AD1ULBajo6MjVq9enfYoAGSEsIVkCVuAHjr77LNjxowZjiMD0G3CFpIlbAF6oVQqxYoVK6JcLqc9CgAZIGwhWcIWoBeKxWLs2LEjtm7dmvYoAGRAPp8XtpAgYQvQC4sWLYphw4Z57Q8A3WLHFpIlbAF6Yfjw4bF48WLfswWgW4QtJEvYAvRSsViMp59+OlpaWtIeBYABrlAoRHt7e9pjwKAlbAF6qVgsxuHDh+Opp55KexQABjg7tpAsYQvQS+eff35MmTLFcWQATknYQrKELUAv5XK5KBaLwhaAUxK2kCxhC9AHxWIxXn/99Xj33XfTHgWAAUzYQrKELUAfXH311ZHP5+3aAnBSwhaSJWwB+qCuri7mzZsnbAE4KWELyRK2AH1ULBZj9erVceTIkbRHAWCAEraQLGEL0EfFYjH2798fzz//fNqjADBACVtIlrAF6KM5c+bE2LFjHUcGoEvCFpIlbAH6KJ/Px9KlS4UtAF0StpAsYQvQD4rFYmzYsCE++OCDtEcBYAAStpAsYQvQD4rFYpTL5Vi1alXaowAwAAlbSJawBegHEydOjIsvvthxZABOqFAoREdHR3R0dKQ9CgxKwhagnxSLxVixYkWUy+W0RwFggCkUChER0d7envIkMDgJW4B+UiwWY9euXfHSSy+lPQoAA0w+n4+IcBwZEiJsAfrJwoULo6amxnFkAI5zdMdW2EIyhC1APxk6dGgsWbJE2AJwHGELyRK2AP2oWCzGM888E83NzWmPAsAA4ju2kCxhC9CPSqVSHDlyJJ588sm0RwFgALFjC8kStgD9aNq0afGpT33KcWQAjiFsIVnCFqAf5XK5KBaL8dhjj6U9CgADiLCFZAlbgH5WKpWisbEx3nrrrbRHAWCAELaQLGEL0M+WLFkShULBcWQAOglbSJawBehno0aNiiuuuMJxZAA6CVtIlrAFSECxWIwnnngiWltb0x4FgAFA2EKyhC1AAkqlUjQ3N8dzzz2X9igADADCFpIlbAESMHPmzBg3bpzv2QIQEcIWkiZsARJQVVUVy5Yt8z1bACJC2ELShC1AQkqlUmzevDl2796d9igApEzYQrKELUBCli1bFhERq1atSnkSANImbCFZwhYgIePHj49Zs2Y5jgyAsIWECVuABJVKpVi5cmV0dHSkPQoAKRK2kCxhC5CgYrEY77//fmzZsiXtUQBIUT6fjwhhC0kRtgAJmj9/fowcOdJxZIDTnB1bSJawBUjQkCFD4qqrrvI+W4DTnLCFZAlbgISVSqV49tlnY//+/WmPAkBKjoZte3t7ypPA4CRsARJWLBajra0t1qxZk/YoAKTEji0kS9gCJGzq1Kkxbdo037MFOI15eBQkS9gCVECpVIoVK1ZEuVxOexQAUpDL5SKfzwtbSIiwBaiAYrEYb7/9djQ2Nka5XI5du3aJXIDTTKFQELaQEGELUAEXXnhh5PP5+MIXvhDjx4+PiRMnxubNm9MeC4AKEraQHGELkKBXXnklZs2aFZ/+9Kejvb09NmzYEB988EFEREyYMCHl6QCoJGELyRG2AAk6fPhwvPzyy53Hjo/+d8yYMXHWWWelORoAFSZsITnCFiBBc+bMiZ///OcnvJ7L5VKYCIC0CFtIjrAFSNjNN98cP/jBDzp/XVVVFZdeemmKEwGQBmELyRG2ABVw5513xje+8Y2IiOjo6IjZs2enPBEAlSZsITnCFqBC7r333li0aFFERFx88cUpTwNApQlbSE4h7QEAThe5XC4ef/zxWLFiRUyfPj3tcQCoMGELybFjC1BB1dXVcd1116U9BgApELaQHGELAAAVIGwhOcIWAAAqIJ/PC1tIiLAFAIAKsGMLyRG2AABQAcIWkiNsAQCgAgqFQrS3t6c9BgxKwhYAACrAji0kR9gCAEAFCFtIjrAFAIAKELaQHGELAAAVIGwhOcIWAAAqQNhCcoQtAABUgLCF5BTSHgBgINu2bVs0NTWlPcaAU1tbG/X19WmPAZApwhaSI2wBurBt27aYPn162mMMWA0NDeIWoAeELSRH2AJ04ehO7V/+5C9jwvQJKU8zcOxu2B2/+Ktf2MkG6CFhC8kRtgCnMGH6hJh8yeS0xwAg44QtJMfDowAAoAKELSRH2AIAQAUIW0iOsAUAgAoQtpAcYQsAABUgbCE5whYAACogn88LW0iIsAUAgAqwYwvJEbYAAFABwhaSI2wBAKACCoVCtLe3pz0GDErCFgAAKsCOLSRH2AIAQAUIW0iOsAUAgAoQtpAcYQsAABUgbCE5whYAACpA2EJyhC0AAFRAoVCIjo6O6OjoSHsUGHSELQAAVEChUIiI8MofSICwBQCACjgato4jQ/8TtgAAUAHCFpIjbAEAoAKELSRH2AIAQAUIW0iOsAUAgAoQtpAcYQsAABUgbCE5whYAACpA2EJyhC0AAFRAPp+PCGELSSikPQBA1j3/P56Pf7r9nyIi4o5H7oip86Ye83m5XI67L7o79u3cFzOWzYiv/vKr3b73vp374rd/89t4fc3rUe4oR/2i+rj+u9fHmeeeedza9f99fTyx/InY+97eqJtUF5/56mfiM1/9zDFrdm/bHc/e/2y8u/Hd2P7S9mg73Bbf2fKdGDtlbC9+cgB6wo4tJMeOLUA/qR5WHRsf2Hjc9cZ1jbFv574oDO3ZvyUebj4cP/rcj6Lx2cZY+rWlce1fXxvbX9oey69bHgf2Hjhm7bp/XBe//A+/jInnT4wb7rkhzr3s3PjNX/8mVv/96mPWvfP7d+Lpnz4dh5sPx4TpE3r+QwLQa0fDtr29PeVJYPCxYwvQTy645oLY8r+2xOfv+XzkC/nO65se2BSTZ06O5j3NPbrf2p+tjffffD++tvprMWX2lM7/x70L7o01P1oT133nuoiIaD3YGo/850dixrIZcct/uyUiIuZ/aX6UO8qx8u9WxhVfuiJq6moiIuLPr/3z+Nu3/zaG1Q6LJ374ROx4eUd//OgAdIMdW0iOHVuAfjL7htnRsrcl3ljzRue1tta2ePGhF2P2DbN7fL8XH3oxpsye0hm1ERETpk+I+s/Ux5bfbum81ri2MQ7sPRALv7zwmN+/8MsLo/VAa2xdubXz2ojRI2JY7bAezwJA3wlbSI6wBegnY6aMiXMvOzc2/WZT57XXVr8WB/cfjNmf71nYdnR0xM5Xd8bkmZOP++yc2efEB29/EIeaDkVExPaXtkdEHLd28szJkavKdX4OQLqELSRH2AL0o9k3zo6X//fL0XqwNSIiNv7PjTFtwbQ4Y+IZPbpPy4ct0Xa4LUZNGHXcZ6P+7ONrH+36KCIi9u/eH1X5qqgdV3vMusKQQowYM6JzHQDpEraQHGEL0I9mXT8rjhw6EltXbI1DTYfi1ZWv9uoY8pGDRyIiTvjAqaPXjhw60rk2PyR/3Lqja4+uAyBdwhaS4+FRAP1o5JkjY/qV02Pjgxuj9WBrdLR3xCWfu6TH96keXh0REW2Hj//Lz9Fr1cOqO9e2t574CZtth9s61wGQLmELybFjC9DP5tw4J15b/Vqsu39dXHDNBVFzRk2P71EzuiYKQwuxf/f+4z7bv+vja2f82cfHm0dNGBUd7R3R9H7TMevaWtviwN4DnesASJewheQIW4B+dvFnL45cVS7e3fBuzLlhTq/uUVVVFRNnTIw/bPnDcZ+9u/HdGHvu2M6nG0+6aFJExHFr/7D5D1HuKHd+DkC6hC0kR9gC9LOhI4fGTX93U5S+VYoLSxf2+j6X/ItL4r1N78V7m9/rvLZ72+7Y9sy2mPm5mZ3X6hfVR83omlj3s3XH/P5196+LITVDYsayGb2eAYD+I2whOb5jC5CAy//V5X2+x8J/uzDW/3x9/PRf/jSuuu2qqKquiif/4cmoHV8bS25b0rluyPAh8Rff/ot44BsPxP3/5v44/6rz4631b8WGX2+Iz/7Hz8aI0SM61x7cfzCe+ekzERHx1vNvRUTE2v+6NoafMTyGnzE8Fv27RX2eG4ATE7aQHGELMEANqx0Wtz90e/zz3/xzrPz+yiiXyzFtwbS4/rvXx8gzRx6zduGXF0a+kI81/7AmXnnslRg9aXRc/93r48p/f+Ux61r2tcQj/+WRY66t+dGaiIgYPXm0sAVIkLCF5AhbgD6ae/PcmHvz3FOuu+vFu3p877pJdXHLP97SrbXzvzQ/5n9p/knXjJ0yNu7be1+P5wCg74QtJMd3bAEAoAKELSTHji1AhR348ECX752NiKjKVx131BiA7Kuq+nhPSdhC/xO2ABX2s3/9s3hz3Ztdfj568uheHVsGYGDL5XJRKBSELSRA2AJU2PX/6fpo2dfS5efVw6orOA0AlZTP54UtJEDYAlTY5JmT0x4BgJTYsYVkeHgUAABUSKFQiPb2rp+zAPSOsAUAgAqxYwvJELYAAFAhwhaSIWwBAKBChC0kw8OjAAAgQeVyOVpaWqKtrS1yuVzs27cvduzYEdXV1TF+/Pi0x4NBwY4tAAAk6Hvf+16MHDky6urqYvv27XHffffF2WefHRMmTIgtW7akPR4MCsIWAAASdNFFF53w+tixY+O8886r8DQwOAlbAABI0LXXXhtz586NfD7feS2Xy8U3v/nNGD58eIqTweAhbAEAIEG5XC7uueeeY95fW1tbG7feemuKU8HgImwBACBhixcvjiVLlkTEx6F75513Rm1tbcpTweAhbAEAoALuueeeiIioqqqKO+64I+VpYHDxuh8AAKiAyy+/PObNmxf19fUxZsyYtMeBQUXYAgBAhTz33HNpjwCDkqPIAAAAZJqwBQAAINOELQAAAJkmbAEAAMg0YQsAAECmCVsAAAAyTdgCAACQacIWAACATBO2AAAAZJqwBQAAINMKaQ8AMNDtbtid9ggDij8PAGCgEbYAXaitrY2IiF/81S9SnmRgOvrnAwCQNmEL0IX6+vpoaGiIpqamtEcZcGpra6O+vj7tMQAAIkLYApyUeAMYPLZt2+YfKz/BP1QyWAhbAAAGvW3btsX06dPTHmNAamhoELdknrAFAGDQO7pTe/vtt8ekSZNSnmZg2LFjRyxfvtwuNoOCsAUA4LQxadKkmDp1atpjAP3Me2wBAADINGELAABApglbAAAAMk3YAgAAkGnCFgAAgEwTtgAAAGSasAUAACDThC0AAACZJmwBAADINGELAABApglbAAAAMk3YAgAAkGnCFgAAgEwTtgAAAGSasAUAACDThC0AAACZJmwBAADINGELAABApglbAAAAMk3YAgAAkGnCFgAAgEwTtgAAAGSasAUAACDThC0AAACZVkh7AAAAGCiefPLJ+PGPfxwREXfffXecf/75x3xeLpfjtttuiz179sTs2bPjW9/6Vrfuu3Pnzli1alU0NjbG22+/HUeOHIkf/vCHMX78+OPWPvvss7Fx48ZobGyMXbt2xYwZM+Kuu+46bt2hQ4fioYceisbGxmhsbIwDBw7ErbfeGosXL+75Dw4ZZ8cWAAA+obq6OtauXXvc9a1bt8aePXuiurq6R/draGiIRx99NA4ePBiTJk066dpVq1bFhg0bYuzYsTFixIgu1+3fvz8efPDB2LFjR5xzzjk9mgcGGzu2AADwCbNmzYr169fHLbfcEvl8vvP6unXrYurUqdHU1NSj+1166aVx//33x/Dhw+N3v/tdvPPOO12uve2222LMmDFRVVUVX//617tcN3r06PjJT34SdXV18eabb8a3v/3tHs0Eg4kdWwAA+IQFCxZEc3NzvPTSS53X2traYv369bFgwYIe32/kyJExfPjwbq0988wzo6rq1H9Nr66ujrq6uh7PAoORsAUAgE8YN25c1NfXx7p16zqvbd68OVpaWuKKK65IcTLgRIQtAACcwMKFC2PDhg3R2toaERFr166NGTNmxJgxY1KeDPgkYQsAACcwf/78aG1tjY0bN8bBgwdj06ZNvTqGDCTPw6MAAOAERo0aFRdddFGsW7cuWltbo6OjI+bNm5f2WMAJ2LEFAIAuLFiwILZs2RKrVq2KmTNnnvT1O0B6hC0AAHTh8ssvj1wuF9u2bYuFCxemPQ7QBUeRAQCgC8OGDYuvfOUr8ac//SnmzJmT9jhAF4QtAACcxJVXXtnne7S0tMSjjz4aERENDQ0REbFixYqoqamJESNGRKlU6ly7devWeO211yIioqmpKQ4fPhwPPvhgRERccMEFMWPGjM61jz32WBw4cCA+/PDDiIjYuHFj7NmzJyIirr322qipqenz7JAFwhYAABLW3Nwcv/71r4+59vDDD0fEx+/M/f/D9tVXX40HHnjgmLVHf++NN954TNg+/PDD8f7773f++oUXXogXXnghIiIWLVokbDltCFsAAPi/Fi9eHIsXLz7luuXLl/fovuPHj49f/epX3Vp70003xU033dSttT2dAwYrD48CAAAg0+zYAgBALzU3N0dbW1uXn1dVVcWoUaMqOBGcnoQtAAD00ve///3YunVrl5+PGzfOcWGoAGELAAC99MUvfjGam5u7/HzIkCEVnAZOX8IWAAB6aerUqWmPAISHRwEAAJBxwhYAAIBME7YAAABkmrAFAAAg04QtAAAAmSZsAQAAyDRhCwAAQKYJWwAAADJN2AIAAJBpwhYAAIBME7YAAABkmrAFAAAg04QtAAAAmSZsAQAAyDRhCwAAQKYJWwAAADJN2AIAAJBpwhYAAIBME7YAAABkmrAFAAAg04QtAAAAmSZsAQAAyDRhCwAAQKYV0h4AAAAqZceOHWmPMGD4s2AwEbYAAAx6tbW1ERGxfPnylCcZeI7+2UCWCVsAAAa9+vr6aGhoiKamprRHGVBqa2ujvr4+7TGgz4QtAACnBQEHg5eHRwEAAJBpwhYAAIBME7YAAABkmrAFAAAg04QtAAAAmSZsAQAAyDRhCwAAQKYJWwAAADJN2AIAAJBpwhYAAIBME7YAAABkmrAFAAAg04QtAAAAmSZsAQAAyDRhCwAAQKYJWwAAADJN2AIAAJBpwhYAAIBME7YAAABkmrAFAAAg04QtAAAAmSZsAQAAyDRhCwAAQKYJWwAAADJN2AIAAJBpwhYAAIBME7YAAABkmrAFAAAg04QtAAAAmSZsAQAAyDRhCwAAQKYJWwAAADJN2AIAAJBpwhYAAIBME7YAAABkmrAFAAAg04QtAAAAmSZsAQAAyDRhCwAAQKYJWwAAADJN2AIAAJBphe4sKpfLERGxf//+RIcBAACAiP/Xn0d79GS6FbZNTU0RETF58uQ+jAUAAAA909TUFGecccZJ1+TK3cjfjo6O2LlzZ9TW1kYul+u3AQEAAOBEyuVyNDU1xVlnnRVVVSf/Fm23whYAAAAGKg+PAgAAINOELQAAAJkmbAEAAMg0YQsAAECmCVsAAAAyTdgCAACQacIWAACATPs/gHj8YSvKbFIAAAAASUVORK5CYII=", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], + "outputs": [], "source": [ "petab_select.plot.graph_history(\n", " models=models,\n", @@ -350,21 +172,10 @@ }, { "cell_type": "code", - "execution_count": 7, + "execution_count": null, "id": "bce41584", "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjIAAAGwCAYAAACzXI8XAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAo3ElEQVR4nO3dfXRU9Z3H8c9AyPA4gfCQhyVBCghEDK0okKosDykBWRZKzuID2vCwKDRAIS7SbHmobm0Qd5XqiaF1IegpMcIWaHUVFlMIy0NYjE1BYbPAQYmFCV1oEghkEsndP3IcHSEwgUzu/bHv1zn3HO7v3vnN934PjB/vvXPHZVmWJQAAAAO1srsAAACAm0WQAQAAxiLIAAAAYxFkAACAsQgyAADAWAQZAABgLIIMAAAwVpjdBYRafX29Tp8+rU6dOsnlctldDgAACIJlWbpw4YJiY2PVqlXj511u+yBz+vRpxcXF2V0GAAC4CWVlZerZs2ej22/7INOpUydJDY3weDw2VwMAAIJRVVWluLg4/3/HG+OYILNy5UplZmbqRz/6kVavXi1Jqqmp0dNPP638/Hz5fD6lpKTotddeU1RUVNDzfnk5yePxEGQAADDMjW4LccTNvgcPHtQvf/lLJSYmBowvWrRI77zzjjZt2qTCwkKdPn1aU6ZMsalKAADgNLYHmYsXL2ratGl6/fXX1aVLF/94ZWWl1q5dq5deekmjR4/WkCFDlJubq3379qmoqMjGigEAgFPYHmTS09M1YcIEJScnB4wXFxerrq4uYHzAgAGKj4/X/v37G53P5/OpqqoqYAEAALcnW++Ryc/P10cffaSDBw9etc3r9So8PFydO3cOGI+KipLX6210zqysLD377LPNXSoAAHAg287IlJWV6Uc/+pE2bNigtm3bNtu8mZmZqqys9C9lZWXNNjcAAHAW24JMcXGxzp49q3vuuUdhYWEKCwtTYWGhXnnlFYWFhSkqKkq1tbWqqKgIeF15ebmio6Mbndftdvu/ocQ3lQAAuL3ZdmlpzJgxOnz4cMDYjBkzNGDAAC1ZskRxcXFq06aNCgoKlJqaKkkqLS3VqVOnlJSUZEfJAADAYWwLMp06ddKgQYMCxjp06KCuXbv6x2fNmqWMjAxFRkbK4/Fo/vz5SkpK0vDhw+0oGQAAOIxjHoh3LS+//LJatWql1NTUgAfiAQAASJLLsizL7iJCqaqqShEREaqsrOR+GQAADBHsf79tf44MAADAzSLIAAAAYxFkAACAsQgyAADAWAQZAABgLEd//drpNm7caHcJzW7q1Kl2lwAAQNA4IwMAAIxFkAEAAMYiyAAAAGMRZAAAgLEIMgAAwFgEGQAAYCyCDAAAMBZBBgAAGIsgAwAAjEWQAQAAxiLIAAAAYxFkAACAsQgyAADAWAQZAABgLIIMAAAwFkEGAAAYiyADAACMFWZ3AQAA/H+xceNGu0todlOnTrX1/TkjAwAAjEWQAQAAxiLIAAAAYxFkAACAsQgyAADAWAQZAABgLIIMAAAwFkEGAAAYiyADAACMRZABAADGIsgAAABj2RpkcnJylJiYKI/HI4/Ho6SkJL3//vv+7SNHjpTL5QpY5syZY2PFAADASWz90ciePXtq5cqV6tevnyzL0htvvKFJkybpD3/4g+666y5J0uzZs/Xcc8/5X9O+fXu7ygUAAA5ja5CZOHFiwPrzzz+vnJwcFRUV+YNM+/btFR0dHfScPp9PPp/Pv15VVdU8xQIAAMdxzD0yV65cUX5+vqqrq5WUlOQf37Bhg7p166ZBgwYpMzNTly5duu48WVlZioiI8C9xcXGhLh0AANjE1jMyknT48GElJSWppqZGHTt21JYtW5SQkCBJeuyxx9SrVy/Fxsbq0KFDWrJkiUpLS7V58+ZG58vMzFRGRoZ/vaqqijADAMBtyvYg079/f5WUlKiyslL/9m//prS0NBUWFiohIUFPPvmkf7+7775bMTExGjNmjE6cOKE+ffpccz632y23291S5QMAABvZfmkpPDxcffv21ZAhQ5SVlaXBgwfrF7/4xTX3HTZsmCTp+PHjLVkiAABwKNuDzDfV19cH3Kz7dSUlJZKkmJiYFqwIAAA4la2XljIzMzV+/HjFx8frwoULysvL065du7R9+3adOHFCeXl5euihh9S1a1cdOnRIixYt0ogRI5SYmGhn2QAAwCFsDTJnz57VD37wA505c0YRERFKTEzU9u3b9b3vfU9lZWX64IMPtHr1alVXVysuLk6pqalaunSpnSUDAAAHsTXIrF27ttFtcXFxKiwsbMFqAACAaRx3jwwAAECwCDIAAMBYBBkAAGAsggwAADAWQQYAABiLIAMAAIxFkAEAAMYiyAAAAGMRZAAAgLEIMgAAwFgEGQAAYCyCDAAAMBZBBgAAGIsgAwAAjEWQAQAAxiLIAAAAYxFkAACAsQgyAADAWAQZAABgLIIMAAAwFkEGAAAYiyADAACMRZABAADGIsgAAABjEWQAAICxCDIAAMBYBBkAAGAsggwAADAWQQYAABiLIAMAAIxFkAEAAMYiyAAAAGMRZAAAgLEIMgAAwFi2BpmcnBwlJibK4/HI4/EoKSlJ77//vn97TU2N0tPT1bVrV3Xs2FGpqakqLy+3sWIAAOAktgaZnj17auXKlSouLtaHH36o0aNHa9KkSfrkk08kSYsWLdI777yjTZs2qbCwUKdPn9aUKVPsLBkAADhImJ1vPnHixID1559/Xjk5OSoqKlLPnj21du1a5eXlafTo0ZKk3NxcDRw4UEVFRRo+fLgdJQMAAAdxzD0yV65cUX5+vqqrq5WUlKTi4mLV1dUpOTnZv8+AAQMUHx+v/fv3NzqPz+dTVVVVwAIAAG5PtgeZw4cPq2PHjnK73ZozZ462bNmihIQEeb1ehYeHq3PnzgH7R0VFyev1NjpfVlaWIiIi/EtcXFyIjwAAANjF9iDTv39/lZSU6MCBA5o7d67S0tJ05MiRm54vMzNTlZWV/qWsrKwZqwUAAE5i6z0ykhQeHq6+fftKkoYMGaKDBw/qF7/4hR5++GHV1taqoqIi4KxMeXm5oqOjG53P7XbL7XaHumwAAOAAtp+R+ab6+nr5fD4NGTJEbdq0UUFBgX9baWmpTp06paSkJBsrBAAATmHrGZnMzEyNHz9e8fHxunDhgvLy8rRr1y5t375dERERmjVrljIyMhQZGSmPx6P58+crKSmJbywBAABJNgeZs2fP6gc/+IHOnDmjiIgIJSYmavv27fre974nSXr55ZfVqlUrpaamyufzKSUlRa+99pqdJQMAAAexNcisXbv2utvbtm2r7OxsZWdnt1BFAADAJI67RwYAACBYBBkAAGAsggwAADAWQQYAABiLIAMAAIxFkAEAAMYiyAAAAGMRZAAAgLEIMgAAwFgEGQAAYCyCDAAAMBZBBgAAGIsgAwAAjEWQAQAAxiLIAAAAYxFkAACAsQgyAADAWAQZAABgLIIMAAAwFkEGAAAYiyADAACMRZABAADGIsgAAABjEWQAAICxCDIAAMBYBBkAAGAsggwAADAWQQYAABiLIAMAAIxFkAEAAMYiyAAAAGMRZAAAgLEIMgAAwFgEGQAAYCyCDAAAMJatQSYrK0v33XefOnXqpB49emjy5MkqLS0N2GfkyJFyuVwBy5w5c2yqGAAAOImtQaawsFDp6ekqKirSjh07VFdXp7Fjx6q6ujpgv9mzZ+vMmTP+ZdWqVTZVDAAAnCTMzjfftm1bwPr69evVo0cPFRcXa8SIEf7x9u3bKzo6Oqg5fT6ffD6ff72qqqp5igUAAI7jqHtkKisrJUmRkZEB4xs2bFC3bt00aNAgZWZm6tKlS43OkZWVpYiICP8SFxcX0poBAIB9bD0j83X19fVauHCh7r//fg0aNMg//thjj6lXr16KjY3VoUOHtGTJEpWWlmrz5s3XnCczM1MZGRn+9aqqKsIMAAC3KccEmfT0dH388cfas2dPwPiTTz7p//Pdd9+tmJgYjRkzRidOnFCfPn2umsftdsvtdoe8XgAAYD9HXFqaN2+e3n33Xe3cuVM9e/a87r7Dhg2TJB0/frwlSgMAAA5m6xkZy7I0f/58bdmyRbt27VLv3r1v+JqSkhJJUkxMTIirAwAATmdrkElPT1deXp5++9vfqlOnTvJ6vZKkiIgItWvXTidOnFBeXp4eeughde3aVYcOHdKiRYs0YsQIJSYm2lk6AABwAFuDTE5OjqSGh959XW5urqZPn67w8HB98MEHWr16taqrqxUXF6fU1FQtXbrUhmoBAIDT2H5p6Xri4uJUWFjYQtUAAADTOOJmXwAAgJtBkAEAAMYiyAAAAGMRZAAAgLEIMgAAwFgEGQAAYCyCDAAAMBZBBgAAGIsgAwAAjEWQAQAAxiLIAAAAYxFkAACAsQgyAADAWAQZAABgLIIMAAAwFkEGAAAYiyADAACMRZABAADGanKQycrK0rp1664aX7dunV544YVmKQoAACAYTQ4yv/zlLzVgwICrxu+66y6tWbOmWYoCAAAIRpODjNfrVUxMzFXj3bt315kzZ5qlKAAAgGA0OcjExcVp7969V43v3btXsbGxzVIUAABAMMKa+oLZs2dr4cKFqqur0+jRoyVJBQUFeuaZZ/T00083e4EAAACNaXKQWbx4sc6dO6cf/vCHqq2tlSS1bdtWS5Ys0Y9//ONmLxAAAKAxTQ4yLpdLL7zwgpYtW6ajR4+qXbt26tevn9xudyjqAwAAaFTQ98j8/ve/V0JCgqqqqiRJHTt21H333adBgwappqZGd911l/7zP/8zZIUCAAB8U9BBZvXq1Zo9e7Y8Hs9V2yIiIvTUU0/ppZdeatbiAAAArifoIPPHP/5R48aNa3T72LFjVVxc3CxFAQAABCPoIFNeXq42bdo0uj0sLEx//vOfm6UoAACAYAQdZP7qr/5KH3/8caPbDx06dM0H5QEAAIRK0EHmoYce0rJly1RTU3PVtsuXL2vFihX6m7/5m2YtDgAA4HqC/vr10qVLtXnzZt15552aN2+e+vfvL0n67//+b2VnZ+vKlSv6yU9+ErJCAQAAvinoIBMVFaV9+/Zp7ty5yszMlGVZkhqeK5OSkqLs7GxFRUWFrFAAAIBvatID8Xr16qX33ntPf/nLX3T8+HFZlqV+/fqpS5cuoaoPAACgUU3+0UhJ6tKli+677z4NHTr0lkJMVlaW7rvvPnXq1Ek9evTQ5MmTVVpaGrBPTU2N0tPT1bVrV3Xs2FGpqakqLy+/6fcEAAC3j5sKMs2lsLBQ6enpKioq0o4dO1RXV6exY8equrrav8+iRYv0zjvvaNOmTSosLNTp06c1ZcoUG6sGAABOEfSlpWDDw+bNm4N+823btgWsr1+/Xj169FBxcbFGjBihyspKrV27Vnl5ef5f2s7NzdXAgQNVVFSk4cOHB/1eAADg9hN0kImIiAhlHZKkyspKSVJkZKQkqbi4WHV1dUpOTvbvM2DAAMXHx2v//v3XDDI+n08+n8+//uVvQwEAgNtP0EEmNzf3hvtc74F5N1JfX6+FCxfq/vvv16BBgyRJXq9X4eHh6ty5c8C+UVFR8nq915wnKytLzz777E3XAQAAzHHL98hcuHBBv/rVrzRs2DANHjz4pudJT0/Xxx9/rPz8/FuqJzMzU5WVlf6lrKzsluYDAADOddNBZvfu3UpLS1NMTIz++Z//WaNGjVJRUdFNzTVv3jy9++672rlzp3r27Okfj46OVm1trSoqKgL2Ly8vV3R09DXncrvd8ng8AQsAALg9Nek5Ml6vV+vXr9fatWtVVVWlqVOnyufzaevWrUpISGjym1uWpfnz52vLli3atWuXevfuHbB9yJAhatOmjQoKCpSamipJKi0t1alTp5SUlNTk9wMAALeXoM/ITJw4Uf3799ehQ4e0evVqnT59Wq+++uotvXl6erp+/etfKy8vT506dZLX65XX69Xly5clNdxgPGvWLGVkZGjnzp0qLi7WjBkzlJSUxDeWAABA8Gdk3n//fS1YsEBz585Vv379muXNc3JyJEkjR44MGM/NzdX06dMlSS+//LJatWql1NRU+Xw+paSk6LXXXmuW9wcAAGYLOsjs2bNHa9eu1ZAhQzRw4EA98cQTeuSRR27pzb/8vabradu2rbKzs5WdnX1L7wUAAG4/QV9aGj58uF5//XWdOXNGTz31lPLz8xUbG6v6+nrt2LFDFy5cCGWdAAAAV2nyt5Y6dOigmTNnas+ePTp8+LCefvpprVy5Uj169NDf/u3fhqJGAACAa7ql58j0799fq1at0ueff678/PyA30gCAAAItSZ9/fpaLly4oLfeekv/+q//quLi4uaoCQAAICjN8kC8n/zkJ4qLi2vOugAAAG6oSUHG6/Vq5cqV6tevnx566CF98cUX2rhxo86cOcPvGwEAgBYX9KWliRMnqqCgQKNGjdJPf/pTTZ48WR06dPBvd7lcISkQAACgMUEHmX//93/XY489poULF+ree+8NZU0AAABBCfrS0r59+9SuXTuNHj1a/fv313PPPacTJ06EsjYAAIDruqkH4i1ZskT/8R//oTvvvFPDhw/Xq6++qvLy8lDWCQAAcJVbeiDekSNHNGLECP385z9XcnJyKOoDAABoVLM9EG/z5s2aMGFCc9UFAABwQ7cUZL7UunVrTZ48Wb/73e+aYzoAAICgNEuQAQAAsANBBgAAGIsgAwAAjEWQAQAAxiLIAAAAYxFkAACAsQgyAADAWAQZAABgLIIMAAAwFkEGAAAYiyADAACMRZABAADGIsgAAABjEWQAAICxCDIAAMBYBBkAAGAsggwAADAWQQYAABiLIAMAAIxFkAEAAMYiyAAAAGMRZAAAgLFsDTK7d+/WxIkTFRsbK5fLpa1btwZsnz59ulwuV8Aybtw4e4oFAACOY2uQqa6u1uDBg5Wdnd3oPuPGjdOZM2f8y1tvvdWCFQIAACcLs/PNx48fr/Hjx193H7fbrejo6KDn9Pl88vl8/vWqqqqbrg8AADib4++R2bVrl3r06KH+/ftr7ty5Onfu3HX3z8rKUkREhH+Ji4troUoBAEBLc3SQGTdunN58800VFBTohRdeUGFhocaPH68rV640+prMzExVVlb6l7KyshasGAAAtCRbLy3dyCOPPOL/8913363ExET16dNHu3bt0pgxY675GrfbLbfb3VIlAgAAGzn6jMw3fetb31K3bt10/Phxu0sBAAAOYFSQ+fzzz3Xu3DnFxMTYXQoAAHAAWy8tXbx4MeDsysmTJ1VSUqLIyEhFRkbq2WefVWpqqqKjo3XixAk988wz6tu3r1JSUmysGgAAOIWtQebDDz/UqFGj/OsZGRmSpLS0NOXk5OjQoUN64403VFFRodjYWI0dO1b/9E//xD0wAABAks1BZuTIkbIsq9Ht27dvb8FqAACAaYy6RwYAAODrCDIAAMBYBBkAAGAsggwAADAWQQYAABiLIAMAAIxFkAEAAMYiyAAAAGMRZAAAgLEIMgAAwFgEGQAAYCyCDAAAMBZBBgAAGIsgAwAAjEWQAQAAxiLIAAAAYxFkAACAsQgyAADAWAQZAABgLIIMAAAwFkEGAAAYiyADAACMRZABAADGIsgAAABjEWQAAICxCDIAAMBYBBkAAGAsggwAADAWQQYAABiLIAMAAIxFkAEAAMYiyAAAAGMRZAAAgLEIMgAAwFi2Bpndu3dr4sSJio2Nlcvl0tatWwO2W5al5cuXKyYmRu3atVNycrKOHTtmT7EAAMBxbA0y1dXVGjx4sLKzs6+5fdWqVXrllVe0Zs0aHThwQB06dFBKSopqampauFIAAOBEYXa++fjx4zV+/PhrbrMsS6tXr9bSpUs1adIkSdKbb76pqKgobd26VY888khLlgoAABzIsffInDx5Ul6vV8nJyf6xiIgIDRs2TPv372/0dT6fT1VVVQELAAC4Pdl6RuZ6vF6vJCkqKipgPCoqyr/tWrKysvTss8+GtDYACNbGjRvtLqHZTZ061e4SAD/HnpG5WZmZmaqsrPQvZWVldpcEAABCxLFBJjo6WpJUXl4eMF5eXu7fdi1ut1sejydgAQAAtyfHBpnevXsrOjpaBQUF/rGqqiodOHBASUlJNlYGAACcwtZ7ZC5evKjjx4/710+ePKmSkhJFRkYqPj5eCxcu1M9+9jP169dPvXv31rJlyxQbG6vJkyfbVzQAAHAMW4PMhx9+qFGjRvnXMzIyJElpaWlav369nnnmGVVXV+vJJ59URUWFHnjgAW3btk1t27a1q2QAAOAgtgaZkSNHyrKsRre7XC4999xzeu6551qwKgAAYArH3iMDAABwIwQZAABgLIIMAAAwFkEGAAAYiyADAACMRZABAADGcuyPRgIAbh/8eCZChTMyAADAWAQZAABgLIIMAAAwFkEGAAAYiyADAACMRZABAADGIsgAAABjEWQAAICxCDIAAMBYBBkAAGAsggwAADAWQQYAABiLIAMAAIxFkAEAAMYiyAAAAGMRZAAAgLEIMgAAwFgEGQAAYCyCDAAAMBZBBgAAGIsgAwAAjEWQAQAAxiLIAAAAYxFkAACAsQgyAADAWAQZAABgLIIMAAAwFkEGAAAYy9FB5qc//alcLlfAMmDAALvLAgAADhFmdwE3ctddd+mDDz7wr4eFOb5kAADQQhyfCsLCwhQdHR30/j6fTz6fz79eVVUVirIAAIADOPrSkiQdO3ZMsbGx+ta3vqVp06bp1KlT190/KytLERER/iUuLq6FKgUAAC3N0UFm2LBhWr9+vbZt26acnBydPHlSDz74oC5cuNDoazIzM1VZWelfysrKWrBiAADQkhx9aWn8+PH+PycmJmrYsGHq1auXNm7cqFmzZl3zNW63W263u6VKBAAANnL0GZlv6ty5s+68804dP37c7lIAAIADGBVkLl68qBMnTigmJsbuUgAAgAM4Osj8wz/8gwoLC/Xpp59q3759+v73v6/WrVvr0Ucftbs0AADgAI6+R+bzzz/Xo48+qnPnzql79+564IEHVFRUpO7du9tdGgAAcABHB5n8/Hy7SwAAAA7m6EtLAAAA10OQAQAAxiLIAAAAYxFkAACAsQgyAADAWAQZAABgLIIMAAAwFkEGAAAYiyADAACMRZABAADGIsgAAABjEWQAAICxCDIAAMBYBBkAAGAsggwAADAWQQYAABiLIAMAAIxFkAEAAMYiyAAAAGMRZAAAgLEIMgAAwFgEGQAAYCyCDAAAMBZBBgAAGIsgAwAAjEWQAQAAxiLIAAAAYxFkAACAsQgyAADAWAQZAABgLIIMAAAwFkEGAAAYiyADAACMFWZ3Abg9bNy40e4Smt3UqVPtLgEAcANGBJns7Gy9+OKL8nq9Gjx4sF599VUNHTrU7rKAqxDoAKBlOf7S0ttvv62MjAytWLFCH330kQYPHqyUlBSdPXvW7tIAAIDNHB9kXnrpJc2ePVszZsxQQkKC1qxZo/bt22vdunV2lwYAAGzm6EtLtbW1Ki4uVmZmpn+sVatWSk5O1v79+6/5Gp/PJ5/P51+vrKyUJFVVVTV7fZcuXWr2Oe12s32iFw3oA76JvxMN6EMD+tD0eS3Luv6OloP96U9/siRZ+/btCxhfvHixNXTo0Gu+ZsWKFZYkFhYWFhYWlttgKSsru25WcPQZmZuRmZmpjIwM/3p9fb3Onz+vrl27yuVy2VjZzauqqlJcXJzKysrk8XjsLsc29OEr9KIBfWhAH75CLxrcDn2wLEsXLlxQbGzsdfdzdJDp1q2bWrdurfLy8oDx8vJyRUdHX/M1brdbbrc7YKxz586hKrFFeTweY/9CNif68BV60YA+NKAPX6EXDUzvQ0RExA33cfTNvuHh4RoyZIgKCgr8Y/X19SooKFBSUpKNlQEAACdw9BkZScrIyFBaWpruvfdeDR06VKtXr1Z1dbVmzJhhd2kAAMBmjg8yDz/8sP785z9r+fLl8nq9+va3v61t27YpKirK7tJajNvt1ooVK666ZPb/DX34Cr1oQB8a0Iev0IsG/5/64LKsG32vCQAAwJkcfY8MAADA9RBkAACAsQgyAADAWAQZAABgLIJMCEyfPl0ul0tz5sy5alt6erpcLpemT58e1FzZ2dm644471LZtWw0bNkz/9V//FbC9pqZG6enp6tq1qzp27KjU1NSrHiB46tQpTZgwQe3bt1ePHj20ePFiffHFFzd9fMFyWh8WLFigIUOGyO1269vf/vbNHlaTtWQffvWrX2nkyJHyeDxyuVyqqKi4ao7z589r2rRp8ng86ty5s2bNmqWLFy/ezKE1WXP1Yvfu3Zo4caJiY2Plcrm0devWq/axLEvLly9XTEyM2rVrp+TkZB07dixgH7t64bQ+PP/88/rud7+r9u3bt+gDRFuyD5s3b9bYsWP9T3kvKSm5ap9gPkdCwWl9COZzxEkIMiESFxen/Px8Xb582T9WU1OjvLw8xcfHBzXH22+/rYyMDK1YsUIfffSRBg8erJSUFJ09e9a/z6JFi/TOO+9o06ZNKiws1OnTpzVlyhT/9itXrmjChAmqra3Vvn379MYbb2j9+vVavnx58x3sdTilD1+aOXOmHn744Vs/sCZqqT5cunRJ48aN0z/+4z82Os+0adP0ySefaMeOHXr33Xe1e/duPfnkkzd/cE3UHL2orq7W4MGDlZ2d3eg+q1at0iuvvKI1a9bowIED6tChg1JSUlRTU+Pfx85eOKkPtbW1+ru/+zvNnTv35g/oJrVUH6qrq/XAAw/ohRdeaHSfYD9HQsFJfQjmc8RRmuPHHREoLS3NmjRpkjVo0CDr17/+tX98w4YNVmJiojVp0iQrLS3thvMMHTrUSk9P969fuXLFio2NtbKysizLsqyKigqrTZs21qZNm/z7HD161JJk7d+/37Isy3rvvfesVq1aWV6v179PTk6O5fF4LJ/Pd6uHel1O6sPXrVixwho8ePDNH1gTtVQfvm7nzp2WJOsvf/lLwPiRI0csSdbBgwf9Y++//77lcrmsP/3pT00/uCZqrl58nSRry5YtAWP19fVWdHS09eKLL/rHKioqLLfbbb311luWZdnbCyf14etyc3OtiIiIJr3vrWipPnzdyZMnLUnWH/7wh4Dxpn6ONCcn9eHrGvsccRrOyITQzJkzlZub619ft25d0E8krq2tVXFxsZKTk/1jrVq1UnJysvbv3y9JKi4uVl1dXcA+AwYMUHx8vH+f/fv36+677w54gGBKSoqqqqr0ySef3NLxBcsJfXCCUPchGPv371fnzp117733+seSk5PVqlUrHThwIOh5btWt9CIYJ0+elNfrDehXRESEhg0bFvBvw+5eOKEPThDqPgTDCZ8jTuiDiQgyIfT4449rz549+uyzz/TZZ59p7969evzxx4N67f/+7//qypUrVz3BOCoqSl6vV5Lk9XoVHh5+1TXtb+5zrTm+3NYSnNAHJwh1H4Lh9XrVo0ePgLGwsDBFRka2aK9upRfB+PJYbvT3xu5eOKEPThDqPgTDCZ8jTuiDiRz/EwUm6969uyZMmKD169fLsixNmDBB3bp1s7usFkcfGtCHr9CLBvShAX1oQB9uDkEmxGbOnKl58+ZJ0nVvwPqmbt26qXXr1lfdMV9eXq7o6GhJUnR0tGpra1VRURHwfxHf3Oeb32z5cs4v92kJdvfBKULZh2BER0cH3BwsSV988YXOnz/f4r262V4E48tjKS8vV0xMjH+8vLzc/401p/TC7j44RSj7EAynfI7Y3QcTcWkpxMaNG6fa2lrV1dUpJSUl6NeFh4dryJAhKigo8I/V19eroKBASUlJkqQhQ4aoTZs2AfuUlpbq1KlT/n2SkpJ0+PDhgA/sHTt2yOPxKCEh4VYPL2h298EpQtmHYCQlJamiokLFxcX+sd///veqr6/XsGHDgp6nOdxsL4LRu3dvRUdHB/SrqqpKBw4cCPi34YRe2N0HpwhlH4LhlM8Ru/tgIs7IhFjr1q119OhR/5+bIiMjQ2lpabr33ns1dOhQrV69WtXV1f6bvyIiIjRr1ixlZGQoMjJSHo9H8+fPV1JSkoYPHy5JGjt2rBISEvTEE09o1apV8nq9Wrp0qdLT01v0V1Ht7oMkHT9+XBcvXpTX69Xly5f9z09ISEhQeHh48xzoDYSyD1LDdX6v16vjx49Lkg4fPqxOnTopPj5ekZGRGjhwoMaNG6fZs2drzZo1qqur07x58/TII48oNja2+Q40CLfSi4sXL/qPUWq4qbWkpESRkZGKj4+Xy+XSwoUL9bOf/Uz9+vVT7969tWzZMsXGxmry5MmS5Jhe2N0HqeFZU+fPn9epU6d05coV/7+Nvn37qmPHjrd8jMEIZR8k+Y/v9OnTkhpCitRwJiY6Ojroz5FQs7sP0o0/RxzHxm9M3ba+/CpdY5ryVbpXX33Vio+Pt8LDw62hQ4daRUVFAdsvX75s/fCHP7S6dOlitW/f3vr+979vnTlzJmCfTz/91Bo/frzVrl07q1u3btbTTz9t1dXVNfWwmsxpffjrv/5rS9JVy8mTJ5t4ZE3Tkn1YsWLFNY8xNzfXv8+5c+esRx991OrYsaPl8XisGTNmWBcuXLiJI2u65urFl18L/eby9dfW19dby5Yts6Kioiy3222NGTPGKi0tDZjHrl44rQ9paWnXnGfnzp03d4BBask+5ObmXnOfFStW+PcJ5nMkFJzWh2A+R5zEZVmW1dzhCAAAoCVwjwwAADAWQcYmp06dUseOHRtdTp06ZXeJLYI+NKAPX6EXDehDA/rQgD40jktLNvniiy/06aefNrr9jjvuUFjY7X8vNn1oQB++Qi8a0IcG9KEBfWgcQQYAABiLS0sAAMBYBBkAAGAsggwAADAWQQYAABiLIAPgtrJr1y65XC5VVFQE/Zo77rhDq1evDllNAEKHIAOgRU2fPl0ul0tz5sy5alt6erpcLpemT5/e8oUBMBJBBkCLi4uLU35+vi5fvuwfq6mpUV5env/H7QAgGAQZAC3unnvuUVxcnDZv3uwf27x5s+Lj4/Wd73zHP+bz+bRgwQL16NFDbdu21QMPPKCDBw8GzPXee+/pzjvvVLt27TRq1KhrPjRsz549evDBB9WuXTvFxcVpwYIFqq6uDtnxAWg5BBkAtpg5c6Zyc3P96+vWrdOMGTMC9nnmmWf0m9/8Rm+88YY++ugj9e3bVykpKTp//rwkqaysTFOmTNHEiRNVUlKiv//7v9ePf/zjgDlOnDihcePGKTU1VYcOHdLbb7+tPXv2aN68eaE/SAAhR5ABYIvHH39ce/bs0WeffabPPvtMe/fu1eOPP+7fXl1drZycHL344osaP368EhIS9Prrr6tdu3Zau3atJCknJ0d9+vTRv/zLv6h///6aNm3aVffXZGVladq0aVq4cKH69eun7373u3rllVf05ptvqqampiUPGUAI/P/8YQYAtuvevbsmTJig9evXy7IsTZgwQd26dfNvP3HihOrq6nT//ff7x9q0aaOhQ4fq6NGjkqSjR49q2LBhAfMmJSUFrP/xj3/UoUOHtGHDBv+YZVmqr6/XyZMnNXDgwFAcHoAWQpABYJuZM2f6L/FkZ2eH5D0uXryop556SgsWLLhqGzcWA+YjyACwzbhx41RbWyuXy6WUlJSAbX369FF4eLj27t2rXr16SZLq6up08OBBLVy4UJI0cOBA/e53vwt4XVFRUcD6PffcoyNHjqhv376hOxAAtuEeGQC2ad26tY4ePaojR46odevWAds6dOiguXPnavHixdq2bZuOHDmi2bNn69KlS5o1a5Ykac6cOTp27JgWL16s0tJS5eXlaf369QHzLFmyRPv27dO8efNUUlKiY8eO6be//S03+wK3CYIMAFt5PB55PJ5rblu5cqVSU1P1xBNP6J577tHx48e1fft2denSRVLDpaHf/OY32rp1qwYPHqw1a9bo5z//ecAciYmJKiws1P/8z//owQcf1He+8x0tX75csbGxIT82AKHnsizLsrsIAACAm8EZGQAAYCyCDAAAMBZBBgAAGIsgAwAAjEWQAQAAxiLIAAAAYxFkAACAsQgyAADAWAQZAABgLIIMAAAwFkEGAAAY6/8AYlKKr5rH46wAAAAASUVORK5CYII=", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], + "outputs": [], "source": [ "petab_select.plot.bar_criterion_vs_models(\n", " models=models,\n", @@ -390,21 +201,10 @@ }, { "cell_type": "code", - "execution_count": 8, + "execution_count": null, "id": "824e2e6a", "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjIAAAGxCAYAAAB4AFyyAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAA090lEQVR4nO3de3xU9YH+8WdCkgmQzISEkJAmBAohXAOCFCKWKkQCdllQ/LVVtwKltsVA5aLSrBdAagNqKdVFpFbB7Yq4Wi62Koi0hMqtEMpNIZQUJZQkXIRMEsgkJN/fH5ZZBxIygZCZEz7vvuZV5ntuzwyh8/Scb87YjDFGAAAAFhTk7wAAAABXiyIDAAAsiyIDAAAsiyIDAAAsiyIDAAAsiyIDAAAsiyIDAAAsiyIDAAAsK9jfAa63mpoaHT9+XBEREbLZbP6OAwAAfGCMUWlpqeLj4xUUVPd5l2ZfZI4fP67ExER/xwAAAFehoKBACQkJdS4PmCIzb948ZWVl6eGHH9bChQslSRUVFZoxY4ZWrFght9utjIwMvfTSS4qNjfV5vxEREZK+fCMcDsf1iA4AABqZy+VSYmKi53O8LgFRZHbs2KElS5YoNTXVa3zatGl677339Pbbb8vpdGry5Mm6++67tXnzZp/3ffFyksPhoMgAAGAx9U0L8ftk37KyMt1///165ZVX1KZNG894SUmJXn31VS1YsEBDhw5V//79tXTpUm3ZskXbtm3zY2IAABAo/F5kMjMz9e1vf1vp6ele47m5uaqqqvIa79atmzp06KCtW7fWuT+32y2Xy+X1AAAAzZNfLy2tWLFCu3bt0o4dOy5bVlRUpNDQUEVGRnqNx8bGqqioqM59Zmdna86cOY0dFQAABCC/nZEpKCjQww8/rDfeeENhYWGNtt+srCyVlJR4HgUFBY22bwAAEFj8VmRyc3N14sQJ9evXT8HBwQoODlZOTo5eeOEFBQcHKzY2VpWVlTp79qzXdsXFxYqLi6tzv3a73TOxlwm+AAA0b367tDRs2DDt27fPa2zChAnq1q2bZs6cqcTERIWEhGjDhg0aO3asJCkvL09Hjx5VWlqaPyIDAIAA47ciExERoV69enmNtW7dWtHR0Z7xiRMnavr06YqKipLD4dCUKVOUlpamQYMG+SMyAAAIMAFxH5m6/OpXv1JQUJDGjh3rdUM8AAAASbIZY4y/Q1xPLpdLTqdTJSUlzJcBAMAifP38DugzMoGooqZCe9179Wnlpzpfc17hQeHqZe+lXvZeCrGF+DseAAA3FIpMA5TWlOrt0rdVVlMmoy9PZH1R84U2nd+kT9yf6J6IexQW1Hi/Sg4AAK7M73f2tZK15Wu9SsxXfVHzhTae29j0oQAAuIFRZHx0uvq0jl84XmuJkSQjo0NVh1ReU97EyQAAuHFRZHxUeKGw3nWMjE5Wn2yCNAAAQKLI+CzIx7fKpit/3TgAAGg8FBkfJYQk1LtOsIIVF1z31ycAAIDGRZHxkSPIoeSQ5Cuecelt7y27zd6EqQAAuLFRZBpgWOthim0RK+n/LiFd/O9OwZ00uOVgv2UDAOBGxH1kGsBus+v/Rfw//aPqHzpQeUDlNeVyBDnU095THYI7yGZjfgwAAE2JItNAQbYgdQntoi6hXfwdBQCAGx6XlgAAgGVRZAAAgGVRZAAAgGVRZAAAgGVRZAAAgGVRZAAAgGXx69cAAKDBjDH64osvVFVVpdatWysiIsIvOSgyAACgQT7//HPt27dP586d84y1bdtW/fr1U2RkZJNm4dISAADwWX5+vrZv3+5VYiTp9OnT2rBhg0pKSpo0D0UGAAD4pKqqSrt37651mTFGNTU12rNnT5NmosgAAACfHDt2TNXV1XUuN8aoqKhI58+fb7JMFBkAAOCTc+fO+fQFyRQZAAAQcOx2u4wxPq3XVCgyAADAJ4mJifWekYmOjlbr1q2bKBFFBgAA+Mhut6t79+51LrfZbOrdu3cTJuI+MgAAoAF69uwpm82mAwcOqKamxjMeFhamAQMGqF27dk2ahyIDAAB8ZrPZ1LNnT3Xt2lXHjx/33Nk3NjZWQUFNf6GHIgMAABosJCRESUlJ/o7BHBkAAGBdFBkAAGBZFBkAAGBZfi0yixcvVmpqqhwOhxwOh9LS0vTBBx94lt92222y2Wxej5/85Cd+TAwAAAKJXyf7JiQkaN68eUpOTpYxRq+//rpGjx6tv/3tb+rZs6ck6cEHH9TTTz/t2aZVq1b+igsAAAKMX4vMqFGjvJ4/88wzWrx4sbZt2+YpMq1atVJcXJw/4gEAgAAXMHNkqqurtWLFCpWXlystLc0z/sYbb6ht27bq1auXsrKydO7cOT+mBAAAgcTv95HZt2+f0tLSVFFRofDwcK1atUo9evSQJN13331KSkpSfHy89u7dq5kzZyovL08rV66sc39ut1tut9vz3OVyXffXAAAA/MNmfPkay+uosrJSR48eVUlJid555x399re/VU5OjqfMfNWf/vQnDRs2TIcPH1bnzp1r3d/s2bM1Z86cy8ZLSkrkcDgaPT8AAGh8LpdLTqez3s9vvxeZS6Wnp6tz585asmTJZcvKy8sVHh6utWvXKiMjo9btazsjk5iYSJEBAMBCfC0yfr+0dKmamhqvIvJVu3fvliS1b9++zu3tdrvsdvv1iAYAAAKMX4tMVlaWRo4cqQ4dOqi0tFTLly/Xxo0btW7dOuXn52v58uW68847FR0drb1792ratGkaMmSIUlNT/RkbAAAECL8WmRMnTuiBBx5QYWGhnE6nUlNTtW7dOt1xxx0qKCjQRx99pIULF6q8vFyJiYkaO3asnnjiCX9GBgAAASTg5sg0Nl+vsQEAgMDh6+d3wNxHBgAAoKEoMgAAwLIoMgAAwLIoMgAAwLIoMgAAwLIoMgAAwLIoMgAAwLIoMgAAwLIoMgAAwLIoMgAAwLIoMgAAwLIoMgAAwLIoMgAAwLIoMgAAwLIoMgAAwLIoMgAAwLIoMgAAwLIoMgAAwLIoMgAAwLIoMgAAwLIoMgAAwLIoMgAAwLIoMgAAwLIoMgAAwLIoMgAAwLIoMgAAwLIoMgAAwLIoMgAAwLIoMgAAwLIoMgAAwLIoMgAAwLIoMgAAwLIoMgAAwLL8WmQWL16s1NRUORwOORwOpaWl6YMPPvAsr6ioUGZmpqKjoxUeHq6xY8equLjYj4kBAEAg8WuRSUhI0Lx585Sbm6udO3dq6NChGj16tD755BNJ0rRp0/SHP/xBb7/9tnJycnT8+HHdfffd/owMAAACiM0YY/wd4quioqL03HPP6Z577lFMTIyWL1+ue+65R5J08OBBde/eXVu3btWgQYN82p/L5ZLT6VRJSYkcDsf1jA4AABqJr5/fATNHprq6WitWrFB5ebnS0tKUm5urqqoqpaene9bp1q2bOnTooK1bt9a5H7fbLZfL5fUAAADNk9+LzL59+xQeHi673a6f/OQnWrVqlXr06KGioiKFhoYqMjLSa/3Y2FgVFRXVub/s7Gw5nU7PIzEx8Tq/AgAA4C9+LzIpKSnavXu3tm/frkmTJmncuHH69NNPr3p/WVlZKikp8TwKCgoaMS0AAAgkwf4OEBoaqi5dukiS+vfvrx07dujXv/61vvvd76qyslJnz571OitTXFysuLi4Ovdnt9tlt9uvd2wAABAA/H5G5lI1NTVyu93q37+/QkJCtGHDBs+yvLw8HT16VGlpaX5MCAAAAoVfz8hkZWVp5MiR6tChg0pLS7V8+XJt3LhR69atk9Pp1MSJEzV9+nRFRUXJ4XBoypQpSktL8/k3lgAAQPPm1yJz4sQJPfDAAyosLJTT6VRqaqrWrVunO+64Q5L0q1/9SkFBQRo7dqzcbrcyMjL00ksv+TMyAAAIIAF3H5nGxn1kAACwHsvdRwYAAKChKDIAAMCyKDIAAMCyKDIAAMCyKDIAAMCyKDIAAMCyKDIAAMCyKDIAAMCyKDIAAMCyKDIAAMCyKDIAAMCyKDIAAMCyKDIAAMCyKDIAAMCyKDIAAMCyKDIAAMCyKDIAAMCyKDIAAMCyKDIAAMCyKDIAAMCyKDIAAMCyKDIAAMCyKDIAAMCyKDIAAMCyKDIAAMCyKDIAAMCyKDIAAMCyKDIAAMCyKDIAAMCyKDIAAMCyKDIAAMCyKDIAAMCy/FpksrOzNWDAAEVERKhdu3YaM2aM8vLyvNa57bbbZLPZvB4/+clP/JQYAAAEEr8WmZycHGVmZmrbtm1av369qqqqNHz4cJWXl3ut9+CDD6qwsNDzePbZZ/2UGAAABJJgfx587dq1Xs+XLVumdu3aKTc3V0OGDPGMt2rVSnFxcU0dDwAABLiAmiNTUlIiSYqKivIaf+ONN9S2bVv16tVLWVlZOnfunD/iAQCAAOPXMzJfVVNTo6lTp2rw4MHq1auXZ/y+++5TUlKS4uPjtXfvXs2cOVN5eXlauXJlrftxu91yu92e5y6X67pnBwAA/hEwRSYzM1P79+/Xxx9/7DX+ox/9yPPn3r17q3379ho2bJjy8/PVuXPny/aTnZ2tOXPmXPe8AADA/wLi0tLkyZP1xz/+UX/+85+VkJBwxXUHDhwoSTp8+HCty7OyslRSUuJ5FBQUNHpeAAAQGPx6RsYYoylTpmjVqlXauHGjOnXqVO82u3fvliS1b9++1uV2u112u70xYwIAgADl1yKTmZmp5cuXa82aNYqIiFBRUZEkyel0qmXLlsrPz9fy5ct15513Kjo6Wnv37tW0adM0ZMgQpaam+jM6AAAIADZjjPHbwW22WseXLl2q8ePHq6CgQP/xH/+h/fv3q7y8XImJibrrrrv0xBNPyOFw+HQMl8slp9OpkpISn7cBAAD+5evnt98vLV1JYmKicnJymigNAACwmoCY7AsAAHA1KDIAAMCyKDIAAMCyKDIAAMCyKDIAAMCyKDIAAMCyKDIAAMCyKDIAAMCyKDIAAMCyKDIAAMCyKDIAAMCyKDIAAMCyKDIAAMCyKDIAAMCyKDIAAMCyKDIAAMCyKDIAAMCyKDIAAMCyKDIAAMCyKDIAAMCyKDIAAMCyKDIAAMCyKDIAAMCyKDIAAMCyKDIAAMCyGlxksrOz9dprr102/tprr2n+/PmNEgoAAMAXDS4yS5YsUbdu3S4b79mzp15++eVGCQUAAOCLBheZoqIitW/f/rLxmJgYFRYWNkooAAAAXzS4yCQmJmrz5s2XjW/evFnx8fGNEgoAAMAXwQ3d4MEHH9TUqVNVVVWloUOHSpI2bNigxx57TDNmzGj0gAAAAHVpcJF59NFHdfr0aT300EOqrKyUJIWFhWnmzJn62c9+1ugBAQAA6mIzxpir2bCsrEwHDhxQy5YtlZycLLvd3tjZGoXL5ZLT6VRJSYkcDoe/4wAAAB/4+vnt8xyZP/3pT+rRo4dcLpckKTw8XAMGDFCvXr1UUVGhnj176i9/+cu1JwcAAPCRz0Vm4cKFevDBB2ttRU6nUz/+8Y+1YMGCBh08OztbAwYMUEREhNq1a6cxY8YoLy/Pa52KigplZmYqOjpa4eHhGjt2rIqLixt0HAAA0Dz5XGT27NmjESNG1Ll8+PDhys3NbdDBc3JylJmZqW3btmn9+vWqqqrS8OHDVV5e7lln2rRp+sMf/qC3335bOTk5On78uO6+++4GHQcAADRPPs+RCQsL0/79+9WlS5dalx8+fFi9e/fW+fPnrzrMyZMn1a5dO+Xk5GjIkCEqKSlRTEyMli9frnvuuUeSdPDgQXXv3l1bt27VoEGD6t0nc2QAALCeRp8j87WvfU379++vc/nevXtrvVFeQ5SUlEiSoqKiJEm5ubmqqqpSenq6Z51u3bqpQ4cO2rp1a637cLvdcrlcXg8AANA8+Vxk7rzzTj355JOqqKi4bNn58+c1a9Ys/du//dtVB6mpqdHUqVM1ePBg9erVS9KXdxEODQ1VZGSk17qxsbEqKiqqdT/Z2dlyOp2eR2Ji4lVnAgAAgc3n+8g88cQTWrlypbp27arJkycrJSVF0peXehYtWqTq6mo9/vjjVx0kMzNT+/fv18cff3zV+5CkrKwsTZ8+3fPc5XJRZgAAaKZ8LjKxsbHasmWLJk2apKysLF2cWmOz2ZSRkaFFixYpNjb2qkJMnjxZf/zjH7Vp0yYlJCR4xuPi4lRZWamzZ896nZUpLi5WXFxcrfuy2+0Be08bAADQuBp0Z9+kpCS9//77OnPmjA4fPixjjJKTk9WmTZurOrgxRlOmTNGqVau0ceNGderUyWt5//79FRISog0bNmjs2LGSpLy8PB09elRpaWlXdUwAANB8NPgrCiSpTZs2GjBgwDUfPDMzU8uXL9eaNWsUERHhmffidDrVsmVLOZ1OTZw4UdOnT1dUVJQcDoemTJmitLQ0n35jCQAANG9X/RUFjXJwm63W8aVLl2r8+PGSvrwh3owZM/Tmm2/K7XYrIyNDL730Up2Xli7Fr18DAGA9vn5++1xkfL0J3cqVK31L2EQoMgAAWI+vn98+X1pyOp2NEgwAAKCx+Fxkli5dWu86V7phHgAAQGPz+YZ4dSktLdVvfvMbDRw4UH369GmMTAAAAD656iKzadMmjRs3Tu3bt9fzzz+v22+/Xdu2bWvMbAAAAFfUoF+/Lioq0rJly/Tqq6/K5XLpO9/5jtxut1avXq0ePXpcr4wAAAC18vmMzKhRo5SSkqK9e/dq4cKFOn78uF588cXrmQ0AAOCKfD4j88EHH+inP/2pJk2apOTk5OuZCQAAwCc+n5H5+OOPVVpaqv79+2vgwIH6r//6L506dep6ZgMAALgin4vMoEGD9Morr6iwsFA//vGPtWLFCsXHx6umpkbr169XaWnp9cwJAABwmWv6ioK8vDy9+uqr+t3vfqezZ8/qjjvu0LvvvtuY+a4Zd/YFAMB6fP38vqb7yKSkpOjZZ5/VsWPHtGLFCpWXl1/L7gAAABrkqr79+qtKS0v15ptv6re//a1yc3MbIxMAAIBPGuWGeI8//rgSExMbMxcAAEC9GlRkioqKNG/ePCUnJ+vOO+/UhQsX9L//+78qLCzUnDlzrldGAACAWvl8aWnUqFHasGGDbr/9ds2ePVtjxoxR69atPcttNtt1CQgAAFAXn4vMe++9p/vuu09Tp07VzTfffD0zAQAA+MTnS0tbtmxRy5YtNXToUKWkpOjpp59Wfn7+9cwGAABwRVd1Q7yZM2fqww8/VNeuXTVo0CC9+OKLKi4uvp45AQAALtNoN8QrLi6WzWZTdXV1Y+a7ZtwQDwAA62nyG+KtXLlS3/72t69ldwAAAA1yTWdkrIAzMgAAWE+TnJEBAADwJ4oMAACwLIoMAACwLIoMAACwLIoMAACwLIoMAACwLIoMAACwLIoMAACwLIoMAACwLIoMAACwLIoMAACwLL8WmU2bNmnUqFGKj4+XzWbT6tWrvZaPHz9eNpvN6zFixAj/hAUAAAHHr0WmvLxcffr00aJFi+pcZ8SIESosLPQ83nzzzSZMCAAAAlmwPw8+cuRIjRw58orr2O12xcXFNVEiAABgJQE/R2bjxo1q166dUlJSNGnSJJ0+fdrfkQAAQIDw6xmZ+owYMUJ33323OnXqpPz8fP3nf/6nRo4cqa1bt6pFixa1buN2u+V2uz3PXS5XU8UFAABNLKCLzPe+9z3Pn3v37q3U1FR17txZGzdu1LBhw2rdJjs7W3PmzGmqiAAAwI8C/tLSV339619X27Ztdfjw4TrXycrKUklJiedRUFDQhAkBAEBTCugzMpc6duyYTp8+rfbt29e5jt1ul91ub8JUAADAX/xaZMrKyrzOrhw5ckS7d+9WVFSUoqKiNGfOHI0dO1ZxcXHKz8/XY489pi5duigjI8OPqQEAQKDwa5HZuXOnbr/9ds/z6dOnS5LGjRunxYsXa+/evXr99dd19uxZxcfHa/jw4Zo7dy5nXAAAgCTJZowx/g5xPblcLjmdTpWUlMjhcPg7DgAA8IGvn9+WmuwLAADwVRQZAABgWRQZAABgWRQZAABgWRQZAABgWRQZAABgWRQZAABgWRQZAABgWRQZAABgWRQZAABgWRQZAABgWRQZAABgWRQZAABgWRQZAABgWRQZAABgWRQZAABgWRQZAABgWRQZAABgWRQZAABgWRQZAABgWRQZAABgWRQZAABgWRQZAABgWRQZAABgWRQZAABgWRQZAABgWRQZAABgWRQZAABgWRQZAABgWRQZAABgWRQZAABgWRQZAABgWcH+DgAAqF95ebny8/N14sQJGWMUGxurzp07q3Xr1v6OBviVX8/IbNq0SaNGjVJ8fLxsNptWr17ttdwYo6eeekrt27dXy5YtlZ6err///e/+CQsAfvLPf/5T77//vvLy8vTFF1/ozJkzysvL0/vvv69jx475Ox7gV34tMuXl5erTp48WLVpU6/Jnn31WL7zwgl5++WVt375drVu3VkZGhioqKpo4KQD4R1lZmbZs2SJjjIwxnvGLz7du3SqXy+XHhIB/+fXS0siRIzVy5MhalxljtHDhQj3xxBMaPXq0JOm///u/FRsbq9WrV+t73/teU0YFAL84fPiwT+v069evCdIAgSdgJ/seOXJERUVFSk9P94w5nU4NHDhQW7durXM7t9stl8vl9QAAqyosLPQ6E3MpY4yKioqaMBEQWAK2yFz8hxkbG+s1Hhsbe8V/tNnZ2XI6nZ5HYmLidc0JANfTlUpMQ9YBmquALTJXKysrSyUlJZ5HQUGBvyMBwFVr166dbDZbncttNptiYmKaMBEQWAK2yMTFxUmSiouLvcaLi4s9y2pjt9vlcDi8HgBgVV26dKn30lJycnITJgICS8AWmU6dOikuLk4bNmzwjLlcLm3fvl1paWl+TAYATScyMlL9+/eXJK8zMxf/fNNNN6lNmzZ+yQYEAr/+1lJZWZnXjPwjR45o9+7dioqKUocOHTR16lT9/Oc/V3Jysjp16qQnn3xS8fHxGjNmjP9CA0AT69y5s9q0aaNDhw55zlLHxsYqOTlZ0dHRfk4H+Jdfi8zOnTt1++23e55Pnz5dkjRu3DgtW7ZMjz32mMrLy/WjH/1IZ8+e1a233qq1a9cqLCzMX5EBwC+ioqI0aNAgf8cAAo7NNPPp7i6XS06nUyUlJcyXAQDAInz9/Oa7lgCgFsYYnT17VpWVlWrdurXCw8P9HQlALSgyAHCJY8eOae/evSorK/OMxcTE6KabblJkZKT/ggG4TMD+1hIA+MNnn32mLVu2eJUYSTp16pQ2bNigs2fP+icYgFpRZADgXy5cuKBdu3bVuswYo5qaGu3Zs6eJUwG4EooMAPzLP//5T124cKHO5cYYFRcX69y5c02YCsCVUGQA4F/OnTt3xa8DuOj8+fNNkAaALygyAPAvoaGhPn0BY2hoaBOkAeALigwA/EtCQkK9Z2QiIyMVERHRRIkA1IciAwD/Yrfb1b179yuuk5qa2kRpAPiC+8gAwFf07NlTNptNBw4cUE1NjWfcbrfr5ptvVlxcnB/TAbgURQYAvsJms6lnz55KTk7W8ePHVVlZqfDwcMXFxSkoiJPYQKChyABALUJDQ9WxY0d/xwBQD/7vBQAAsCyKDAAAsCyKDAAAsCyKDAAAsCyKDAAAsCyKDAAAsCyKDAAAsCyKDAAAsCyKDAAAsCyKDAAAsCyKDAAAsCyKDAAAsCyKDAAAsCyKDAAAsCyKDAAAsCyKDAAAsCyKDAAAsCyKDAAAsCyKDAAAsCyKDAAAsKyALjKzZ8+WzWbzenTr1s3fsQAAQIAI9neA+vTs2VMfffSR53lwcMBHBgAATSTgW0FwcLDi4uL8HQMAAASggL60JEl///vfFR8fr69//eu6//77dfTo0Suu73a75XK5vB4AAKB5CugiM3DgQC1btkxr167V4sWLdeTIEX3zm99UaWlpndtkZ2fL6XR6HomJiU2YGAAANCWbMcb4O4Svzp49q6SkJC1YsEATJ06sdR232y232+157nK5lJiYqJKSEjkcjqaKCgAAroHL5ZLT6az38zvg58h8VWRkpLp27arDhw/XuY7dbpfdbm/CVAAAwF8C+tLSpcrKypSfn6/27dv7OwoAAAgAAV1kHnnkEeXk5Oizzz7Tli1bdNddd6lFixa69957/R0NAAAEgIC+tHTs2DHde++9On36tGJiYnTrrbdq27ZtiomJ8Xc0AAAQAAK6yKxYscLfEQAAQAAL6EtLAAAAV0KRAQAAlkWRAQAAlkWRAQAAlkWRAQAAlkWRAQAAlkWRAQAAlkWRAQAAlkWRAQAAlkWRAQAAlkWRAQAAlkWRAQAAlkWRAQAAlkWRAQAAlkWRAQAAlkWRAQAAlkWRAQAAlkWRAQAAlkWRAQAAlkWRAQAAlkWRAQAAlkWRAQAAlkWRAQAAlkWRAQAAlkWRAQAAlkWRAQAAlkWRAQAAlhXs7wBAc3Om+owOVx1WpalUZFCkuoZ2VYgtxN+xAKBZosgAjeSCuaCPyj9SXlWebP/6T41qlHMuR7eH3q6QwhCdPHlSNptNMTEx6tChg0JCKDgAcC0oMkAj+aj8Ix2qOiRJMv/6jyTpjLRn9x4FXfi/K7lHjx7V3r17NWTIEEVHR/sjLgA0C8yRARrBmeozyqvK+7/y8i9BFUGK2hUl2wXbZdtUVVUpJydH58+fb6qYANDsUGSARvD3yr/LpsvLSuuC1rLV2GpdJknV1dX6xz/+cb3jAUCzZYkis2jRInXs2FFhYWEaOHCg/vrXv/o7EizIGKPjx49r48aNWrVqldasWaOdO3eqpKTkmvddaSprLSv2E/Y6S8zFTMeOHbvm4wPAjSrgi8xbb72l6dOna9asWdq1a5f69OmjjIwMnThxwt/RYCHGGP3tb3/Txx9/rJMnT6qqqkput1tHjhzRhx9+qH/+85/XtP/IFpGqUc1l47aaukvMRdXV1dd0bAC4kQV8kVmwYIEefPBBTZgwQT169NDLL7+sVq1a6bXXXvN3NFjIsWPHdPjwYUlflpqLjDEyxmjr1q2qqKi46v13De2q4Frmzlc5qmRsppYtvmSz2RQVFXXVxwWAG11AF5nKykrl5uYqPT3dMxYUFKT09HRt3brVj8lgNYcOHZLNVvfZkZqaGh05cuSq9x9qC9WwVsMuGz+XeE42c+VLS126dLnq4wLAjS6gf/361KlTqq6uVmxsrNd4bGysDh48WOs2brdbbrfb89zlcl3XjAh8xhidPn263vV8WedKutm7KSwoTNvOb1NxdbEk6ULUBdm/bpf7H27ZbDavs0GS1L17d7Vt2/aajgsAN7KALjJXIzs7W3PmzPF3DASY2kpEbetcq44hHdUxpKNKa0pVaSoVHhSu0P6hOhZ7THl5efriiy8kSdHR0UpJSVFCQsI1HxMAbmQBXWTatm2rFi1aqLi42Gu8uLhYcXFxtW6TlZWl6dOne567XC4lJiZe15wIbDabTbGxsSouLr5imbn0zN+1iAiK8HqemJioxMRE1dR8OSE4KCigr+oCgGUE9P+ahoaGqn///tqwYYNnrKamRhs2bFBaWlqt29jtdjkcDq8H0K1btzpLjM1mU2hoqJKSkq57jqCgIEoMADSigP9f1OnTp+uVV17R66+/rgMHDmjSpEkqLy/XhAkT/B0NFtKuXTvddNNNki6/hBQcHKwhQ4bwvUcAYEEBfWlJkr773e/q5MmTeuqpp1RUVKS+fftq7dq1jXoZADeG5ORkxcbGKj8/X1988YWCgoIUHx+vjh07ym63+zseAOAq2Ex9MyAtzuVyyel0qqSkhMtMAABYhK+f3wF/aQkAAKAuFBkAAGBZFBkAAGBZFBkAAGBZFBkAAGBZFBkAAGBZFBkAAGBZFBkAAGBZFBkAAGBZFBkAAGBZAf9dS9fq4jcwuFwuPycBAAC+uvi5Xd83KTX7IlNaWipJSkxM9HMSAADQUKWlpXI6nXUub/ZfGllTU6Pjx48rIiJCNpvN33FgcS6XS4mJiSooKOBLSHFd8DOGpmCFnzNjjEpLSxUfH6+goLpnwjT7MzJBQUFKSEjwdww0Mw6HI2D/8aN54GcMTSHQf86udCbmIib7AgAAy6LIAAAAy6LIAA1gt9s1a9Ys2e12f0dBM8XPGJpCc/o5a/aTfQEAQPPFGRkAAGBZFBkAAGBZFBkAAGBZFBmgHtnZ2RowYIAiIiLUrl07jRkzRnl5ef6OhWZm8eLFSk1N9dzXIy0tTR988IG/Y6GZmzdvnmw2m6ZOnervKFeNIgPUIycnR5mZmdq2bZvWr1+vqqoqDR8+XOXl5f6OhmYkISFB8+bNU25urnbu3KmhQ4dq9OjR+uSTT/wdDc3Ujh07tGTJEqWmpvo7yjXht5aABjp58qTatWunnJwcDRkyxN9x0IxFRUXpueee08SJE/0dBc1MWVmZ+vXrp5deekk///nP1bdvXy1cuNDfsa4KZ2SABiopKZH05YcMcD1UV1drxYoVKi8vV1pamr/joBnKzMzUt7/9baWnp/s7yjVr9t+1BDSmmpoaTZ06VYMHD1avXr38HQfNzL59+5SWlqaKigqFh4dr1apV6tGjh79joZlZsWKFdu3apR07dvg7SqOgyAANkJmZqf379+vjjz/2dxQ0QykpKdq9e7dKSkr0zjvvaNy4ccrJyaHMoNEUFBTo4Ycf1vr16xUWFubvOI2COTKAjyZPnqw1a9Zo06ZN6tSpk7/j4AaQnp6uzp07a8mSJf6OgmZi9erVuuuuu9SiRQvPWHV1tWw2m4KCguR2u72WWQFnZIB6GGM0ZcoUrVq1Shs3bqTEoMnU1NTI7Xb7OwaakWHDhmnfvn1eYxMmTFC3bt00c+ZMy5UYiSID1CszM1PLly/XmjVrFBERoaKiIkmS0+lUy5Yt/ZwOzUVWVpZGjhypDh06qLS0VMuXL9fGjRu1bt06f0dDMxIREXHZ/L7WrVsrOjrasvP+KDJAPRYvXixJuu2227zGly5dqvHjxzd9IDRLJ06c0AMPPKDCwkI5nU6lpqZq3bp1uuOOO/wdDQhozJEBAACWxX1kAACAZVFkAACAZVFkAACAZVFkAACAZVFkAACAZVFkAACAZVFkAACAZVFkAACAZVFkgCb22WefyWazaffu3f6O4nHw4EENGjRIYWFh6tu3b5Mdd/z48RozZkyTHa8xWDEz0JxRZHDDGT9+vGw2m+bNm+c1vnr1atlsNj+l8q9Zs2apdevWysvL04YNGxp9/3WVt1//+tdatmxZox/vUpSPazd79uwmLbmArygyuCGFhYVp/vz5OnPmjL+jNJrKysqr3jY/P1+33nqrkpKSFB0d3YiprszpdCoyMrLJjmdl1/L3G0iay+tA4KDI4IaUnp6uuLg4ZWdn17lObf8PdOHCherYsaPn+cX/p/+LX/xCsbGxioyM1NNPP60LFy7o0UcfVVRUlBISErR06dLL9n/w4EHdcsstCgsLU69evZSTk+O1fP/+/Ro5cqTCw8MVGxur73//+zp16pRn+W233abJkydr6tSpatu2rTIyMmp9HTU1NXr66aeVkJAgu92uvn37au3atZ7lNptNubm5evrpp2Wz2TR79uw695Odna1OnTqpZcuW6tOnj9555x3P8jNnzuj+++9XTEyMWrZsqeTkZM/r7tSpkyTppptuks1m83wB56VnSm677TZNmTJFU6dOVZs2bRQbG6tXXnlF5eXlmjBhgiIiItSlSxd98MEHnm2qq6s1ceJET66UlBT9+te/9iyfPXu2Xn/9da1Zs0Y2m002m00bN26UJBUUFOg73/mOIiMjFRUVpdGjR+uzzz7z2vf06dMVGRmp6OhoPfbYY6rv6+mWLVumyMhIrV69WsnJyQoLC1NGRoYKCgo86+Tn52v06NGKjY1VeHi4BgwYoI8++shrPx07dtTcuXP1wAMPyOFw6Ec/+pEkaebMmeratatatWqlr3/963ryySdVVVXl9Xr79u2r1157TR06dFB4eLgeeughVVdX69lnn1VcXJzatWunZ555xut4Z8+e1Q9/+EPFxMTI4XBo6NCh2rNnj+c1zZkzR3v27PG8hxfPpF1pu6/m+e1vf6tOnTopLCxMkvTOO++od+/eatmypaKjo5Wenq7y8vIrvrdArQxwgxk3bpwZPXq0WblypQkLCzMFBQXGGGNWrVplvvpPYtasWaZPnz5e2/7qV78ySUlJXvuKiIgwmZmZ5uDBg+bVV181kkxGRoZ55plnzKFDh8zcuXNNSEiI5zhHjhwxkkxCQoJ55513zKeffmp++MMfmoiICHPq1CljjDFnzpwxMTExJisryxw4cMDs2rXL3HHHHeb222/3HPtb3/qWCQ8PN48++qg5ePCgOXjwYK2vd8GCBcbhcJg333zTHDx40Dz22GMmJCTEHDp0yBhjTGFhoenZs6eZMWOGKSwsNKWlpbXu5+c//7np1q2bWbt2rcnPzzdLly41drvdbNy40RhjTGZmpunbt6/ZsWOHOXLkiFm/fr159913jTHG/PWvfzWSzEcffWQKCwvN6dOnvf4uvvqaIiIizNy5cz3vXYsWLczIkSPNb37zG3Po0CEzadIkEx0dbcrLy40xxlRWVpqnnnrK7Nixw/zjH/8w//M//2NatWpl3nrrLWOMMaWlpeY73/mOGTFihCksLDSFhYXG7XabyspK0717d/ODH/zA7N2713z66afmvvvuMykpKcbtdhtjjJk/f75p06aN+f3vf28+/fRTM3HiRBMREeGV+VJLly41ISEh5uabbzZbtmwxO3fuNN/4xjfMLbfc4lln9+7d5uWXXzb79u0zhw4dMk888YQJCwszn3/+uWedpKQk43A4zPPPP28OHz5sDh8+bIwxZu7cuWbz5s3myJEj5t133zWxsbFm/vz5nu1mzZplwsPDzT333GM++eQT8+6775rQ0FCTkZFhpkyZYg4ePGhee+01I8ls27bNs116eroZNWqU2bFjhzl06JCZMWOGiY6ONqdPnzbnzp0zM2bMMD179vS8h+fOnat3u4t5WrdubUaMGGF27dpl9uzZY44fP26Cg4PNggULzJEjR8zevXvNokWL6vzZA66EIoMbzlc/PAcNGmR+8IMfGGOuvsgkJSWZ6upqz1hKSor55je/6Xl+4cIF07p1a/Pmm28aY/6vyMybN8+zTlVVlUlISPB8IM2dO9cMHz7c69gFBQVGksnLyzPGfPmhf9NNN9X7euPj480zzzzjNTZgwADz0EMPeZ736dPHzJo1q859VFRUmFatWpktW7Z4jU+cONHce++9xhhjRo0aZSZMmFDr9hdf89/+9jev8dqKzK233up5fvG9+/73v+8ZKywsNJLM1q1b68ybmZlpxo4dW+dxjDHmd7/7nUlJSTE1NTWeMbfbbVq2bGnWrVtnjDGmffv25tlnn/Usv/j3VF+RubQkHDhwwEgy27dvr3O7nj17mhdffNHzPCkpyYwZM6bO9S967rnnTP/+/T3PZ82aZVq1amVcLpdnLCMjw3Ts2PGyn9Ps7GxjjDF/+ctfjMPhMBUVFV777ty5s1myZIlnv5f+e/B1u5CQEHPixAnP8tzcXCPJfPbZZ/W+PqA+wX45DQQEiPnz52vo0KF65JFHrnofPXv2VFDQ/12ljY2NVa9evTzPW7RooejoaJ04ccJru7S0NM+fg4ODdfPNN+vAgQOSpD179ujPf/6zwsPDLztefn6+unbtKknq37//FbO5XC4dP35cgwcP9hofPHiw1+n/+hw+fFjnzp3THXfc4TVeWVmpm266SZI0adIkjR07Vrt27dLw4cM1ZswY3XLLLT4f46LU1FTPny++d7179/aMxcbGSpLX+7lo0SK99tprOnr0qM6fP6/Kysp6J6bu2bNHhw8fVkREhNd4RUWF8vPzVVJSosLCQg0cONCz7OLfk6nn8lJwcLAGDBjged6tWzdFRkbqwIED+sY3vqGysjLNnj1b7733ngoLC3XhwgWdP39eR48e9drPzTfffNm+33rrLb3wwgvKz89XWVmZLly4IIfD4bVOx44dvV5XbGysWrRocdnP6cX3cM+ePSorK7tsftT58+eVn59f5+v0dbukpCTFxMR4nvfp00fDhg1T7969lZGRoeHDh+uee+5RmzZt6jwWUBeKDG5oQ4YMUUZGhrKysjR+/HivZUFBQZd9YH11LsJFISEhXs9tNlutYzU1NT7nKisr06hRozR//vzLlrVv397z59atW/u8z2tRVlYmSXrvvff0ta99zWuZ3W6XJI0cOVKff/653n//fa1fv17Dhg1TZmamnn/++QYdq7738+Jvll18P1esWKFHHnlEv/zlL5WWlqaIiAg999xz2r59e72vqX///nrjjTcuW/bVD93r4ZFHHtH69ev1/PPPq0uXLmrZsqXuueeeyybCXvr3u3XrVt1///2aM2eOMjIy5HQ6tWLFCv3yl7/0Wq+hP5NlZWVq3769Z+7QV11pMrav2136Olq0aKH169dry5Yt+vDDD/Xiiy/q8ccf1/bt2z3zqQBfUWRww5s3b5769u2rlJQUr/GYmBgVFRXJGOP58GzMe79s27ZNQ4YMkSRduHBBubm5mjx5siSpX79++v3vf6+OHTsqOPjq/5k6HA7Fx8dr8+bN+ta3vuUZ37x5s77xjW/4vJ8ePXrIbrfr6NGjXvu5VExMjMaNG6dx48bpm9/8ph599FE9//zzCg0NlfTl5NnGtnnzZt1yyy166KGHPGOXnkUIDQ297Nj9+vXTW2+9pXbt2l12RuOi9u3ba/v27Zf9PfXr1++KmS5cuKCdO3d63uO8vDydPXtW3bt392QeP3687rrrLklfFoKvTjKuy5YtW5SUlKTHH3/cM/b555/Xu119+vXrp6KiIgUHB3tNZv+qut7D+rari81m0+DBgzV48GA99dRTSkpK0qpVqzR9+vSrfBW4UfFbS7jh9e7dW/fff79eeOEFr/HbbrtNJ0+e1LPPPqv8/HwtWrTI67dlrtWiRYu0atUqHTx4UJmZmTpz5ox+8IMfSJIyMzP1xRdf6N5779WOHTuUn5+vdevWacKECQ0uA48++qjmz5+vt956S3l5efrZz36m3bt36+GHH/Z5HxEREXrkkUc0bdo0vf7668rPz9euXbv04osv6vXXX5ckPfXUU1qzZo0OHz6sTz75RH/84x89H9zt2rVTy5YttXbtWhUXF6ukpKRBr+FKkpOTtXPnTq1bt06HDh3Sk08+qR07dnit07FjR+3du1d5eXk6deqUqqqqdP/996tt27YaPXq0/vKXv+jIkSPauHGjfvrTn+rYsWOSpIcffljz5s3T6tWrdfDgQT300EM6e/ZsvZlCQkI0ZcoUbd++Xbm5uRo/frwGDRrkKTbJyclauXKldu/erT179ui+++7z6YxdcnKyjh49qhUrVig/P18vvPCCVq1a1fA37RLp6elKS0vTmDFj9OGHH+qzzz7Tli1b9Pjjj2vnzp2SvnwPjxw5ot27d+vUqVNyu90+bVeb7du36xe/+IV27typo0ePauXKlTp58qTn5wVoCIoMIOnpp5++7IOke/fueumll7Ro0SL16dNHf/3rX69pLs2l5s2bp3nz5qlPnz76+OOP9e6776pt27aS5DmLUl1dreHDh6t3796aOnWqIiMjveY5+OKnP/2ppk+frhkzZqh3795au3at3n33XSUnJzdoP3PnztWTTz6p7Oxsde/eXSNGjNB7773nuRQQGhqqrKwspaamasiQIWrRooVWrFgh6cs5Iy+88IKWLFmi+Ph4jR49ukHHvpIf//jHuvvuu/Xd735XAwcO1OnTp73OzkjSgw8+qJSUFN18882KiYnR5s2b1apVK23atEkdOnTQ3Xffre7du2vixImqqKjwnKGZMWOGvv/972vcuHGey1YXz6JcSatWrTRz5kzdd999Gjx4sMLDw/XWW295li9YsEBt2rTRLbfcolGjRikjI6PeszyS9O///u+aNm2aJk+erL59+2rLli168sknG/iOXc5ms+n999/XkCFDNGHCBHXt2lXf+9739Pnnn3vmJI0dO1YjRozQ7bffrpiYGL355ps+bVcbh8OhTZs26c4771TXrl31xBNP6Je//KVGjhx5za8FNx6bqW/WGgDAZ8uWLdPUqVN9OnMD4NpxRgYAAFgWRQYAAFgWl5YAAIBlcUYGAABYFkUGAABYFkUGAABYFkUGAABYFkUGAABYFkUGAABYFkUGAABYFkUGAABYFkUGAABY1v8Hv1ZtBGJ2H2AAAAAASUVORK5CYII=", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], + "outputs": [], "source": [ "petab_select.plot.scatter_criterion_vs_n_estimated(\n", " models=models,\n", @@ -430,21 +230,10 @@ }, { "cell_type": "code", - "execution_count": 9, + "execution_count": null, "id": "5ce191fc", "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABXsAAAM0CAYAAADqdvEZAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAD6pklEQVR4nOzdd3gVZcL+8XsSUoAUjDGG3hEEQURURBFBUCmSEKSDlJDDLpa1y+W+uvpzF9fVtayrHEKHhB6CYkPFRUFBUBQFpYpGISAthZB65vdHigktPTPn5PuZa67AnMnMHV7n3ZM7T57HME3TFAAAAAAAAADArXlZHQAAAAAAAAAAUHmUvQAAAAAAAADgASh7AQAAAAAAAMADUPYCAAAAAAAAgAeg7AUAAAAAAAAAD0DZCwAAAAAAAAAegLIXAAAAAAAAADwAZS8AAAAAAAAAeADKXgAAAAAAAADwAJS9AAAAAAAAAOABKHsBAAAAAAAA2NIbb7whwzB0/fXXV/rc+fPnyzAMbdu27ZzX9u/fL4fDoVatWsnf319BQUHq2bOnXn31VZ05c6bSX0dNqWN1AAAAAAAAAAA4n7i4OPn6+urLL7/Uvn371KZNm4ue26JFizKdW9w777yju+++W35+fho/frw6deqk7Oxsbdy4UY8++qh27typWbNmVdWXVK0Y2QsAAAAAAADAdn766Sd9/vnn+utf/yofHx/FxcWVeu6///1vXXbZZRc99+zPGzlypJo3b65du3bp1Vdf1ZQpUzRt2jQtWbJEu3btUseOHavqS6p2lL0AAAAAAAAAbCcuLk7e3t6KiYlRv379LlrgxsXF6ZJLLtHAgQM1bNiwMpe9L7zwgtLT0zVnzhw1bNjwnNfbtGmjBx54oMSx3377TZMnT1ajRo3k5+enli1b6k9/+pOys7PL9wVWA8peAAAAAAAAALYTFxenXr166fLLL9fw4cO1d+9ebd269YLnDh06VL6+vho1atRFzy3u7bffVqtWrXTjjTeWKdOhQ4d03XXXaenSpRoxYoRee+01jRs3Ths2bFBGRka5vr7qwJy9AAAAAAAAAGzlq6++0o8//qi//OUvkqSIiAj5+voqLi5O3bt3P++5//nPfyRJN910k5o0aXLec4tLTU3Vb7/9piFDhpQ51/Tp05WcnKwtW7bo2muvLTr+7LPPyjTNcnyF1YORvQAAAAAAAABsJS4uTnXq1FFUVJQkKTg4WHfccYeWLl2qvLy8c869/PLLdeutt0qSDMPQiBEjzntucampqZKkwMDAMmVyuVxKTEzU4MGDSxS9hQzDKNN1qhNlLwAAAAAAAADbyMvL09KlS9WnTx+FhoYWHR8xYoSOHDmijz/++Jxzb731Vv3000/at2+f9u3bp+uvv/6cc88WFBQkSUpLSytTrt9//12pqanq1KlTBb+y6kfZCwAAAAAAAMA21q9fr8OHD2vEiBEljt91112qW7duicXXCs9dunSp2rZtW7QPHz5cki66UFtQUJAaNWqk77//vnq+EAtQ9gIAAAAAAACwjbi4OPn4+CgyMrLE8YCAAA0YMECrV6/WmTNnis4NCwvTihUrztlHjRpV4tzzGTRokPbv368vvvii1FyXXXaZgoKCbF0OU/YCAAAAAAAAsIUzZ84oISFB/fr10yWXXHLO68OHD1daWpreeuutonMHDRqkYcOGnbPfe++9RedeyGOPPab69esrOjpaR44cOef1/fv369VXX5UkeXl5KSIiQm+//ba2bdt2zrl2WKCtjtUBAAAAAAAAAECS3nrrraI5dJ9//vlzXs/IyJD0x/QMaWlpuuuuu857rRtuuEGXXXaZ4uLizpkSolDr1q0VHx+vESNGqEOHDho/frw6deqk7Oxsff7551qxYoUmTJhQdP4//vEPrVu3TrfccotiYmLUoUMHHT58WCtWrNDGjRvVoEGDSnz1lUfZCwAAAAAAAMAWCkvcd999V+++++4Fz3v//fdlmqb8/f3Vr1+/857j5eWlgQMHKi4uTsePH7/gte666y7t2LFD//rXv7RmzRq9+eab8vPzU+fOnfXSSy9pypQpRec2btxYW7Zs0f/93/8pLi5Oqampaty4se68807Vq1evgl911TFMO4wvBgAAAAAAAABUCnP2AgAAAAAAAIAHoOwFAAAAAAAAAA9A2QsAAAAAAAAAHoCyFwAAAAAAAAA8AGUvAAAAAAAAAHgAyl4AAAAAAAAA8AB1rA4AAAAAAAAAABeSmZmp7Oxsq2Ocw9fXV/7+/lbHKIGyFwAAAAAAAIAtZWZmqmXLlkpOTrY6yjnCw8P1008/2arwpewFAAAAAAAAYEvZ2dlKTk5WUlKSgoKCrI5TJDU1VU2bNlV2djZlLwAAAAAAAACUVVBQkK3KXrui7AUAAAAAAABga2bBZhd2ylKcl9UBAAAAAAAAAACVR9kLAAAAAAAAAB6AaRwAAAAAAAAA2JppmjJN+0ydYKcsxTGyFwAAAAAAAAA8AGUvAAAAAAAAAHgApnEAAAAAAAAAYGtmwWYXdspSHCN7AQAAAAAAAMADUPYCAAAAAAAAgAdgGgcAAAAAAAAAtmaapkzTPlMn2ClLcYzsBQAAAAAAAAAPQNkLAAAAAAAAAB6AaRwAAAAAAAAA2JpZsNmFnbIUx8heAAAAAAAAAPAAlL0AAAAAAAAA4AGYxgEAAAAAAACArZmmKdO0z9QJdspSHCN7AQAAAAAAAMADUPYCAAAAAAAAgAdgGgcAAAAAAAAAtmYWbHZhpyzFMbIXAAAAAAAAADwAZS8AAAAAAAAAeACmcQAAAAAAAABga6ZpyjTtM3WCnbIUx8heAAAAAAAAAPAAlL0AAAAAAAAA4AGYxgEAAAAAAACArZkFm13YKUtxjOwFAAAAAAAAAA9A2QsAAAAAAAAAHoBpHAAAAAAAAADYmmmaMk37TJ1gpyzFMbIXAAAAAAAAADwAZS8AAAAAAAAAeACmcQAAAAAAAABga2bBZhd2ylIcI3sBAAAAAAAAwANQ9gIAAAAAAACAB2AaBwAAAAAAAAC2ZpqmTNM+UyfYKUtxjOwFAAAAAAAAAA9A2QsAAAAAAAAAHoBpHAAAAAAAAADYmlmw2YWdshTHyF4AAAAAAAAA8ACUvUAVOXr0qNauXaunnnpKd955p0JDQ2UYhgzD0IQJE6yOB7g1ni+g+qSmpmrp0qV6+OGHdcstt6hNmzYKDg6Wr6+vwsLC1Lt3b73wwgs6fvy41VEBt7Vt2zY9++yz6t+/v5o0aSI/Pz8FBASoXbt2mjhxojZu3Gh1RMCt8V4RAP7ANA5AFbn88sutjgB4LJ4voPp8+eWXGjVq1Hlf+/3337VhwwZt2LBB//rXv7R48WLdfvvtNZwQcG+9evXSZ599ds7x7Oxs7d27V3v37tX8+fM1fvx4xcbGytfX14KUgHvjvSJQO5imKdO0z9QJdspSHGUvUA2aNWum9u3ba926dVZHATwOzxdQ9Zo2bapbb71V3bp1U9OmTdWwYUO5XC79+uuvWrlypRISEnTs2DHddddd+vLLL9WlSxerIwNu49ChQ5KkRo0a6e6779bNN9+sZs2aKS8vT1988YVeeukl/fbbb1q4cKFycnIUHx9vcWLAvfFeEUBtR9kLVJGnnnpK3bt3V/fu3XX55Zfr4MGDatmypdWxAI/A8wVUn1tvvVW//PLLBV8fPny4EhMTFRkZqezsbD3zzDNKSEiowYSAe2vfvr3+8Y9/KCoqSt7e3iVeu+GGGzRu3Dj17NlTe/bs0ZIlSzR16lT16tXLorSAe+K9IgD8gbIXqCLPPPOM1REAj8XzBVSfs8un84mIiNAVV1yh3bt3n/fX0QFc2Nq1ay/6emhoqF566SUNHjxYkrRy5UrKXqCceK8I1A5mwWYXdspSHAu0wS387W9/K5pgX5IyMzP1r3/9S9dcc40CAwMVGBio6667Tq+//rpyc3MtTgu4F54voHp5yjMWGBgoKT8/YCee8IzdeuutRX/ev3+/hUmAc3nCMwYAtQkje+F2jhw5ojvuuEPffPNNieNbt27V1q1btW7dOiUmJsrLi59lAOXF8wVUL3d9xnbv3l2UuX379taGAS7CXZ+xrKysoj+XZbQ9YBV3fcYAoDbh/wPD7QwdOlS7du3S/fffrw8//FBfffWV4uPj1aFDB0nS22+/rdjYWItTAu6J5wuoXu70jGVkZGjv3r3697//rVtuuaVotNZf/vIXa4MBF+FOz1hxGzZsKPpzYVbAjtz1GQPgGUzTtN1uR5S9cDtbt27VBx98oFdffVW33XabrrnmGo0aNUobN27U5ZdfLkl64403zvm8+fPnF/36UWV2wJPxfAHVy+7PWPH71K9fX+3atdPDDz+sI0eOSJKeeOIJjR49umr/UYAqZPdn7HxcLpeef/75or8PHz68Yl88UAPc8RkDgNqGshdu57777lPv3r3POR4SEqKJEydKkr777julpKTUcDLA/fF8AdXLXZ+xq6++Wl9++aVmzJjBN9uwNXd8xl5++WV9+eWXkvJHTXbr1s3iRMCFueMzBgC1DXP2wu2MGTPmgq8Vvjk2TVM//fSTrr766qLXIiIidO2111Z3PMCt8XwB1cvuz1jx+5w5c0b79+/X8uXLtXr1ao0aNUqvvPKKBg0aVO05gIqy+zN2tg0bNuiJJ56QJIWFhenNN9+s8QxAebjbMwbAs5gFm13YKUtxlL1wOxdbGCYkJKToz2lpaSVea9CggRo0aFBdsQCPwPMFVC+7P2Nn36d79+4aOXKkFi1apHvuuUdDhgzRnDlzNGHChGrPAlSE3Z+x4nbu3KnIyEjl5ubK399fK1asUFhYWI1mAMrLnZ4xAKitmMYBbqdevXoXfK34qq95eXk1EQfwKDxfQPVy12ds3Lhxuvvuu+VyuXTvvffqxIkTVkcCzstdnrGffvpJ/fv318mTJ+Xt7a2lS5eqV69elmYCysJdnjEAqM0Y2Yta49SpU/r1118rfZ1OnTpVQRrAs/B8AdXLDs/YkCFDtHz5cp0+fVrvv/8+C7XBo9TkM3bo0CHddtttOnTokAzD0Ny5czVkyJBK3xuwMzv87xgA92eapkzTPlMn2ClLcZS9qDUSExOLFg2oDLs+zICVeL6A6mWHZ+yyyy4r+vPPP/9c6SyAndTUM3bs2DH169dPBw4ckCT95z//0fjx4yt9X8Du7PC/YwBQWzCNAwAAAEr122+/Ff05ICDAwiSAe0pJSdHtt9+uXbt2SZKef/55TZs2zeJUAADA01D2otaYMGFC0ZD/yuwAzsXzBVQvOzxjK1asKPrzVVddVdkvCbCV6n7GMjIyNHDgQH399deSpCeffFKPP/54TX15gOXs8L9jADyDaaPNrih7AQAAarH58+crMzPzoue8/PLLevfddyVJLVu21M0331wT0QCPkJ2drcjISG3atEmS9MADD+i5556zOBUAAPBUzNkLVJGNGzdq3759RX8/duxY0Z/37dun+fPnlzh/woQJNZQMcH88X0D1+dvf/qaHH35YUVFRuummm9S6dWsFBAQoLS1N3333neLi4opKKl9fX82aNUve3t4Wpwbcx6hRo7Ru3TpJUp8+fTR58mR9//33Fzzf19dX7dq1q6l4gEfgvSIA/IGyF6gis2fP1oIFC8772qZNm4q+US7EGwyg7Hi+gOp14sQJxcbGKjY29oLnNGnSRHPnztVtt91Wg8kA95eQkFD05/Xr16tz584XPb958+Y6ePBgNacCPAvvFYHawW5TutgpS3GUvQAAALXYBx98oHfeeUebNm3Svn37dOTIER0/flx169ZVWFiYrr76ag0aNEjDhw9XvXr1rI4LAAAA4CIM0641NAAAAAAAAIBaLTU1VcHBwTpw+IACgwKtjlMkLTVNrRq2UkpKioKCgqyOU4SRvQAAAAAAAABszSzY7MJOWYrzsjoAAAAAAAAAAKDyKHsBAAAAAAAAwAMwjQMAAAAAAAAAWzNNU3ZaesxOWYpjZC8AAAAAAAAAeADKXgAAAAAAAADwAJS9AAAAAAAAAGzNtOFWHm+++aY6d+6soKAgBQUFqUePHnrvvfeKXu/du7cMwyixT506tdz/TszZCwAAAAAAAADVqEmTJnr++efVtm1bmaapBQsWaMiQIdq+fbs6duwoSZoyZYqeffbZos+pV69eue9D2QsAAAAAAAAA1Wjw4MEl/v73v/9db775pjZv3lxU9tarV0/h4eGVug/TOAAAAAAAAACwNdM0bbdLUmpqaok9Kyur1K8lLy9PS5cu1enTp9WjR4+i43FxcQoNDVWnTp00ffp0ZWRklPvfiZG9AAAAAAAAAFABTZs2LfH3p59+Wn/729/Oe+53332nHj16KDMzUwEBAVq9erWuvPJKSdLo0aPVvHlzNWrUSDt27NDjjz+u3bt3KyEhoVx5DLOwhgYAAAAAAAAAG0lNTVVwcLD2/LZHgUGBVscpkpaapnaN2ykpKUlBQUFFx/38/OTn53fez8nOztYvv/yilJQUrVy5UrNnz9aGDRuKCt/i1q9fr759+2rfvn1q3bp1mXMxshcAAAAAAACArZkFm10UZgkKCipR9l6Mr6+v2rRpI0nq1q2btm7dqldffVVOp/Occ6+//npJKnfZy5y9AAAAAAAAAFDDXC7XBef4/eabbyRJDRs2LNc1GdkLAAAAAAAAANVo+vTpuvPOO9WsWTOlpaUpPj5e//vf//TBBx9o//79io+P14ABA3TppZdqx44devDBB9WrVy917ty5XPeh7AUAAAAAAABga6Zpyk5Lj5U3y9GjRzV+/HgdPnxYwcHB6ty5sz744AP169dPSUlJ+uijj/TKK6/o9OnTatq0qaKiovTXv/613LlYoA0AAAAAAACALRUu0Pbjrz/aboG29k3aKyUlpcxz9tYERvYCAABUwt69e5WWlmZ1DNsJDAxU27ZtrY4BD8Azdn48YwAA4HwoewEAACpo7969ateundUxbGvPnj2UUagUnrGL4xkDANQmZsFmF3bKUhxlLwAAQAUVjTYcKinU0ij2ckxSghiNiUor/G+oTXQb1W1Y1+I09nHm8Bntm72PZwwAAJyDshcAAKCyQiU1sjoE4LnqNqyr+s3rWx0DAADA9ih7AQAAAAAAANiaaZoyTftMnWCnLMV5WR0AAAAAAAAAAFB5lL0AAAAAAAAA4AGYxgEAAKC6bZe0puDPEyU1P+t1U9LLklIltZU0pozXPSZpm6RfJR2WlCfpAUmXXOD8HyX9T9LvkupL6iqplyTvs847I+nDgvNzJDWW1F/MSwzbOrrpqA7MOyBJuvLxKxXUNqjE66Zpavtj25V9MlsNOjdQ+/vbl+m6Z5LP6Mj/jij9p3Sd/vm0zFxTVz9/tfxD/c8599iXx3Tq21NK/yldmUczFdguUB0f63je67pyXEpak6RjXxxTbkau6jWpp6YRTdWgY4PyfeEAANQiZsFmF3bKUhwjewEAAGpKHUnfnef4QeUXvWeXrqVJkrRFUraky0o5d6+kpZL8JQ2Q1F7Sp5LeO+s8l6T4gpzXSeon6bSk+ZKOlzMfUMMMH0PHt5z7H2rq7lRln8yWUcco1/XS9qcp+eNk5WXmqW7Duhc998j/jujENyfkG+Ir73oXf5j3z9uv5A+TFXpDqFqMbCHDy9Du13YrdW9qufIBAACcjZG9AAAANaWtpF2S7lTJYvc7SQ0lZZTzeldIekKSn6RNkpIvcu46SZdLGlfs3n6SPpN0vf4oi3cpv0S+W1LhoMSOkv4j6RNJw8qZEahBl1x1iY5vO64Wo1rI8P6j2D3+5XHVb15fOek55bpeSJcQXfqfS+Xt761DHxzSL0m/XPDcNtFt5NvAV4aXoW+f+vaC56UfSNfxL4+r2d3N1Oj2/OHyl914mb596lv9svIXdZreqVwZAQAAimNkLwAAQE3ppPxC90CxY7nKL1ivqsD16im/sC3NUeVP3dBNJUvm7gUfdxU7tkv5Uzx0KHasvvIL390FeQGbuvS6S5V7Olendp0qOubKden4tuMKvT603NerE1BH3v5lG3LvF+Inw6v0kcPHvzoueUlhvcKKjnn5eCns5jCl709X1omscucEAKA2ME3TdrsdUfYCAADUlAaSmqrkVA77JGUpvwiuLoUjfs+eczeoYE8+69yGOvddYmPlz9/LVA6wMb9QPwW0CtDxL//4D/XUd6eUdyZPl153qYXJ/pDxS4bqXl5XdeqW/CXLgJYBRa8DAABUFGUvAABATbpKfyx8Jkk7lL9gW9AFP6Py0go+Bp7ntYBirxeee6HzdNa5gA2FXh+qk9tPypXtkiQd23JMQVcEybeBr8XJ8mWnZMsn2Oec44XHslOyazoSAADwIJS9AAAANamj8qdC2KP8Eb17VLEpHMqjcOqF8/02eh39UTwXnnuh83TWuYANXdr9UrlyXDq546TyMvN0ascphV5X/ikcqosrxyWvOud+G+blk3+ssKQGAAAlmTbc7IgF2gAAAGpSfUmtlD+VQ44kU9KV1XzPwnd8eed5LVeSz1nnXug8nXUuYEM+gT4K6hCkY1uOyZXlkukyFXJtiNWxinj5eMmVe26h68rJP+bly3gcAABQcbyTAAAAqGlXSdoraZukNpLqVvP9CqdlON8UDOkqOW1D4EXOk84/xQNgM6HXh+rUd6d0ZMMRNejUQHXq2WeMi2+wr3JSzh0iX3jMN9ge000AAAD3RNkLAABQ09pLMiT9quqfwkGSwgs+HjrreGrBHn7WuYclnT3w8Fflj+q1xxpXwEWFdA2R4WUo/UC6Qq+3zxQOklSvWT2dOXJGuWdySxxPP5Be9DoAADiXaZq22+2IshcAAKCm+UkaJKm3pCtq4H5hkkIlfaWSJe62go/Fp5G4UtJpST8UO3Za0i5J7cQkYHAL3v7eajmmpZrc1USXdLnE6jglhHQLkVzS0U+PFh1z5bj0+6bfFdAqQH4hfhamAwAA7o636wAAAFa4ugqukSlpS8Gfkwo+finJv2C/vti5/SQtkbRIUidJRwvOvUbSZcXOu1JSE0lrJP0uqZ6krcoviW+tgsxADbms52Wln1SK3IxcJa9PliSl7cuf3+TI+iPyruetOvXqKLzPH8PiU/ekKnVPav7npeXKle3Sr2t/lSQFtQtSULsgSVJgq0CFXBuipIQk5aTmyD/MX79//ruyjmep1YRWlc4MAABqN8peAAAAd3VG0idnHfui4GOwSpa9V0gaIWmDpHeVv1DczZJuOevzvSSNkbRO+UVyrqRGkiKUPzoYqEVyM3L1a+KvJY4dXndYkuR7qW+JsjflhxT99vZvf5yYpqLPbTy4cVHZK0ltJrdRUmKSjm0+ptzTuarXpJ6uuO+KEucAAICSzILNLuyUpTjKXgAAgOrWtWAvzYPlvO4lkv5WjvM7FOylqStpSMEOuIGwnmEK6xlW6nnX/POacl3XP9RfN8y+oUznNh3SVE2HNC3TuV4+Xmp+d3M1v7t5ufIAAACUhjl7AQAAAAAAAMADMLIXAADAbjIk5V3kdS/lT8MAoEJy03PlynNd8HXDy5BPoE8NJgIAAKUxTVOmaZ+pE+yUpTjKXgAAALtZJunni7werPJP+QCgyO43dittT9oFX/e91LfcUz4AAADYAWUvAACA3dyu/MXXLoQBh0ClNB/eXHkZFx4+7+XDbHcAAMA9UfYCAADYTSOrAwCeLaBFgNURAABAOZkFm13YKUtx/MgaAAAAAAAAADwAI3sBAADczfeSPpV0QlInSRHFXpun/AXeplXh/eZL+k3SZZL6SWpZhdcGbOb41uP6be1vOnP0jEK7h6r1pNZFr+18Yady03PV5dkuVXa/Xf/apfSf0lW3UV01G9ZMwe2Dq+zaAACg9qHsBQAAcCfZkhIlBUi6TVLjCl5nn6Sdkn6VdExSkC686NvNko5I+lzSakkPVfCegM3lZeVp/7z98gnyUbOoZgpoWf7pHvKy8vT7pt918puTyvgtQ3mZefIP81dYrzBdfsvlMryMEuc3GtBIGb9m6PC6w9o/d7+ueYGF4QAAOB/TNGWa9pk6wU5ZiqPsBQAAcCe/S8qV1EPS9ZW4znfKL3sbSgos5dzWBXuupPXKHzlcrxL3BmzqzOEzcmW71LB/Q4X3Ca/QNbKOZengkoMKbh+shv0ayruut059f0oH4w4q/UC62kxuU+L8Bh0bqEHHBjJzTSWtTlJueq7qBPBtGgAAqBjeRQAAANSUeZIaSIqsxDVyCj5Wdn2pvpLukuQtKU7S0TJ8TuE9s0XZC9vZ+cJO+YX6qc2kNqWffAGuLJckySfIp8LX8AnyUee/dVa9xn88JJffcrn2z9uv3zf9riaDmsj/cv9zPy84/555WXmUvQAAoMJYoA0AAMCdVOS3xfZJek7SSkl5BceClF/0lkfhb5/b8zfWYLHk5GS5XC6rY1RKRX4d89TOU/ryz19q76y9MvNM+QT6lCh6C4V0DZGUP3r4vIyKZwAAoLYwbbTZFWUvAACAOyl8X2lc9Kw/7Ja0RFJHSUNV/oK3OMpeXMCxY8fUtGlTXXXVVUpISHDf0rfgv23DKNsDdvLbk9r9n90K6RaiNtFtZHhf+POyU7MlSXUCzz9q1yhqe8seFwAA4GyUvQAAAO4kreDjub8Ffq5dkpZJ6iJpiCr/zs+v4GN6Ja8Dj5Oenq7c3Fz98MMPioqKctvSN/tUfiHrXa/0n4qc+OqE9ryxR5fdeJlaT2x9zsJrxblyXUr+KFl+oX4KaHH+OVgK75lzKue8rwMAAJQFk0EBAABUhzxJmWcdcxUcP33W8boqvYg9I+mkpC+UX7o2LuX87yStlnStpDtV9pHAF9NE+SODP5XUX1Kw/iiAq0BSUpISExOr7oKoMcePH5f0xxQEhaVveHi4nnnmGcXExFTp/Vy5LuWdyStxzMwzZeaaykkrWZbWqV/nokWsJOVm5CrzaKYOf3hY3nW9FdDy4pNiH9tyTPvn7lfYLWFqMapFqSOBD8Yf1JlDZ3TF/VdccPRvQMsAGXUM/fbOb2o2vJn8Qvzk7V+ZofgAAHgWU6atpjuy61QOlL0AAADV4RdJC85zPEnS92cde0DSJaVcb6mkn5Vfro7QxUvWU5ISJF0paUAZspZVoPKngkiQ9IbyRwxXZrG5s3z00Ud67LHHqu6CqDFnj+At/EYsOTlZL730UpWXvWn70vTDiz+cczx9f7qOf3m8xLGrn79a/qEXHwq/+/XdStuTJu+63mr353YXLVmzjmVp3+x9uvTaS9VydMtSsx56/5COfnpUTSKa6JLOF37QfRv4qk10G+2bvU87ntqh0BtDK7XYHAAAqJ0oewEAAKpDuKRxZx1bJylA0o1nHb/4IMJ8/SUdlbRB+SN275Pke4FzA5RfzO6V9JtKHwVcVqclvS0pTPlfw+VVdN0CEydO1MSJE6v2oqgRBw8eVMuW+cWnYRgyTVOtWrXSs88+q5EjR1b5/eo3ra8OD3Uocezn5T/LJ9hHjW5vVOK4b/CFHpQ/NB/eXBm/Zui3tb9p35x9uvrvV8vb7/yFr0+wj3wb+OrUd6eUfjD9gtMySNLRTUf1y6pfFHZLmJoManLRDDlpOTqw8IDqNaqnhrc3VL2m5y7yBgAAUBrKXgAAgOpQV1Lrs475K7+IPft4WTTWH6XtGkm/Smp1gXPrSBqt/JHFiyVNVH5BW1m/KH9qitsltaiC68EjtWzZsqjk9faunmkI6tSvo+Arg0sc867nLZ9gn3OOl0VAi4D80taQDsw7oPQD6QrucP7rePl46Yr7rtAPL/6gH1/5UVc+eqXqNT63mD2x/YQOLDigkGtC1HJM6SOA0/amKS8jT81HNFfQFUHl/hoAAPB0ZsFmF3bKUhwLtAEAALiTwv7p7PmAz+Yvaayk+pIWSjpRBffOKvhID4WzNGrUSBMnTtTixYu1Z88ejRkzptqK3urkF5I/P0puRu5Fz6tTr47aP9hePoE++uHfPyjzaMkHMnVPqvbO2qugdkFqE92m1DmDJRXNQewbUvpIZAAAgAthZC8AAIA7KeyMyjKQoL6k8ZLmKr/wnaQ/itpkSbsL/nxC+UXuhoK/h0u64jzXK7xnVSz2Bo/i6+uruXPnWh2j8srxfPkE+qjDQx2085879cO/f1DHxzvK9xJfZR3P0u7/7JZhGArpFqLj20rOIVyvST3Vb1r/nOsVjQ7i+QIAAJVA2QsAAOBOCn8v6+IDD/8QpJKF70Tll8CHJX1y1rmFf++i85e9hffkd8PgoQpH4LpyXKWcmc/3Et8She+Vj12pzN8zi0bpHow7eM7nNB7c+LxlryvbVSIDAAAoyTTNokVg7cBOWYqj7AUAAKgpVbH2WGDBx52Smih/DmC/Uu4RIumRs451LdjLIlNSuqQflF/0nttTAZbr+FjHSl/D95L8KRRObDuhwFaB8gn2kbf/H9NRnO8e/mH+6vZSt6K/B7cP1g2zbyjzPXMzcpWTmqOTX5+U4W3IJ9CnEl8BAACo7Sh7AQAA3EmIpI7KL3v3KH8UbmQ133OJpJ8L/nyjeAcJj+V/mb9Crg3RiW0ndPLbkwq9MVRtJrWp1nvufn230vakSZIa3t5QXj4MnQcAABXHW3UAAAB3c7ek/pJOSapbA/e7XflTOIQofyQx4MHaTW2nrBNZyjqWpToB1f/tUosRLeTKdskvzE++wSzOBgDAhZgFm13YKUtxlL0AAADuKLhgrwmNaug+gE34hfjJL8Sv9BOrQP3mzIsCAACqDr8jBAAAAAAAAAAegJG9AAAAAAAAAGzNNE2Zpn2mTrBTluIY2QsAAAAAAAAAHoCRvQAAAJ7ie0mfSjohqZOkiGKvnZT0mvIXdGspaZBqZnE3wIMc33pcv639TWeOnlFo91C1ntS66LXMY5n6Zvo3qlO/joI7BKvluJaqU49vtwAAQM3i3QcAAIAnyJaUKClA0m2SGp/1en1Jd0k6LOlLSZdK6lOD+QA3l5eVp/3z9ssnyEfNopopoGVAidd9An3UakIrnf75tI6sPyL/y/3VNKKpRWkBAPA8ZsFmF3bKUhxlLwAAgCf4XVKupB6Srj/P676Suhbs+yQl11w0wBOcOXxGrmyXGvZvqPA+4ee87u3nrbCeYVJPKWVnijKSMixICQAAajvm7AUAAPAEOQUfAy561h/nZFdjFsADubJckiSfIJ9Sz/UJ8lFeZl51RwIAADgHI3sBAAA8QXl+i8wo5/kAyrfitmHfFboBAHBXpmna6n9f7ZSlOEb2AgAAeILC95pGGc6l7AXKr+CZMYzSHzLDMHjGAACAJSh7AQAAPEFawUf/MpzrJym9GrMAHij7VP7cJ971vEs917uut3JScko9DwAAoKpR9gIAALizM5IOSfpC+SVu4zJ8TgtJJyRtkZQiialFgQvKzchV+sF0Hf7wsLzreiugZekTYwe1C1Lm0Uwlr09W1oksuXJdNZAUAADPZtpwsyPm7AUAALCLXOWXt8XV18V/PL9U0s/KL3pHFHwszfWSkiS9V7DfI6llecMC7seV61Lu6dwSx3wCfWR4XXhqht2v71banjR51/VWuz+3k7d/6SN7w28LV9qBNB2MP6iD8QfV4ZEOCm4fXOn8AAAApaHsBQAAsIskSQvOOvaApEsu8jn9JR2VtEHSakn3SfIt5T7fSNol6TpJrSWFVyAr4IbS9qXphxd/KHHs6uevln/ohec/aT68uTJ+zdBva3/Tvjn7dPXfr5a338UL3983/a4T207o8j6Xq8GVDVS/af0qyQ8AAFAayl4AAAC7CJc07qxjpf3GeGP9MXXDGkm/SmpVyufsltRA0oBy5gPcXP2m9dXhoQ4ljvkGX/ynIwEtAhTQIkAypAPzDij9QLqCO1x8lO7Jb0/KL9RPLUczZB4AgKpimqZM0z5TJ9gpS3GUvQAAAHZRV/kjbSuisHvKLMO5WZKCKngfwI3VqV9HwVdWbDoFv5D8OVJyM3JLOVPKO5Mn30tKG2IPAABQ9VigDQAAwBMUTjlalgEGZrHzAZRNOZ4x0zR5xgAAgCUY2QsAAOAJCn+EX/qgw/xzGHQIlEvhIm6uHFep57pyXGVayA0AAJSdWbDZhZ2yFMfIXgAAAE8QWPBxp6Tjyp+qoTiXpHRJP0k6IqZxAMqpcFqGE9tOKPNIpvIy80q8brpMZadkK+XHFJ357Yx8G/ATFQAAUPMY2QsAAOAJQiR1VH7Zu0dSF0mRxV5PkfRqwZ/9JF1bo+kAt+d/mb9Crg3RiW0ndPLbkwq9MVRtJrUpej3rRJa+eeIbSZJ3XW9d3vtyi5ICAIDajLIXAADAU9wtqb+kU8pf7K24AEnjJflLukyST40mAzxCu6ntlHUiS1nHslQnoOS3Ur7BvurwcAd51/VWvcb15OXDL1ECAFCVTNPMnxffJuyUpTjKXgAAAE8SXLCfzUdSqxrOAnggvxA/+YX4nXPcy8dLwR3O9/ABAADUHH7cDAAAAAAAAAAegJG9AAAAAAAAAGzNLNjswk5ZimNkLwAAAAAAAAB4AEb2AgAAVNYxqwPYDP8eqGJnDp+xOoKt8O8BAAAuhLIXAACgggIDA/P/kGBtDrsq+vcBKqjwv6F9s/dZnMSeeMYAALWJaZoyTftMnWCnLMVR9gIAAFRQ27ZttWfPHqWlpVkdxXYCAwPVtm1bq2PAzfGMXRjPGAAAOB/KXgAAgEqgbJFSU1MVGBgowzCsjgIPxDMGAABQdizQBgAAgEoZMGCAhg8fbttfZQMAAID7M2242RFlLwAAACrlkUce0cqVK/WPf/zD6igAAABArUbZCwAAgEqJiIjQ008/rf/7v//T2rVrrY4DAAAA1FrM2QsAAIBKe+qpp/TNN99ozJgx+vLLL3XFFVdYHQkAAAAexDRNW00bZqcsxTGyFwAAAJXm5eWlhQsXqnHjxhoyZIhSUlKsjgQAAADUOpS9AAAAqBJBQUFKTExUcnKyxo0bJ5fLZXUkAAAAoFah7AUAAECVadeuneLj47V27Vo988wzVscBAACAhzBtuNkRZS8AAACK7Nq1S4MGDVJmZmaFrzFgwAD9/e9/17PPPquEhIQqTAcAAADgYih7AQAALLJ+/XqtWLHC6hgl+Pj46J133tHKlSsrdZ0nnnhCw4YN0/jx4/X9999XUToAAAAAF2OYdl06DgAAwIO99957GjRokIKCgnTy5Emr45TQt29fZWdn67PPPqvUddLT03XjjTcqIyNDW7du1SWXXFJFCQEAAFBbpKamKjg4WB//8LECAgOsjlMkPS1dfTv0VUpKioKCgqyOU4SRvQAAADVszpw5GjRokG0XMHM4HNq4caN27txZqesEBAQoMTFRJ06c0KhRo5SXl1dFCQEAAACcD2UvAABADTFNU08//bSio6OLit4zZ85YnOpcERERCgsL06xZsyp9rVatWmn58uX68MMP9eSTT1ZBOgAAAAAXQtkLAABQA/Ly8jR58mQ9++yzJY5nZWUpIyPDolTn5+vrq4kTJ2rhwoVVku22227Tv/71L/3zn//UsmXLqiAhAAAAaiPTRptdUfYCAADUgKSkJC1YsECGYZzz2u+//25BooubMmWKTp06peXLl1fJ9R588EGNGTNGEydO1Lffflsl1wQAAABQEmUvAABADWjRooW+//573X///fL29pakouL32LFjVkY7r9atW6tfv35yOp1Vcj3DMBQbG6sOHTooIiLCll8zAAAA4O4oewEAAGpIhw4dNHHiROXl5em+++7TddddJ0lF5a/dTJ06VZs3b9aOHTuq5Hp169bV6tWrdfr0aY0YMUK5ublVcl0AAAB4PtM0bbfbEWUvAABADXI6nQoPD9dLL72kzZs3KzU1VVdffbXVsc5r8ODBCg8Pr7LRvZLUrFkzrVixQhs2bNCjjz5aZdcFAAAA7OzNN99U586dFRQUpKCgIPXo0UPvvfde0euZmZmaNm2aLr30UgUEBCgqKkpHjhwp930oewEAAGpIenq6Fi9erOjoaPn4+EiSAgMDLU51YT4+Ppo8ebIWL16s06dPV9l1b7nlFr3yyit65ZVXtHDhwiq7LgAAAGBXTZo00fPPP6+vvvpK27ZtU58+fTRkyBDt3LlTUv4aF2+//XbRwIhDhw5p6NCh5b6PYdp1zDEAAICHmT17tmJiYvTTTz+pefPmVscpk59//lktW7ZUbGysJk+eXGXXNU1TkydPVnx8vDZu3Khrr722yq4NAAAAz5Gamqrg4GB9uOtD1Q+sb3WcIqfTTqvflf2UlJSkoKCgouN+fn7y8/Mr0zVCQkL0r3/9S8OGDdNll12m+Ph4DRs2TJL0448/qkOHDvriiy90ww03lDkXI3sBAABqiNPp1J133uk2Ra8kNW/eXHfccUeVTuUg5S/Y9sYbb6hLly6KjIys0K+oAQAAAFZr2rSpgoODi/YZM2aU+jl5eXlaunSpTp8+rR49euirr75STk6ObrvttqJz2rdvr2bNmumLL74oVx7KXgAAgBrw9ddfa9u2bXI4HFZHKTeHw6GtW7dq+/btVXpdf39/JSQkKDc3V8OGDVN2dnaVXh8AAACobklJSUpJSSnap0+ffsFzv/vuOwUEBMjPz09Tp07V6tWrdeWVVyo5OVm+vr5q0KBBifMvv/xyJScnlysPZS8AAEANcDqdaty4sQYMGGB1lHIbOHCgGjduXOWjeyWpcePGWrVqlbZs2aIHH3ywyq8PAAAAz2Capu12SUULrhXuF5vC4YorrtA333yjLVu26E9/+pPuuece7dq1q0r/nSh7AQAAqllaWpri4+MVHR2tOnXqWB2n3OrUqaPJkycrLi5OaWlpVX79G2+8Uf/973/1xhtvaPbs2VV+fQAAAMAOfH191aZNG3Xr1k0zZsxQly5d9Oqrryo8PFzZ2dk6depUifOPHDmi8PDwct2DshcAAKCaxcfHKyMjQ9HR0VZHqbDo6GhlZGRoyZIl1XL9KVOmaOrUqfrzn/9c7nnJAAAAAHfkcrmUlZWlbt26ycfHRx9//HHRa7t379Yvv/yiHj16lOuahlk45hgAAABVzjRNdevWTU2aNNFbb71ldZxKGTx4sA4dOqSvvvqqWq6fnZ2tPn36aP/+/frqq6/UqFGjarkPAAAA3EdqaqqCg4P1wc4PVD+wvtVxipxOO63bO96ulJQUBQUFlXr+9OnTdeedd6pZs2ZFv/n3z3/+Ux988IH69eunP/3pT3r33Xc1f/58BQUF6b777pMkff755+XKxcheAACAarRt2zZt377dLRdmO5vD4ShaaK46+Pr6auXKlfL29tbQoUOVlZVVLfcBAAAAatrRo0c1fvx4XXHFFerbt6+2bt1aVPRK0ssvv6xBgwYpKipKvXr1Unh4uBISEsp9H0b2AgAAVKPo6Gh9+OGHOnDggLy9va2OUyl5eXlq2bKlbr/9dsXGxlbbfbZu3aqbb75ZY8aM0ezZs2UYRrXdCwAAAPbmKSN7awojewEAAKpJSkqKlixZoujoaLcveiXJ29tb0dHRWrJkiVJTU6vtPt27d5fT6dTcuXP15ptvVtt9AAAA4D5M07TdbkeUvQAAANUkLi5OWVlZmjx5stVRqszkyZOVmZmpuLi4ar3PPffcowceeEAPPPCAPv3002q9FwAAAOApKHsBAACqgWmacjqdGjx4sEctNNa4cWMNGjRIM2fOrPbRDP/617908803a9iwYUpKSqrWewEAAACegLIXAACgGmzZskU7duzwiIXZzuZwOLRjxw5t2bKlWu/j4+OjZcuWqV69eoqMjNSZM2eq9X4AAACwL9OGmx1R9gIAAFSDmTNnqkWLFurfv7/VUapc//791aJFCzmdzmq/12WXXabVq1dr165diomJse3caAAAAIAdUPYCAABUsZMnT2rZsmWKiYmRl5fnvd3y9vbWlClTtGzZMp06dara79e1a1fNmTNHixcv1iuvvFLt9wMAAADcled99wEAAGCxRYsWKTc3VxMnTrQ6SrWZNGmScnJytGjRohq536hRo/Too4/qkUce0UcffVQj9wQAAIB9mKZpu92OKHsBAACqUOHCbBEREQoPD7c6TrUJDw/XkCFD5HQ6a+yN7owZM3TbbbdpxIgR+umnn2rkngAAAIA7oewFAACoQps2bdKuXbs8cmG2szkcDu3cuVOff/55jdzP29tbS5YsUYMGDRQREaHTp0/XyH0BAAAAd0HZCwAAUIWcTqdat26tPn36WB2l2vXt21etWrWqkYXaCoWEhGjNmjXav3+/Jk2aZNtfnwMAAEDVMm242RFlLwAAQBU5fvy4VqxY4bELs53Ny8tLMTExWr58uU6cOFFj9+3UqZMWLlyo5cuX64UXXqix+wIAAAB25/nfhQAAANSQhQsXyuVyacKECVZHqTETJ06Uy+XSwoULa/S+Q4cO1V//+ldNnz5d77//fo3eGwAAALAryl4AAIAqULgw29ChQxUWFmZ1nBoTFhamyMjIGl2ordAzzzyjgQMHauTIkdq7d2+N3hsAAAA1yzRN2+12RNkLAABQBT799FPt3r27VizMdjaHw6Eff/xRn332WY3e18vLS4sXL1Z4eLiGDBmitLS0Gr0/AAAAYDeUvQAAAFXA6XSqXbt26t27t9VRatytt96qtm3b1uhCbYWCg4OVmJioX3/9VePHj5fL5arxDAAAAIBdUPYCAABU0rFjx7Rq1SrFxMTIMAyr49Q4wzAUExOjlStX6tixYzV+//bt2ysuLk6JiYl67rnnavz+AAAAqH6mDTc7ouwFAACopPnz50uS7rnnHmuDWKhwUboFCxZYcv/Bgwfr2Wef1dNPP6233nrLkgwAAACA1Sh7AQAAKsE0Tc2aNUvDhg1TaGio1XEsExoaqqioKEsWaiv05JNPaujQoRo7dqx++OEHSzIAAAAAVqLsBQAAqIRPPvlEe/furZULs53N4XBo7969+uSTTyy5v5eXl+bPn69mzZppyJAhOnXqlCU5AAAAUPVM07TdbkeUvQAAAJXgdDrVoUMH3XzzzVZHsVyvXr3Uvn17SxZqKxQYGKjExET9/vvvGjNmjPLy8izLAgAAANQ0yl4AAIAKOnLkiBISEmrtwmxnMwxDDodDq1ev1tGjRy3L0aZNGy1dulTvv/++nnrqKctyAAAAADWNshcAAKCC5s2bpzp16mj8+PFWR7GN8ePHy8vLS/PmzbM0x+23364ZM2boH//4h1asWGFpFgAAAFSeacPNjih7AQAAKsDlcik2NlbDhw9XSEiI1XFsIyQkRMOHD9esWbPkcrkszfLoo49qxIgRmjBhgnbs2GFpFgAAAKAmUPYCAABUwEcffaQDBw6wMNt5OBwOHThwQB9//LGlOQzD0Jw5c9S2bVtFREToxIkTluYBAAAAqhtlLwAAQAU4nU516tRJPXr0sDqK7dx4443q2LGjpQu1Fapfv74SExOVmpqqkSNHKjc31+pIAAAAqADTNG232xFlLwAAQDkdPnxYa9askcPhYGG28yhcqG3NmjVKTk62Oo5atGih5cuXa/369Zo+fbrVcQAAAIBqQ9kLAABQTnPnzpWvr6/Gjh1rdRTbGjdunHx8fDR37lyro0iS+vTpo5deekkvvvii4uPjrY4DAAAAVAvKXgAAgHLIy8tTbGysRo4cqQYNGlgdx7YaNGigESNGKDY21vKF2grdf//9Gj9+vCZPnqyvv/7a6jgAAAAoB9OGmx1R9gIAAJTDunXr9PPPP7MwWxk4HA4dPHhQ69atszqKpPzpJWbOnKlOnTopIiJCR48etToSAAAAUKUoewEAAMrB6XSqS5cuuu6666yOYnvXX3+9OnfubIuF2grVrVtXCQkJysrK0vDhw5WTk2N1JAAAAKDKUPYCAACU0W+//aa1a9eyMFsZFS7U9vbbb+vQoUNWxynStGlTrVy5Ups2bdLDDz9sdRwAAACUgWmattvtiLIXAACgjObMmSN/f3+NGTPG6ihuY8yYMfLz89OcOXOsjlLCzTffrNdee03/+c9/NG/ePKvjAAAAAFWCshcAAKAM8vLyNHv2bI0aNUpBQUFWx3EbwcHBGjVqlGJjY5WXl2d1nBKmTp2q6OhoTZ06VVu2bLE6DgAAAFBplL0AAABl8N577ykpKYmF2SrA4XAoKSlJ7733ntVRSjAMQ6+//rq6deumoUOHKjk52epIAAAAuADThpsdUfYCAACUgdPp1DXXXKNrr73W6ihu59prr1XXrl1ttVBbIT8/P61atUqmaSoqKkrZ2dlWRwIAAAAqjLIXAACgFL/88oveffddRvVWUOFCbe+++66SkpKsjnOOhg0bKiEhQdu2bdN9991ndRwAAACgwih7AQAASjF79mzVr19fo0aNsjqK2xo9erTq1aun2bNnWx3lvG644Qa9+eabmjVrli1HIAMAANR2pmnabrcjyl4AAICLyM3N1Zw5czRmzBgFBgZaHcdtBQYGasyYMZo9e7Zyc3OtjnNekyZN0rRp03Tfffdp48aNVscBAAAAyo2yFwAA4CLWrl2rQ4cOMYVDFXA4HDp06JDeeecdq6Nc0Msvv6wePXpo2LBh+vXXX62OAwAAAJQLZS8AAMBFOJ1OXXfddbr66qutjuL2unbtqu7du9t6mgQfHx+tWLFCPj4+Gjp0qDIzM62OBAAAgAKmjTa7ouwFAAC4gIMHD+qDDz5gVG8Vcjgcev/993Xw4EGro1xQWFiYEhMT9d1332nq1Km2nY8NAAAAOBtlLwAAwAXExsYqMDBQI0aMsDqKxxg5cqQCAwNtu1BboW7duik2NlYLFizQ66+/bnUcAAAAoEwoewEAAM4jJydHc+fO1bhx41S/fn2r43iM+vXra+zYsZozZ45ycnKsjnNRY8eO1UMPPaQHH3xQ//vf/6yOAwAAUKuZMmWaNtptOpUDZS8AAMB5vPXWW0pOTmYKh2rgcDiUnJyst99+2+oopfrnP/+p3r176+6779bPP/9sdRwAAADgoih7AQAAzsPpdKpHjx666qqrrI7icTp37qwbbrjB1gu1FapTp46WLVumgIAARUREKCMjw+pIAAAAwAVR9gIAAJxl//79+vDDDxnVW40cDofWrVunAwcOWB2lVJdeeqkSExO1Z88eRUdHs2AbAACABUwbbnZE2QsAAHCW2NhYNWjQQMOHD7c6iscaPny4goODFRsba3WUMunSpYvmzZunJUuW6KWXXrI6DgAAAHBelL0AAADFZGdna968eRo/frzq1q1rdRyPVa9ePY0fP15z585Vdna21XHKZPjw4XriiSf0+OOPa926dVbHAQAAAM5B2QsAAFBMYmKijh49yhQONcDhcOjo0aNKTEy0OkqZPffcc7r99ts1cuRI7d+/3+o4AAAAtYZpmrbb7YiyFwAAoBin06mbbrpJV155pdVRPF7Hjh3Vs2dPt1iorZC3t7fi4+MVGhqqiIgIpaenWx0JAAAAKELZCwAAUGDPnj1av349o3prkMPh0Pr167V3716ro5RZgwYNlJiYqIMHD2rChAm2HdUBAACA2oeyFwAAoMCsWbMUEhKiYcOGWR2l1hg2bJguueQSzZo1y+oo5XLllVdq0aJFWrVqlf7xj39YHQcAAMDjmTbc7IiyFwAAQFJmZqbmz5+vCRMmyN/f3+o4tUbdunU1YcIEzZ8/X1lZWVbHKZeIiAg9/fTT+r//+z+tXbvW6jgAAAAAZS8AAIAkJSQk6Pjx44qJibE6Sq0TExOjY8eOKSEhweoo5fbUU09p8ODBGjNmjHbv3m11HAAAANRyhskkYwAAALrlllvk5eWlTz75xOootVLv3r0lSf/73/8szVERqampuv7662WaprZs2aLg4GCrIwEAAHiM1NRUBQcHa8m2JaoXUM/qOEUy0jM06tpRSklJUVBQkNVxijCyFwAA1Ho//PCDPv30UxZms5DD4dCGDRv0448/Wh2l3IKCgrRmzRodPnxY48aNk8vlsjoSAAAAainKXgAAUOvNmjVLoaGhioyMtDpKrTV06FCFhoa63UJthdq1a6clS5Zo7dq1euaZZ6yOAwAAgFqKshcAANRqZ86c0YIFCzRx4kT5+flZHafW8vPz04QJE7RgwQJlZmZaHadCBgwYoL///e969tlntXr1aqvjAAAAeBTThpsdUfYCAIBabeXKlTp58iQLs9lATEyMTpw4oZUrV1odpcKeeOIJDRs2TOPHj9fOnTutjgMAAIBahrIXAADUak6nU3379lWbNm2sjlLrtW3bVn369JHT6bQ6SoUZhqF58+apZcuWioiI0MmTJ62OBAAAgFqEshcAANRaO3fu1KZNm1iYzUYcDoc2btzo1qNiAwIClJiYqOPHj2vUqFHKy8uzOhIAAIDbM03TdrsdUfYCAIBay+l0KiwsTEOGDLE6CgpEREQoLCzMbRdqK9SqVSstW7ZMH374oZ588kmr4wAAAKCWoOwFAAC1UkZGhhYuXKhJkybJ19fX6jgo4Ovrq4kTJ2rhwoU6c+aM1XEqpV+/fnrhhRf0z3/+U8uWLbM6DgAAAGoByl4AAFArLV++XCkpKZoyZYrVUXCWKVOm6NSpU1q+fLnVUSrtoYce0ujRozVx4kR9++23VscBAABwW6YNNzui7AUAALWS0+lU//791apVK6uj4CytW7dWv379NHPmTKujVJphGIqNjVX79u0VERGhY8eOWR0JAAAAHoyyFwAA1DrffvutNm/ezMJsNuZwOLR582bt2LHD6iiVVq9ePSUmJur06dMaMWKEcnNzrY4EAAAAD0XZCwAAah2n06nw8HANHjzY6ii4gLvuukvh4eFyOp1WR6kSzZo104oVK7RhwwY99thjVscBAABwO6Zp2m63I8peAABQq6Snp2vx4sWKjo6Wj4+P1XFwAT4+Ppo8ebIWL16s06dPWx2nStxyyy165ZVX9PLLL2vhwoVWxwEAAIAHouwFAAC1ytKlS5Wenq7o6Giro6AUU6ZMUVpampYuXWp1lCozbdo0TZw4UTExMdq2bZvVcQAAAOBhKHsBAECt4nQ6deedd6p58+ZWR0EpmjdvrjvuuMNjpnKQ8hdse+ONN9SlSxdFRkbqyJEjVkcCAABwC6YNNzui7AUAALXG119/rW3btrEwmxtxOBzaunWrtm/fbnWUKuPv76+EhATl5ORo2LBhys7OtjoSAAAAPARlLwAAqDWcTqcaN26sAQMGWB0FZTRw4EA1btzYo0b3SlLjxo21atUqbdmyRQ8++KDVcQAAAOAhKHsBAECtkJaWpvj4eEVHR6tOnTpWx0EZ1alTR5MnT1ZcXJzS0tKsjlOlevbsqddff11vvPGGZs+ebXUcAAAAWzNN03a7HVH2AgCAWiE+Pl4ZGRkszOaGoqOjlZGRoSVLllgdpcrFxMRo6tSpmjZtmr744gur4wAAAMDNUfYCAACPZ5qmnE6nBg4cqCZNmlgdB+XUtGlTDRgwwOOmcij06quvqnv37oqKitKhQ4esjgMAAAA3RtkLAAA83rZt27R9+3YWZnNjDoejaIE9T+Pr66uVK1fKy8tLUVFRysrKsjoSAACA7Zg23OyIshcAAHg8p9OpZs2a6Y477rA6CirozjvvVNOmTT12dG94eLhWr16t7du3689//rNt54ADAACAvVH2AgAAj5aSkqIlS5YoOjpa3t7eVsdBBXl7eys6OlpLlixRamqq1XGqRffu3TVz5kzNnTtXb775ptVxAAAA4IYoewEAgEeLi4tTVlaWJk+ebHUUVNLkyZOVmZmpuLg4q6NUmwkTJuj+++/XAw88oE8//dTqOAAAALZhmqbtdjui7AUAAB6rcGG2wYMHq1GjRlbHQSU1btxYgwYN0syZM2375roqvPjii7rppps0bNgwJSUlWR0HAAAAboSyFwAAeKwtW7Zox44dLMzmQRwOh3bs2KEtW7ZYHaXa+Pj4aPny5apXr54iIyN15swZqyMBAADATVD2AgAAjzVz5ky1aNFC/fv3tzoKqkj//v3VvHlzj12ordBll12m1atXa9euXYqJifHokcwAAABlYdpwsyPKXgAA4JFOnjypZcuWacqUKfLy4i2Pp/D29taUKVO0bNkynTp1yuo41apr166aM2eOFi9erFdffdXqOAAAAHADfOcDAAA80qJFi5Sbm6tJkyZZHQVVbNKkScrJydGiRYusjlLtRo0apUcffVSPPPKIPv74Y6vjAAAAwOYoewEAgMcpXJgtIiJC4eHhVsdBFWvYsKGGDBkip9NZK6Y3mDFjhvr27avhw4frp59+sjoOAACAJUzTtN1uR5S9AADA42zatEm7du1iYTYP5nA4tHPnTn3++edWR6l23t7eWrJkiRo0aKCIiAidPn3a6kgAAACwKcpeAADgcZxOp1q3bq0+ffpYHQXVpG/fvmrVqpXHL9RWKCQkRImJidq/f78mTZpk25EkAAAAsBZlLwAA8CjHjx/XihUrFBMTw8JsHszLy0sxMTFavny5Tpw4YXWcGnHVVVdpwYIFWr58uV544QWr4wAAANQo04abHfEdEAAA8CgLFy6Uy+XShAkTrI6CajZx4kS5XC4tXLjQ6ig1JioqSk8++aSmT5+u999/3+o4AAAAKKMZM2aoe/fuCgwMVFhYmCIiIrR79+4S5/Tu3VuGYZTYp06dWq77UPYCAACPUbgw29ChQxUWFmZ1HFSzsLAwRUZG1pqF2go9++yzGjhwoEaNGqW9e/daHQcAAABlsGHDBk2bNk2bN2/Whx9+qJycHPXv3/+c9RimTJmiw4cPF+3l/Y2uOlUZGgAAwEqffvqpdu/erTfffNPqKKghDodDffv21WeffaZevXpZHadGeHl5afHixbr++usVERGhzZs3KzAw0OpYAAAA1co0TVv9gL+8Wc7+raz58+crLCxMX331VYn3sfXq1VN4eHiFczGyFwAAeAyn06l27dqpd+/eVkdBDbn11lvVtm3bWrNQW6Hg4GAlJiYqKSlJ48ePl8vlsjoSAABArZSamlpiz8rKKtPnpaSkSMpfiLe4uLg4hYaGqlOnTpo+fboyMjLKlYeyFwAAeIRjx45p1apViomJkWEYVsdBDTEMQzExMVq5cqWOHTtmdZwa1b59e8XFxSkxMVHPPfec1XEAAABqpaZNmyo4OLhonzFjRqmf43K59Je//EU9e/ZUp06dio6PHj1aixcv1ieffKLp06dr0aJFGjt2bLnyMI0DAADwCPPnz5ck3XPPPdYGQY2bMGGCnnzySS1YsEAPP/yw1XFq1ODBg/Xss8/qqaee0tVXX6277rrL6kgAAADVwizY7KIwS1JSkoKCgoqO+/n5lfq506ZN0/fff6+NGzeWOB4TE1P056uuukoNGzZU3759tX//frVu3bpMuRjZCwAA3J5pmpo1a5aGDRum0NBQq+OghoWGhioqKqrWLdRW6Mknn1RkZKTGjh2rH374weo4AAAAtUpQUFCJvbSy995779XatWv1ySefqEmTJhc99/rrr5ck7du3r8x5KHsBAIDb++STT7R37145HA6ro8AiDodDe/fu1SeffGJ1lBrn5eWlBQsWqGnTphoyZIhOnTpldSQAAACcxTRN3XvvvVq9erXWr1+vli1blvo533zzjSSpYcOGZb4PZS8AAHB7TqdTHTp00M0332x1FFikV69eat++fa1bqK1QYGCg1qxZo99//11jxoxRXl6e1ZEAAACqlplfmNplL++MEtOmTdPixYsVHx+vwMBAJScnKzk5WWfOnJEk7d+/X//v//0/ffXVVzp48KDeeustjR8/Xr169VLnzp3LfB/KXgAA4NaOHDmihIQEFmar5QoXalu9erWOHj1qdRxLtGnTRkuXLtX777+vp59+2uo4AAAAKObNN99USkqKevfurYYNGxbty5YtkyT5+vrqo48+Uv/+/dW+fXs9/PDDioqK0ttvv12u+7BAGwAAcGvz5s1TnTp1NH78eKujwGL33HOPpk+frnnz5unxxx+3Oo4lbr/9ds2YMUOPP/64rr76ag0bNszqSAAAAJBKXVuiadOm2rBhQ6Xvw8heAADgtlwul2JjYzV8+HCFhIRYHQcWCwkJ0fDhwzVr1iy5XC6r41jm0Ucf1YgRIzRhwgR99913VscBAACoEqYNNzui7AUAAG7ro48+0oEDB1iYDUUcDocOHDigjz/+2OooljEMQ3PmzFGbNm00ZMgQnThxwupIAAAAqCGUvQAAwG05nU516tRJPXr0sDoKbOLGG29Ux44da+1CbYXq16+vxMREpaamauTIkcrNzbU6EgAAAGoAZS8AAHBLhw8f1po1a+RwOFiYDUUMw5DD4dCaNWuUnJxsdRxLtWjRQsuWLdP69es1ffp0q+MAAABUimmattvtiLIXAAC4pblz58rX11djx461OgpsZty4cfLx8dHcuXOtjmK5vn376sUXX9SLL76o+Ph4q+MAAACgmlH2AgAAt5OXl6fY2FiNHDlSDRo0sDoObKZBgwYaMWKEYmNja/VCbYUeeOABjRs3TpMnT9bXX39tdRwAAABUI8peAADgdtatW6eff/6ZhdlwQQ6HQwcPHtS6deusjmI5wzCK5reOjIzU77//bnUkAACAcjNtuNkRZS8AAHA7TqdTXbp00XXXXWd1FNjU9ddfr86dO9f6hdoK1a1bVwkJCcrMzNTw4cOVk5NjdSQAAABUA8peAADgVn777TetXbuWhdlwUYULtb399ts6dOiQ1XFsoWnTplq5cqU2btyohx9+2Oo4AAAAqAaUvQAAwK3MmTNH/v7+GjNmjNVRYHNjxoyRn5+f5syZY3UU27j55pv12muv6T//+Y/mzZtndRwAAIAyM03TdrsdUfYCAAC3kZeXp9mzZ2vUqFEKCgqyOg5sLjg4WKNGjVJsbKzy8vKsjmMbU6dOVXR0tKZOnaotW7ZYHQcAAABViLIXAAC4jffee09JSUkszIYyczgcSkpK0nvvvWd1FNswDEOvv/66rrnmGg0dOlTJyclWRwIAAEAVoewFAABuw+l06pprrtG1115rdRS4iWuvvVZdu3Zlobaz+Pn5adWqVTJNU1FRUcrOzrY6EgAAwEWZNtzsiLIXAAC4hV9++UXvvvsuo3pRLoULtb377rtKSkqyOo6tNGrUSAkJCdq2bZvuv/9+q+MAAACgClD2AgAAtzB79mzVq1dPo0aNsjoK3Mzo0aNVr149zZ492+ootnPDDTfozTfflNPpZPQzAACAB6DsBQAAtpebm6s5c+Zo7NixCgwMtDoO3ExgYKBGjx6t2bNnKzc31+o4tjNp0iRNmzZN9913nzZt2mR1HAAAgPMyTdN2ux1R9gIAANtbu3atDh06xBQOqLCpU6fq0KFDeuedd6yOYksvv/yyevTooaioKP36669WxwEAAEAFUfYCAADbczqduu6663T11VdbHQVuqmvXrurevTtTFVyAj4+PVqxYIR8fHw0dOlSZmZlWRwIAAEAFUPYCAABbO3jwoD744ANG9aLSHA6H3n//fR08eNDqKLYUFhamxMREfffdd5o6daptfzURAADUTqYNNzui7AUAALYWGxurwMBAjRgxwuoocHMjR45UYGAgC7VdRLdu3TRr1iwtWLBAr7/+utVxAAAAUE6UvQAAwLZycnI0d+5cjRs3TvXr17c6Dtxc/fr1NXbsWM2ZM0c5OTlWx7GtcePG6cEHH9SDDz6o//3vf1bHAQAAQDlQ9gIAANt66623lJyczBQOqDIOh0PJycl6++23rY5iay+88IJ69+6tu+++Wz///LPVcQAAAGSapu12O6LsBQAAtuV0OtWjRw9dddVVVkeBh+jcubNuuOEGFmorRZ06dbRs2TIFBAQoMjJSGRkZVkcCAABAGVD2AgAAW9q/f78+/PBDRvWiyjkcDq1bt04HDhywOoqtXXrppUpMTNTu3bs1ZcoU245eAQAAwB8oewEAgC3FxsaqQYMGGj58uNVR4GGGDx+u4OBgxcbGWh3F9rp06aJ58+YpPj5eL730ktVxAABALWbacLMjyl4AAGA72dnZmjdvnsaPH6+6detaHQcepl69eho/frzmzp2r7Oxsq+PY3vDhw/XEE0/o8ccf17p166yOAwAAgIug7AUAALaTmJioo0ePMoUDqo3D4dDRo0e1Zs0aq6O4heeee079+/fXyJEjtX//fqvjAAAA4AIoewEAgO04nU7ddNNNuvLKK62OAg/VsWNH9ezZUzNnzrQ6ilvw9vZWfHy8Lr30UkVERCg9Pd3qSAAAoJYxTdN2ux1R9gIAAFvZs2eP1q9fz6heVDuHw6H169dr7969VkdxC5dccokSExN18OBBTZgwwbbf4AAAANRmlL0AAMBWZs2apZCQEA0bNszqKPBww4YN0yWXXKJZs2ZZHcVtdOzYUYsWLdKqVas0Y8YMq+MAAADgLJS9AADANjIzMzV//nxNmDBB/v7+VseBh6tbt67uuecezZ8/X1lZWVbHcRsRERF6+umn9de//lXvvPOO1XEAAEAtYdpwsyPKXgAAYBsJCQk6fvy4YmJirI6CWiImJkbHjh1TQkKC1VHcylNPPaXBgwdr9OjR2r17t9VxAAAAUICyFwAA2IbT6VTv3r11xRVXWB0FtUSHDh10yy23yOl0Wh3FrXh5eWnRokVq1KiRIiIilJqaanUkAAAAiLIXAADYxA8//KBPP/2UhdlQ4xwOhzZs2KAff/zR6ihuJSgoSGvWrNGhQ4c0duxYuVwuqyMBAAAPZpqm7XY7ouwFAAC2MGvWLIWGhioyMtLqKKhlhg4dqtDQUBZqq4B27dopPj5ea9eu1TPPPGN1HAAAgFqPshcAAFjuzJkzWrBggSZOnCg/Pz+r46CW8fPz04QJE7RgwQJlZmZaHcftDBw4UM8995yeffZZrV692uo4AAAAtRplLwAAsNzKlSt18uRJFmaDZWJiYnTixAmtXLnS6ihuafr06Ro2bJjGjx+vnTt3Wh0HAAB4INOGmx1R9gIAAMs5nU717dtXbdq0sToKaqm2bduqT58+LNRWQYZhaN68eWrZsqUiIiJ08uRJqyMBAADUSpS9AADAUjt37tSmTZtYmA2Wczgc2rhxIyNTKyggIECJiYk6fvy4Ro8erby8PKsjAQAA1DqUvQAAwFJOp1NhYWEaMmSI1VFQy0VERCgsLIyF2iqhVatWWrZsmdatW6e//vWvVscBAAAexDRN2+12RNkLAAAsk5GRoYULF2rSpEny9fW1Og5qOV9fX02cOFELFy7UmTNnrI7jtvr166cXXnhBzz//vJYtW2Z1HAAAgFqFshcAAFhm+fLlSklJ0ZQpU6yOAkiSpkyZolOnTmn58uVWR3FrDz30kEaPHq2JEyfq22+/tToOAABArUHZCwAALON0OtW/f3+1atXK6iiAJKl169bq16+fZs6caXUUt2YYhmJjY9W+fXtFRETo2LFjVkcCAABuzrThZkeUvQAAwBLffvutNm/ezMJssB2Hw6HNmzdrx44dVkdxa/Xq1dPq1auVnp6uESNGKDc31+pIAAAAHo+yFwAAWMLpdCo8PFyDBw+2OgpQwl133aXw8HA5nU6ro7i95s2ba8WKFdqwYYMee+wxq+MAAAB4PMpeAABQ49LT07V48WJFR0fLx8fH6jhACT4+Ppo0aZIWL16s06dPWx3H7fXu3VuvvPKKXn75ZS1atMjqOAAAwE2Zpmm73Y4oewEAQI1bunSp0tPTFR0dbXUU4LymTJmitLQ0LV261OooHmHatGmaOHGipkyZom3btlkdBwAAwGNR9gIAgBrndDp15513qnnz5lZHAc6rRYsWuv3225nKoYoYhqE33nhDXbp0UWRkpI4cOWJ1JAAAAI9E2QsAAGrU119/rW3btrEwG2xv6tSp2rp1q7Zv3251FI/g7++vhIQE5eTk6O6771Z2drbVkQAAgBsxbbjZEWUvAACoUU6nU40bN9aAAQOsjgJc1MCBA9W4cWNG91ahxo0ba9WqVdq8ebMefPBBq+MAAAB4HMpeAABQY9LS0hQfH6/o6GjVqVPH6jjARdWpU0eTJ09WXFyc0tLSrI7jMXr27KnXX39db7zxhmbPnm11HAAAAI9C2QsAAGpMfHy8MjIyWJgNbiM6OloZGRlasmSJ1VE8SkxMjBwOh6ZNm6YvvvjC6jgAAMBNmKZpm92uKHsBAECNME1TTqdTAwcOVJMmTayOA5RJ06ZNNWDAAKZyqAavvfaaunfvrqioKB06dMjqOAAAAB6BshcAANSIbdu2afv27SzMBrfjcDiKFhZE1fH19dXKlSvl5eWlqKgoZWVlWR0JAADA7VH2AgCAGuF0OtWsWTPdcccdVkcByuXOO+9U06ZNGd1bDcLDw7V69Wpt375d06ZNs/WvRAIAAGuZNtzsiLIXAABUu5SUFC1ZskTR0dHy9va2Og5QLt7e3oqOjtaSJUuUmppqdRyP0717d82cOVNz5szRzJkzrY4DAADg1ih7AQBAtYuLi1NWVpYmT55sdRSgQiZPnqzMzEzFxcVZHcUjTZgwQffff7/uv/9+ffrpp1bHAQAAcFuUvQAAoFoVLsw2ePBgNWrUyOo4QIU0btxYgwYNktPpZKqBavLiiy/qpptu0rBhw5SUlGR1HAAAYDOmadputyPKXgAAUK22bNmiHTt2sDAb3J7D4dC3336rLVu2WB3FI/n4+Gj58uWqW7euIiMjdebMGasjAQAAuB3KXgAAUK2cTqdatGih/v37Wx0FqJT+/furefPmLNRWjS677DIlJiZq165diomJse2IGQAAALui7AUAANXm5MmTWrp0qaZMmSIvL952wL15e3trypQpWrZsmU6dOmV1HI/VtWtXzZkzR4sXL9arr75qdRwAAGATpg03O+K7LgAAUG0WLVqk3NxcTZo0yeooQJWYNGmScnJytGjRIqujeLRRo0bp0Ucf1SOPPKKPP/7Y6jgAAABug7IXAABUi8KF2SIiIhQeHm51HKBKNGzYUHfddRcLtdWAGTNmqG/fvhoxYoR++uknq+MAAAC4BcpeAABQLTZt2qRdu3axMBs8jsPh0M6dO/X5559bHcWjeXt7a8mSJQoODlZkZKROnz5tdSQAAGAh0zRtt9sRZS8AAKgWTqdTrVu3Vp8+fayOAlSp2267Ta1atWKhthoQEhKixMRE7du3T5MnT7btN1UAAAB2QdkLAACq3PHjx7VixQrFxMSwMBs8jpeXl2JiYrR8+XKdOHHC6jge76qrrtKCBQu0bNkyvfDCC1bHAQAAsDW++wIAAFVu4cKFcrlcmjBhgtVRgGoxceJEuVwuLVy40OootUJUVJSefPJJTZ8+Xe+//77VcQAAgAVMG252RNkLAACqVOHCbEOHDlVYWJjVcYBqERYWpsjISBZqq0HPPPOMBgwYoFGjRmnv3r1WxwEAALAlyl4AAFClPv30U+3evZuF2eDxHA6HfvzxR3322WdWR6kVvL29FRcXp7CwMEVERCgtLc3qSAAAALZD2QsAAKqU0+lUu3bt1Lt3b6ujANXq1ltvVdu2bVmorQYFBwdrzZo1SkpK0vjx4+VyuayOBAAAaohpmrbb7aiO1QEAAIDnOHbsmFatWqV//OMfMgzD6jg1Yu/evYwwPI/AwEC1bdvW6hjVyjAMxcTE6Mknn9Srr76q0NBQqyPVCu3bt1dcXJzuuusu/f3vf9f//d//WR0JAADANih7AQBAlZk/f74k6Z577rE2SA3Zu3ev2rVrZ3UM29qzZ4/HF74TJkzQk08+qQULFujhhx+2Ok6tMXjwYD377LN66qmn1KVLF911111WRwIAALAFyl4AAFAlTNPUrFmzNGzYsFozwrFwRK8RZUi140sum2OSucqsFSOeQ0NDFRUVJafTqYceeqjWjGi3gyeffFLbt2/X2LFjtWXLFnXo0MHqSAAAoBqZBZtd2ClLcZS9AACgSnzyySfau3evZs+ebXWUmhcqGY0o+QrZ9Y1vdXE4HFqyZIk++eQT9enTx+o4tYaXl5cWLFigG264QUOGDNGXX36pBg0aWB0LAADAUizQBgAAqoTT6VSHDh108803Wx0FqFG9evVS+/btWajNAoGBgVqzZo1+//13jRkzRnl5eVZHAgAAsBRlLwAAqLQjR44oISFBMTEx/Bo7ap3ChdpWr16to0ePWh2n1mnTpo2WLFmi9957T08//bTVcQAAQDUxTdN2ux1R9gIAgEqbN2+e6tSpo/Hjx1sdBbDEPffcIy8vL82bN8/qKLXSHXfcoRkzZujvf/+7Vq5caXUcAAAAy1D2AgCASnG5XIqNjdXw4cMVEhJidRzAEiEhIbr77rs1a9YsuVwuq+PUSo899phGjBihCRMm6LvvvrM6DgAAgCVYoA0AAFTKRx99pAMHDmjRokVWR7Etc7spMzH/17yMSYaM5iWnujBNU+a/TSlVUjvJa0zZfx5vppoy3zel/ZJMSS0k4w5DRshZ9/jSlPmTKf0mKUXS1ZJX5PnvY54xZX5oSj9IypHUWDJuN1iErhQOh0OLFy/Wxx9/rH79+lkdp9YxDENz5sxRz549FRERoa1bt/IDKAAAPIhZsNmFnbIUx8heAABQKU6nU506dVKPHj2sjmJ/dSTzu/O8KTyo/KK3nD+GN7NMmfNN6aBk3GzI6G1IyZI5z5SZUfI+5iZT+knSZbroO0DTZcqMM6XvJOM6Q0Y/QzotmfNNmcft+YbWLnr27Kkrr7yShdosVL9+fSUmJiolJUUjR45Ubm6u1ZEAAABqFGUvAACosMOHD2vNmjVyOBwszFYWbSXtlMy8s4rY70ypkaSAcl5vq6TjkjHGkHGTIeNGQ8Y4Q0qXzM9L3sOYaMh43JDXOK+Ll8q7JCVJRoQh41ZDxvWGjImGZEjmJ5S9F2MYhqZOnao1a9YoOTnZ6ji1VosWLbRs2TKtX79e06dPtzoOAABAjaLsBQAAFTZ37lz5+vpq7NixVkdxC8ZVhnRG0oE/jpm5prSr4LVyMneZ+VMsNP7jc43LDKmlpJ1n3buBUaZC3txl5pfOHYp9bn1D6ijpx4K8uKBx48bJx8dHc+fOtTpKrda3b1+9+OKLevHFFxUfH291HAAAUAVM07TdbkeUvQAAoELy8vIUGxurkSNHqkGDBlbHcQ8NJDU5ayqHfZIyJXUq36VMlykdUf6I4LM1lnQif5qHcjssqaFkeJUsho3GRv78vcfLf8napEGDBhoxYoRiY2NZqM1iDzzwgMaNG6fJkyfr66+/tjoOAABAjaDsBQAAFbJu3Tr9/PPPcjgcVkdxK8ZVRv4I2Zz8ItbcYeYvqhZUzpG9ZyTlSkbAuZ9nBBYcS6tAwHSdfzqJQFX8mrWMw+HQwYMHtW7dOquj1GqGYcjpdKpjx46KjIzU77//bnUkAACAakfZCwAAKsTpdKpLly667rrrrI7iXjopf4TsnoKRt3sqNoWDCtedOt/8u4XHciqQL6carlnLXH/99ercuTMLtdlA3bp1tXr1amVmZmr48OHKyeE/YAAA3JVpw82OKHsBAEC5/fbbb1q7di0Ls1WAUd+QWhWM6P1BkkvSlRW4UGH5mnue1wqP+VTguj7VcM1axjAMORwOvf322zp06JDVcWq9pk2bauXKldq4caMeeeQRq+MAAABUK8peAABQbnPmzJG/v7/GjBljdRS3ZHQ2pH2SudWU2kpG3QoU5nUl1ZHM9HNHFJhpBccCz3mpdAHKn8rhbIXTN1TkmrXQmDFj5Ofnpzlz5lgdBZJuvvlmvfbaa3rttdc0f/58q+MAAABUG8peAABQLnl5eZo9e7ZGjRqloKAgq+O4p/aSDEm/VnAKBxUsoBYm6XwDR3+TdIlk+FXg2uGSDhcsAFeM+ZuZP6r30vJfsjYKDg7WqFGjFBsbq7y8PKvjQNLUqVMVHR2tqVOn6ssvv7Q6DgAAKCfTNG232xFlLwAAKJf33ntPSUlJLMxWCYafIWOQIaO3IV1RietcaUi/FRSxBcxjpvSTpI4VvGZHI39k7w9/HDNPm9JOSVdIRh2m7Sgrh8OhpKQkvf/++1ZHgfKn13j99dfVtWtXDR06VMnJyVZHAgAAqHKUvQAAoFycTqeuueYaXXvttVZHcWvG1YaMWw0ZPpUoT6+TFCKZcabMjabML0yZC02pvmTcWPK65m5T5ob8XXmSjqjo72ZysVEJV0pqIpmJpsz/mTK/NGXONyVTMm6l6C2Pa6+9Vl27dtXMmTOtjoICfn5+WrVqlVwul6KiopSdnW11JAAAUEvMmDFD3bt3V2BgoMLCwhQREaHdu3eXOCczM1PTpk3TpZdeqoCAAEVFRenIkSPlug9lLwAAKLNffvlF7777LqN6bcLwM2RMMKTmkvmpKXO9KV0uGRON/IXgijF35b9uri8oew/rj78fLnZNL0PGWEPqJJlbTJnrTKmeZNxjyAil7C2PwoXa3n33XSUlJVkdBwUaNWqkhIQEbdu2Tffff7/VcQAAQBmZNtzKY8OGDZo2bZo2b96sDz/8UDk5Oerfv79Onz5ddM6DDz6ot99+WytWrNCGDRt06NAhDR06tFz3qVP6KQAAAPlmz56tevXqadSoUVZHcStGV0NG19KLUq8Hy/9zeCPYkDGiDNeO9JIiy3jNuoaMIYY0pNxxcJbRo0frkUce0ezZs/XMM89YHQcFbrjhBv33v//VlClT1LVrV36ABQAAKiw1NbXE3/38/OTn53fOeWdP7TV//nyFhYXpq6++Uq9evZSSkqI5c+YoPj5effr0kSTNmzdPHTp00ObNm3XDDTeUKQ8jewEAQJnk5uZqzpw5Gjt2rAIDA62OA7iFwMBAjR49WrNnz1Zubq7VcVBMdHS0/vznP+u+++7Tpk2brI4DAADcVNOmTRUcHFy0z5gxo0yfl5KSIkkKCQmRJH311VfKycnRbbfdVnRO+/bt1axZM33xxRdlzsPIXgAAUCZr167VoUOHGAFXA8yMgqkWLsRL50zTAPtyOByaNWuW3nnnHQ0ZwnBpO3nllVf0/fffKyoqSl999ZUaN25sdSQAAHABpmnKNMs3dUJ1KsySlJSkoKCgouPnG9V7NpfLpb/85S/q2bOnOnXqJElKTk6Wr6+vGjRoUOLcyy+/vFwLy1L2AgCAMnE6nbruuut09dVXWx3F45nLTOngRU5oIBkPUva6i8IFDZ1OJ2Wvzfj4+GjFihXq1q2bhg4dqg0bNsjf39/qWAAAwI0EBQWVKHvLYtq0afr++++1cePGKs9D2QsAAEp18OBBffDBB5o9e7bVUWoF43ZDOnORE3xqLAqqiMPhUExMjA4ePKgWLVpYHQfFhIWFKTExUTfddJP+9Kc/ae7cuTIMfpgCAACqx7333qu1a9fq008/VZMmTYqOh4eHKzs7W6dOnSoxuvfIkSMKDw8v8/WZsxcAAJQqNjZWgYGBGjFihNVRagWjkSGj9UX2ZhRR7mbkyJEKDAzkByY21a1bN82aNUvz58/X66+/bnUcAABwHqYNt3LlN03de++9Wr16tdavX6+WLVuWeL1bt27y8fHRxx9/XHRs9+7d+uWXX9SjR48y34eyFwAAXFROTo7mzp2rcePGqX79+lbHAdxSQECAxo4dqzlz5ignJ8fqODiPcePG6cEHH9SDDz6o//3vf1bHAQAAHmbatGlavHix4uPjFRgYqOTkZCUnJ+vMmfxf6QsODtbkyZP10EMP6ZNPPtFXX32liRMnqkePHrrhhhvKfB/KXgAAcFFvvfWWkpOTWZjNRszvTbnecMn1/1xyrXaVeM01zyXXf10X+MyKcc1zyfWcS65ZLpk/2WdRDHfjcDiUnJyst99+2+oouIAXXnhBt9xyi+6++279/PPPVscBAAAe5M0331RKSop69+6thg0bFu3Lli0rOufll1/WoEGDFBUVpV69eik8PFwJCQnlug9z9gIAgItyOp3q0aOHrrrqKqujQJKZbcpMNKX6knGbITUp/XPOdw1tl8zdpnREUrakEMnoZkjXSoZXyWkijF6GlCyZX5gyV5syHmIaiYro3LmzbrjhBjmdTg0dOtTqODiPOnXqaNmyZerevbsiIyO1ceNG1atXz+pYAABA+dMgmKZ9Bh6UN0tZzvf399d///tf/fe//61oLEb2AgCAC9u/f78+/PBDRvXaye+SciTjRkNGD0NG0woUrycl8z1TMpV/jf6GdIlkvlNQJJ/FaG3I6GnIuM6QUiQzwz5vst2Nw+HQunXrdODAAauj4AJCQ0OVmJio3bt3a8qUKbb6phIAAKA0lL0AAOCCYmNj1aBBAw0fPtzqKB7BNe/caRfKrXC614BKXCNAMv5syOseLxk3GTK6G/Ia6SV1lfStZB6/QLlVeM/sSty7lhs+fLiCg4MVGxtrdRRcRJcuXTRv3jzFx8fr3//+t9VxAAAAyoyyFwAAnFd2drbmzZun8ePHq27dulbHQaEKDDI095n5c+6ucMnMM2XUN2SEnTsi2OhQcOzYBS5U+CkMdKywevXqafz48Zo7d66ys2nN7Wz48OF64okn9Nhjj+nDDz+0Og4AALWeacPNjih7AQDAeSUmJuro0aNM4WA3he8pyzh7g7nblLnElK6UjChDhvdFPjGt4OOFpiil7K0SDodDR48e1Zo1a6yOglI899xz6t+/v0aMGMHUGwAAwC1Q9gIAgPNyOp266aabdOWVV1odBcUVFrL+pZ9q7jJlLjOlLpIRYZyz8FqJc3NNmZtN6RJJjS5wkl/Bx/Ry5MU5OnbsqJ49e2rmzJlWR0EpvL29FR8fr0svvVRDhgxRejr/8QMAAHuj7AUAAOfYs2eP1q9fz6jeSjDzTJmnS+7Kk5Src46brtKHyppnTJmHTJlfmPmla+NSzv/OlLnClLpJxuCLF72SZL5rSr9LxoCLjP5tIqmOZH5qyjxqysxiiG9FORwOrV+/Xnv37rU6CkpxySWXKDExUQcPHtSECRNYsA0AANgaZS8AADjHrFmzFBISomHDhlkdxX39IpkvmCV2JUn6/jzHU0q/nLnUlOk0pROSMdKQ4XeR8vakZK7Kn7rBa6CXDKOUonejKX0lGX0MGe0ufK4RaMgYakg/SeZ/zfyCGBUybNgwXXLJJZo1a5bVUVAGHTt21MKFC7Vq1SrNmDHD6jgAANROpmSapm12u05tVsfqAAAAwF4yMzM1f/58TZgwQf7+ZZgrAOcXLhnjSxan5gemFCAZPc8qVANKv5zR35COSub/TJkJpnS/ZPheoJgNLLjmXsn8zZTR+CLTN2w3ZX5kStdKxi2llMKnTZlvm9JlBV/D5aXnxvnVrVtX99xzj+bPn6/nnntOfn5+pX8SLBUZGamnnnpKf/3rX9WlSxcNHDjQ6kgAAADnYGQvAAAoISEhQcePH1dMTIzVUdyaUdeQ0brkrrqSAnXOccOn9NXWjMaGjK6GjN5G/ry9v17k5DqSMcaQQiRzcf6UC+dj/mjKfMuUOkjGwDKs+PaLpDOScYch4ypDRlgZV4nDecXExOjYsWNKSEiwOgrK6Omnn9bgwYM1evRo7d692+o4AAAA56DsBQAAJTidTvXu3VtXXHGF1VFwPsEFHzMvfprhb8gYZ0j1JXOhKfNEycLXPFgwp29zyYgqfU5fSVJWwcegcqfGeXTo0EG9evWS0+m0OgrKyMvLS4sWLVKjRo0UERGh1NRUqyMBAFBrmDbc7IiyFwAAFPnhhx/06aefsjCbnRV2smV4b2nUN/KnkvCWzAWmzNT8TzJPmTKXmJIhGVca0k7J/Nb8Y0++wMULDzOgt8o4HA5t2LBBP/74o9VRUEZBQUFas2aNDh06pHHjxsnlclkdCQAAoAhlLwAAKDJr1iyFhoYqMjLS6ii4kMJ3b7llO90IMmTcY0h5BSN8T5vSSeWPDM6RzHfy5wAusf9wgbI356wMqLSoqChdeumlLNTmZtq1a6f4+Hi9/fbbeuaZZ6yOAwAAUIQF2gAAgCTpzJkzWrBggaKjo1ksqpp4TayCljQw/4O505SaKH/BN78/htqe7x5GiCHjkWLDcVtKxjNlH55rZppSuvJLYG9J9SuYHefw8/PTxIkTNXfuXP3jH/9gUUQ3MnDgQD333HN68skndfXVV/NDMgAAqplpmjJN+0ydYKcsxTEuAwAASJJWrlypkydPsjCbzRkhhtRR0m7JfM2U+W71v8k0l5gy/2NKByTdIBl1mMehKsXExOjEiRNauXKl1VFQTtOnT9ewYcM0fvx47dy50+o4AAAAlL0AACCf0+lU37591aZNG6ujoBRew71kPGTImGTI6Fn9xatxuyFjsiHjUUNe/Xn7WNXatm2rPn36sFCbGzIMQ/PmzVOLFi0UERGhkydPWh0JAADUcrxbBwAA2rlzpzZt2sTCbG7ECDZkNDdkhNVA2dvIkNHMkBHAiN7q4nA4tHHjRkaHuqGAgAAlJibq+PHjGj16tPLy8qyOBACARzJtuNkRZS8AAJDT6VRYWJiGDBlidRSgVoqIiFBYWBgLtbmp1q1ba9myZVq3bp3++te/Wh0HAADUYpS9AADUchkZGVq4cKEmTZokX19fq+MAtZKvr68mTpyohQsX6syZM1bHQQX069dPL7zwgp5//nktX77c6jgAAKCWouwFAKCWW758uVJSUjRlyhSro6CSzO9Nud5wyfX/XHKtdpV87aQp199ccv3TJdcKl8wz9vy1s9psypQpOnXqFEWhG3vooYc0evRoTZw4Ud9++63VcQAA8CimadputyPKXgAAajmn06n+/furVatWVkdBJZjZpsxEU8qSjNsMGdeeNb9ufckYYkidJH0vmV/Y881pbda6dWv169ePhdrcmGEYio2N1RVXXKGIiAgdO3bM6kgAAKCWoewFAKAW27FjhzZv3szCbJ7gd0k5knGjIaOHIaNpybLX8DVkdDXkNdBLulRSsiUpUQqHw6EvvvhCO3bssDoKKqhevXpavXq10tPTNWLECOXm5lodCQAA1CKUvQAA1GJOp1Ph4eEaPHiw1VFQWTkFHwPKcG6ApKxqzIIKu+uuuxQeHs7oXjfXvHlzrVixQhs2bNBjjz1mdRwAADyCacPNjih7AQCopdLT07Vo0SJNnjxZPj4+VsdBZZXnvaZR+imwho+PjyZNmqTFixfr9OnTVsdBJfTu3Vsvv/yyXn75ZS1atMjqOAAAoJag7AUAoJZaunSp0tPTWZjNUxSWvWUtcu05EAHKX6gtLS1NS5cutToKKunee+/VhAkTNGXKFG3bts3qOAAAoBag7AUAoJZyOp2688471bx5c6ujoCqkFXz0L8O5/sXOh+20aNFCt99+O1M5eADDMPTmm2+qS5cuioyM1JEjR6yOBACA2zJN03a7HVH2AgBQC3399dfatm0bC7N5APOMKfOQKfMLU/KT1Lj0zzGaG9IJydxiykwxZebZ841qbeZwOLR161Zt377d6iioJH9/fyUkJCgnJ0d33323cnJySv8kAACACqLsBQCgFnI6nWrcuLEGDBhgdRQUY+aaMtPO2l0XL2LNpaZMpymdkIyRhgy/MszjcIOkjpL5rinz36b0S9XkR9UZNGiQGjVqxOheD9G4cWOtWrVKmzdv1oMPPmh1HAAA4MEoewEAqGXS0tIUHx+v6Oho1alTx+o4KC5JMl80S+xKufinGP0NGRGGVFcyE0yZ2WUYpbtd0k5J10nGaEMKr4rwqEp16tRRdHS04uLilJbGnBueoGfPnnr99df13//+V3PmzLE6DgAAbse04WZHlL0AANQy8fHxysjIUHR0tNVRcLZwyRhvlNgVcPFPMRobMroaMnob+fPw/lr6bczdpnSJ5DXQS8YVhoy6ZV3VDTUpOjpaGRkZWrJkidVRUEViYmLkcDj05z//WV988YXVcQAAgAei7AUAoBYxTVNOp1MDBw5UkyZNrI6Dsxh1DRmtz9p9yljEBhd8zCzDuVmSgioYEjWmadOmGjBgAFM5eJjXXntN3bt3V1RUlA4dOmR1HAAA4GEoewEAqEW2bdum7du3szCbJyrshMv622QM5nULDoejaEFFeAZfX1+tXLlSXl5eioqKUlZWltWRAABwC6Zp2m63I8peAABqEafTqWbNmumOO+6wOgqqWuG7utwynJsj3gW6iTvvvFNNmzZldK+HCQ8P1+rVq7V9+3ZNmzbNtt8sAgAA98PbfAAAaomUlBQtWbJE0dHR8vb2tjoOqlpg/gdzpynzuCkzq2R5ZLpMmemmzJ9M6egf58PevL29FR0drSVLlig1NdXqOKhC3bt318yZMzVnzhzNnDnT6jgAAMBDUPYCAFBLxMXFKSsrS5MnT7Y6CqqBEWJIHSXtlszXTJnvnjVSMEUy/2XKnG9K3pLRnXkc3MXkyZOVmZmpuLg4q6Ogik2YMEH333+/7r//fn322WdWxwEAwNZMG252VMfqAAAAoPoVLsw2ePBgNWrUyOo4qCZew71kppjSKUl1z3oxQDLuMSR/SZep7Au/wXKNGzfWoEGD5HQ6NXXqVBkG/7fzJC+++KJ27NihYcOGadu2bWratKnVkQAAgBtjZC8AALXAli1btGPHDhZmqwWMYENGc0NGWMlC0PAxZLQyZDQyKHrdkMPh0LfffqstW7ZYHQVVzMfHR8uXL5e/v78iIyN15swZqyMBAAA3RtkLAEAt4HQ61aJFC/Xv39/qKAAqoH///mrevDkLtXmoyy67TImJidq1a5diYmJYsA0AgPMwTdN2ux1R9gIA4OFOnjyppUuXasqUKfLy4n/6AXfk7e2tKVOmaNmyZTp16pTVcVANunbtqtmzZ2vx4sV69dVXrY4DAADcFN/xAQDg4RYtWqTc3FxNmjTJ6igAKmHSpEnKycnRokWLrI6CajJ69Gg98sgjeuSRR/Txxx9bHQcAALghFmgDAMCDFS7MFhERofDwcKvjeK5jsu1qvJY4ZnUAz9SwYUPdddddcjqduvfee1mozUM9//zz2rFjh0aMGKGtW7eqZcuWVkcCAMAWzILNLuyUpTjKXgAAPNimTZu0a9cufiW4mgQGBkqSzFX2fKNntcJ/H1Qdh8Oh22+/XZ9//rl69uxpdRxUA29vby1ZskTdu3dXZGSkNm3apPr161sdCwAAuAnKXgAAPJjT6VTr1q3Vp08fq6N4pLZt22rPnj1KS0uzOortBAYGqm3btlbH8Di33XabWrVqJafTSdnrwUJCQpSYmKgePXpo8uTJWrJkCSO5AQBAmVD2AgDgoY4fP64VK1bo2WefZWG2akShiZrk5eWlmJgYPf3003rllVcUEhJidSRUk6uuukoLFizQsGHD1LVrVz3++ONWRwIAwFKmaco07fMbdXbKUhzf+QEA4KEWLlwol8ulCRMmWB0FQBWaOHGiXC6XFi5caHUUVLOoqCg9+eSTmj59ut5//32r4wAAADdA2QsAgAcqXJht6NChCgsLszqOxzt58qQmT57MdBmoEWFhYYqMjJTT6bTtiBJUnWeeeUYDBgzQqFGjtHfvXqvjAAAAm6PsBQDAA3366afavXu3HA6H1VE82s8//6wHHnhADRs21Ny5c/XVV19ZHQm1hMPh0I8//qjPPvvM6iioZt7e3oqLi1NYWJgiIiKYIxwAUGuZNtzsiLIXAAAP5HQ61a5dO/Xu3dvqKB7p22+/1ahRo9SqVSv997//VVZWliQpMjLS4mSoLW699Va1bdtWTqfT6iioAcHBwVqzZo2SkpI0fvx4uVwuqyMBAACbouwFAMDDHDt2TKtWrVJMTAyrt/9/9u47PIpyfeP4PRvSgCTUEKqAoCgovQkIiiKKHEIooRtagjSPBY8c/Yl6UBSxISgh9B5qQFEEQVQQEAQERYpKUwSkJaRAys7vD0wkJpRAkpndfD977YWZmX3nDhdjJs+++7x5IDk5Wc2aNdOCBQvkdDqVlpaWsa9FixYWJkNBYhiGwsPDtXjxYp06dcrqOMgHNWrU0Ny5cxUTE6NXX33V6jgAAMCmKPYCAOBmZsyYIUl67LHHrA3ipry8vDRp0iR5enpmKaY3adLEolQoiNIXX5w5c6a1QZBv2rdvr1deeUUvvviiVqxYYXUcAADylWmatnvaEcVeAADciGmamjx5sjp37qxSpUpZHcdt9erVS//73/9kmqYcjku3U4ULF1aNGjUsToaCpFSpUurUqZMmT55s2182kPuef/55dezYUb169dLevXutjgMAAGyGYi8AAG7kiy++0IEDB1iYLY/t3r1b//vf/9ShQwc1btxYktSoUSN5eHhYnAwFTUREhPbv36/169dbHQX5xOFwaObMmapYsaI6dOigc+fOWR0JAADYCMVeAADcSGRkpO644w56x+ahM2fOKDg4WNWqVdPcuXO1fv16jRo1SiNGjLA6Ggqge++9VzVq1NCkSZOsjoJ85Ofnp+XLl+vkyZPq2bNnpt7hAAC4K9OGDzui2AsAgJs4ceKEli5dysJseSg1NVXdunVTbGysYmJiVKRIEXl5eemll17SI488YnU8FEDpC7UtW7ZMJ0+etDoO8lG1atU0f/58ffrppxo1apTVcQAAgE1Q7AUAwE1Mnz5dHh4e6tOnj9VR3NbIkSO1bt06RUdHq3LlylbHASRdWozR4XBo+vTpVkdBPmvbtq3GjBmjV199VYsXL7Y6DgAAsAGKvQAAuAGn06moqCiFhoaqRIkSVsdxS/PmzdO4ceM0btw4tW7d2uo4QIYSJUqoS5cumjx5spxOp9VxkM+effZZhYaGKiwsTLt377Y6DgAAecY0Tds97YhiLwAAbuDzzz/Xr7/+ysJseWT79u3q37+/evfurSeeeMLqOEAWERER+vXXX7V27VqroyCfGYahqVOnqlq1agoODtaZM2esjgQAACxEsRcAADcQGRmpWrVqqWnTplZHcTt//vmnOnbsqFq1aikyMpJ+yLClZs2a6c4771RkZKTVUWCBIkWKKCYmRrGxserWrZtSU1OtjgQAACxCsRcAABf3xx9/aPny5YqIiKAQmctSUlLUtWtXXbhwQUuXLpWvr6/VkYBsGYahQYMGafny5Tp+/LjVcWCBypUrKzo6WuvWrdN///tfq+MAAJDrTBs+7IhiLwAALm7atGny8vJSr169rI7idp555hlt2LBBixcvVsWKFa2OA1xV79695enpqWnTplkdBRZp3bq1xo0bpzfffFPz5s2zOg4AALAAxV4AAFxYWlqaoqKi1K1bNxUrVszqOG5l+vTpGj9+vMaPH68WLVpYHQe4pmLFiik0NFRRUVEs1FaAPfHEE+rdu7f69++v7du3Wx0HAADkM4q9AAC4sNWrV+vw4cMszJbLtmzZokGDBmnAgAEaNGiQ1XGA6xYREaFDhw5p9erVVkeBRQzDyOjj3rFjR/35559WRwIAINeYpmmbp11R7AUAwIVFRkaqdu3aatSokdVR3Mbx48cVEhKievXqacKECfRBhktp3Lix7r77bhZqK+B8fX21dOlSXbhwQV27dlVKSorVkQAAQD6h2AsAgIv6/fff9fHHH7MwWy5KTk5Wp06dZJqmlixZIm9vb6sjATliGIYiIiL00Ucf6dixY1bHgYUqVqyoxYsXa8OGDXrmmWesjgMAAPIJxV4AAFzU1KlT5ePjo549e1odxW0MHz5c27Zt09KlS1WuXDmr4wA3pGfPnvL29tbUqVOtjgKLtWjRIqP3+IwZM6yOAwDATTFt+LAjir0AALigtLQ0TZkyRd27d5e/v7/VcdxCZGSkIiMj9eGHH6pJkyZWxwFuWEBAgLp3766oqCilpaVZHQcWu7z/+Lfffmt1HAAAkMco9gIA4II+/fRTHT16lIXZcsnGjRs1bNgwDRkyRP369bM6DnDTIiIidPToUa1atcrqKLCYYRiaMGGC6tatq5CQEB0/ftzqSAAAIA9R7AUAwAVFRkaqXr16atCggdVRXN5vv/2mTp06qWnTpnrnnXesjgPkigYNGqhu3bqaNGmS1VFgA97e3lqyZImcTqc6d+6s5ORkqyMBAJBjpmna7mlHFHsBAHAxR44c0SeffMKs3lxw4cIFhYSEyNPTU4sWLZKnp6fVkYBckb5Q2yeffKKjR49aHQc2UK5cOS1dulRbt27V8OHDrY4DAADyCMVeAABczJQpU1S4cGF1797d6iguzTRNDRo0SLt371ZMTIwCAwOtjgTkqh49eqhw4cKaMmWK1VFgE02aNNEHH3yQ0aMcAAC4H4q9AAC4kNTUVE2dOlW9evWSn5+f1XFc2oQJEzRz5kxNnjxZ9evXtzoOkOv8/PzUo0cPTZkyRampqVbHgU30799fQ4YM0bBhw7Rx40ar4wAAcN1MGz7siGIvAAAu5OOPP9axY8do4XCT1q9fryeffFJPPvmkevfubXUcIM9ERETo2LFjWrlypdVRYCPvvPOOmjZtqk6dOun333+3Og4AAMhFFHsBAHAhkZGRatSokerUqWN1FJd1+PBhdenSRa1atdLYsWOtjgPkqfSFHPnIPi53eZ/ykJAQXbhwwepIAAAgl1DsBQDARRw6dEifffYZs3pvQmJiojp27KiiRYsqOjpahQoVsjoSkOcGDRqkVatW6dChQ1ZHgY0EBgYqJiZGu3bt0uOPP27bFcUBAEhnmqbtnnZEsRcAABcRFRUlPz8/hYaGWh3FJZmmqQEDBmjfvn2KiYlRyZIlrY4E5Itu3brJz8+PhdqQRf369TV58mTNmDFDEyZMsDoOAADIBRR7AQBwASkpKZo2bZp69+6tIkWKWB3HJb311luaP3++pk+frtq1a1sdB8g3RYoUUa9evTR16lSlpKRYHQc207t374we5uvXr7c6DgAAuEkUewEAcAErVqzQ8ePHaeFwg1avXq3//Oc/eu6559S1a1er4wD5LiIiQsePH9dHH31kdRTY0NixY9WqVSt16dJFhw8ftjoOAADZMm34sCOKvQAAuIDIyEg1bdpUd911l9VRXM4vv/yibt26qU2bNho9erTVcQBL3H333WrSpAkLtSFbhQoVUnR0tIoWLaqOHTsqMTHR6kgAAOAGUewFAMDmfvnlF61Zs4ZZvTcgPj5ewcHBKlmypObNmycPDw+rIwGWiYiI0OrVq/Xrr79aHQU2VLJkScXExGjfvn0aOHCgbRedAQAAV0exFwAAm4uKilKxYsVoP5BDpmkqLCxMhw4dUkxMjIoXL251JMBSXbt2VUBAgKKioqyOApuqXbu2pk+frnnz5untt9+2Og4AAJmYpmm7px1R7AUAwMaSk5M1ffp09enTR76+vlbHcSljxozRkiVLNHv2bNWsWdPqOIDlChcurD59+mjatGlKTk62Og5sqmvXrnruuef07LPPas2aNVbHAQAAOUSxFwAAG4uJidHJkydp4ZBDK1eu1AsvvKBRo0YpODjY6jiAbUREROjkyZNavny51VFgY6NHj1abNm0UGhpK2w8AAFyMYdp1zjEAAFDr1q2VnJysr7/+2uooLmPfvn1q1KiRWrVqpWXLlsnh4L1t4HLNmzeXt7e31q5da3UU2NjZs2fVqFEj+fj4aNOmTSpatKjVkQAABVRcXJwCAgIUFh0mr8JeVsfJkJyYrBmhMxQbGyt/f3+r42Tgtx8AAGxq//79WrduHbN6cyA2NlYdOnRQuXLlNHv2bAq9QDYiIiK0bt06HThwwOoosLHixYsrJiZGhw4dUlhYmG37EgIAgMz4DQgAAJuaPHmySpQooc6dO1sdxSU4nU717t1bf/zxh5YvX26rd9cBO+ncubOKFy+uyZMnWx0FNlezZk3Nnj1bS5Ys0ZgxY6yOAwAArgPFXgAAbOjChQuaMWOGHnvsMfn4+FgdxyW8/PLL+vjjjzVv3jzddtttVscBbMvX11ePPfaYZsyYoYsXL1odBzYXHBysUaNG6YUXXtDKlSutjgMAKMBM07Td044o9gIAYENLly7V6dOnaeFwnZYtW6ZXXnlFo0ePVrt27ayOA9heeHi4Tp06paVLl1odBS7gxRdfVPv27dWjRw/t27fP6jgAAOAqWKANAAAbatmypRwOh7744guro9jejz/+qCZNmqht27ZauHChDMOwOhLgElq2bCnDMLR+/Xqro8AFxMXFqXHjxpKkLVu20CoHAJBv0hdoe2zBY7ZboG1mt5ks0AYAAK7up59+0ldffcWs3utw9uxZBQcHq0qVKpo+fTqFXiAHBg0apC+//FJ79+61OgpcgL+/v5YvX65jx46pd+/ecjqdVkcCABQwpg0fdkSxFwAAm5k8ebJKlSqljh07Wh3F1tLS0tSjRw+dPn1aMTExKlq0qNWRAJcSEhKiUqVKsVAbrtttt92mefPm6aOPPtIrr7xidRwAAFzKV199pfbt26tcuXIyDEMxMTGZ9oeFhckwjEzPtm3b5vg8FHsBALCRpKQkzZw5U3379pW3t7fVcWzt+eef1+rVqxUdHa2qVataHQdwOd7e3goLC9PMmTN14cIFq+PARbRr106jR4/Wyy+/rGXLllkdBwAAl5GQkKDatWtr4sSJVzymbdu2+uOPPzKe8+fPz/F5Ct1MSAAAkLsWL16ss2fPKjw83OoothYdHa033nhD48aN04MPPmh1HMBlhYeHa9y4cVq8eLF69epldRy4iJEjR2rHjh3q06ePNm/erJo1a1odCQBQAJimKTstPZbTLA8//LAefvjhqx7j7e2toKCgm4nFzF4AAOwkMjJSrVu3VrVq1ayOYlvff/+9+vbtqx49euipp56yOg7g0qpXr677779fkZGRVkeBCzEMQ9OnT1eVKlUUHByss2fPWh0JAADLxMXFZXpevHjxhsdav369AgMDdfvtt+vxxx/X6dOnczwGxV4AAGzixx9/1MaNG1mY7SpOnTql4OBg1ahRQ1FRUSzIBuSCiIgIbdiwQT/++KPVUeBCihYtqpiYGJ0+fVo9evRQWlqa1ZEAALBExYoVFRAQkPEcM2bMDY3Ttm1bzZo1S2vXrtUbb7yhL7/8Ug8//HCOf8bSxgEAAJuIjIxUYGCgOnToYHUUW0pNTVVoaKgSEhL05ZdfqnDhwlZHAtxCcHCwAgMDNXnyZL333ntWx4ELqVq1qqKjo9W2bVu98MILN/zLLQAA18P862EX6VmOHj0qf3//jO03uvZKt27dMv77rrvu0t13361bb71V69evV+vWra97HGb2AgBgA4mJiZo1a5b69esnLy8vq+PY0rPPPqsvv/xSixYtUqVKlayOA7gNLy8v9e3bV7NmzVJSUpLVceBiHnzwQY0dO1avv/66Fi5caHUcAADynb+/f6Znbi20XbVqVZUqVUo///xzjl5HsRcAABtYuHChYmNjNXDgQKuj2NKsWbP0zjvv6N1331XLli2tjgO4nYEDB+rcuXMU63BDnnrqKfXo0UN9+/bV999/b3UcAADcwm+//abTp0+rbNmyOXodxV4AAGwgMjJSbdq0UdWqVa2OYjvbtm1TeHi4+vbtqyFDhlgdB3BLt956qx588EEWasMNMQxDUVFRuv322xUcHHxDi8kAAHAtpmna7pkT8fHx2rlzp3bu3ClJOnjwoHbu3KkjR44oPj5eI0aM0ObNm3Xo0CGtXbtWHTp0ULVq1fTQQw/l6DwUewEAsNiuXbu0efNmFmbLxokTJ9SxY0fVrl1bH3zwAQuyAXkoIiJCmzZt0q5du6yOAhdUuHBhLVu2TPHx8eratatSU1OtjgQAgK1s27ZNdevWVd26dSVd+mRM3bp19eKLL8rDw0O7du3Sv/71L912223q37+/6tevr6+//jrHbSEMM6dlaAAAkKuGDBmipUuX6siRI/L09LQ6jm0kJyerdevWOnDggL777juVL1/e6kiAW0tJSVGlSpUUEhKiiRMnWh0HLmr9+vV64IEHNHz4cL399ttWxwEAuIG4uDgFBASo57ye8ipsn/VNkhOTNbfHXMXGxmZaoM1qzOwFAMBC8fHxmj17tvr370+h9x+efPJJbdmyRUuWLKHQC+QDT09P9evXT3PmzFFCQoLVceCiWrVqpXfffVfvvPOOZs+ebXUcAIAbMW34sCOKvQAAWGjBggWKj49nYbZ/mDJlij744ANNmDBBzZo1szoOUGAMHDhQ58+f14IFC6yOAhc2ZMgQ9e3bVwMHDtS2bdusjgMAQIFCsRcAAAtFRkbq4Ycf1i233GJ1FNvYtGmThgwZokGDBik8PNzqOECBUrlyZbVt25aF2nBTDMPQBx98oNq1a6tjx446ceKE1ZEAACgwKPYCAGCR7du3a9u2bSzMdpljx46pU6dOatiwod577z2r4wAFUkREhLZu3aodO3ZYHQUuzMfHR0uXLlVKSoq6dOmilJQUqyMBAFycaZq2e9oRxV4AACwSGRmp8uXL65FHHrE6ii1cvHhRnTp1ksPh0OLFi+XlZZ/FF4CCpF27dipfvjyze3HTypcvryVLlmjz5s168sknrY4DAECBQLEXAAALnD9/XvPmzdOAAQNUqFAhq+NYzjRNDR48WDt27NCyZcsUFBRkdSSgwCpUqJD69++vuXPn6vz581bHgYtr1qyZJkyYoIkTJ2rq1KlWxwEAwO1R7AUAwALz5s1TYmKiBgwYYHUUW/jwww81bdo0TZo0SQ0bNrQ6DlDgDRgwQImJiZo/f77VUeAGwsPDFRERocGDB2vTpk1WxwEAuCjThg87otgLAEA+M01TkZGRateunSpUqGB1HMt99dVXeuKJJzR8+HCFhYVZHQeApIoVK+qRRx6hlQNyzfjx49WwYUN16tRJx44dszoOAABui2IvAAD5bNu2bdqxYwcLs0k6evSoOnfurBYtWmjcuHFWxwFwmYiIiIyFJIGb5eXlpcWLF8vhcKhTp066ePGi1ZEAAHBLFHsBAMhnkZGRqlSpktq2bWt1FEslJSWpY8eOKly4sKKjo+Xp6Wl1JACXefjhh1WxYkVm9yLXBAUFadmyZdqxY4eGDBli21XMAQD2ZJqm7Z52RLEXAIB8FBsbq/nz52vAgAHy8PCwOo5lTNNUeHi49uzZo2XLlql06dJWRwLwDx4eHhowYIDmz5+vuLg4q+PATTRs2FCTJk3S1KlTNWnSJKvjAADgdij2AgCQj+bOnauLFy+qf//+Vkex1Lvvvqs5c+Zo6tSpqlu3rtVxAFxB//79deHCBc2dO9fqKHAjYWFhGj58uIYPH66vv/7a6jgAALgVir0AAOST9IXZ2rdvr3LlylkdxzKff/65nnnmGY0YMULdu3e3Og6AqyhfvrweffRRRUZG2vajinBN48aNU/PmzdW5c2cdPXrU6jgAABdg2vBhRxR7AQDIJ1u2bNGuXbsK9MJsBw8eVGhoqB544AGNGTPG6jgArkNERIS+//57bdmyxeoocCOenp5auHChfHx81LFjRyUlJVkdCQAAt0CxFwCAfBIZGanKlSurTZs2VkexREJCgoKDg1WsWDHNnz+/QPcsBlxJmzZtdMstt7BQG3Jd6dKlFRMToz179ig8PJzZ4wAA5AKKvQAA5IOzZ89qwYIFGjhwoByOgvfj1zRN9evXT7/88ouWL1+uEiVKWB0JwHXy8PDQwIEDFR0drXPnzlkdB26mbt26mjp1qubMmaP33nvP6jgAADszL/1eYZenTbs4UOwFACA/zJ49W6mpqerXr5/VUSwxduxYLVy4ULNmzVKtWrWsjgMgh/r166eUlBTNnj3b6ihwQ927d9eIESP0zDPPaO3atVbHAQDApVHsBQAgj6UvzBYcHKygoCCr4+S7VatWaeTIkXrhhRcUEhJidRwAN6Bs2bLq0KEDC7Uhz4wZM0atW7dWaGioDh48aHUcAABcFsVeAADy2MaNG7Vnz54CuTDbgQMH1K1bN7Vr104vv/yy1XEA3ISIiAj9+OOP+uabb6yOAjfk4eGh+fPnKyAgQB07dlRCQoLVkQAANmPa8GFHFHsBAMhjkZGRuvXWW3X//fdbHSVfnT9/Xh06dFBQUJDmzJlTIHsVA+6kdevWqlq1Kgu1Ic+UKFFCMTEx+vnnn9W/f39mkQMAcAP4rQsAgDx0+vRpLVq0SOHh4QWq2Ol0OtWnTx/99ttviomJUUBAgNWRANwkh8Oh8PBwLVy4UGfOnLE6DtzUXXfdpZkzZyo6Olpvvvmm1XEAAHA5Bee3TgAALDBr1iw5nU6FhYVZHSVfjR49WjExMZo7d65q1KhhdRwAuaRv375yOp2aNWuW1VHgxjp16qTnn39ezz33nFatWmV1HACATZimabunHVHsBQAgj6QvzBYSEqLAwECr4+SbFStWaNSoUXrllVfUvn17q+MAyEWBgYHq2LEjC7Uhz73yyitq166dunfvrgMHDlgdBwAAl0GxFwCAPPLVV19p3759BWphtp9++km9evVSSEiInn/+eavjAMgDERER2rt3r77++muro8CNORwOzZkzR2XKlFFwcLDOnz9vdSQAAFwCxV4AAPJIZGSkbrvtNrVq1crqKPni3Llz6tChgypVqqQZM2YUqB7FQEFy3333qXr16izUhjwXEBCgmJgYHT16VH369JHT6bQ6EgDAQqYNH3bEb2EAAOSBU6dOacmSJQoPD5dhGFbHyXNpaWnq2bOn/vzzT8XExMjPz8/qSADyiGEYCg8P1+LFi3Xq1Cmr48DN1ahRQ3PnzlVMTIxeffVVq+MAAGB7FHsBAMgDM2bMkCQ99thj1gbJJy+++KJWrVqlBQsWqFq1albHAZDH0hednDlzprVBUCC0b99er7zyil588UWtWLHC6jgAANgaxV4AAHKZaZqaPHmyOnfurFKlSlkdJ88tWrRIr732msaMGaOHHnrI6jgA8kGpUqXUqVMnTZ48mYXakC+ef/55dezYUb169dLevXutjgMAsIBpmrZ72hHFXgAActkXX3yhAwcOFIiF2Xbt2qWwsDCFhoZqxIgRVscBkI8iIiK0f/9+rV+/3uooKAAcDodmzpypihUrqkOHDjp37pzVkQAAsCWKvQAA5LLIyEjdcccdatGihdVR8tSZM2cUHBys6tWra+rUqQWiNzGAv917772qUaOGJk2aZHUUFBB+fn5avny5Tp48qZ49eyotLc3qSAAA2A7FXgAActGJEye0bNkyt1+YLTU1Vd26dVNcXJxiYmJUpEgRqyMByGfpC7UtW7ZMJ0+etDoOCohq1appwYIFWrVqlUaNGmV1HABAPjJt+LAjir0AAOSi6dOny+FwqE+fPlZHyVMjR47UunXrtHDhQlWuXNnqOAAs8thjj8nhcGj69OlWR0EB8tBDD2nMmDF69dVXtXjxYqvjAABgKxR7AQDIJU6nU1FRUQoNDVWJEiWsjpNn5s2bp3Hjxumtt97S/fffb3UcABYqUaKEunbtqsmTJ8vpdFodBwXIiBEjFBoaqrCwMO3evdvqOAAA2AbFXgAAcsnnn3+uX3/91a0XZtu+fbv69++vPn36aPjw4VbHAWADERER+vXXX7V27Vqro6AAMQxDU6dOVbVq1RQcHKwzZ85YHQkAkMdM07Td044o9gIAkEsiIyNVq1YtNW3a1OooeeLkyZMKDg5WrVq1NGnSJLfuSQzg+t1zzz2qWbOmIiMjrY6CAqZIkSKKiYlRbGysunXrptTUVKsjAQBgOYq9AADkgj/++EPLly9XRESEWxZBU1JS1LVrV128eFFLly6Vr6+v1ZEA2IRhGIqIiNDy5ct1/Phxq+OggKlcubKio6O1bt06/fe//7U6DgAAlqPYCwBALpg2bZq8vLzUq1cvq6PkiaefflobN27U4sWLVbFiRavjALCZ3r17y9PTU9OmTbM6Cgqg1q1ba9y4cXrzzTc1b948q+MAAPKIacOHHVHsBQDgJqWlpSkqKkrdunVTsWLFrI6T66ZPn673339f48ePV4sWLayOA8CGihUrptDQUEVFRbFQGyzxxBNPqE+fPurfv7+2b99udRwAACxDsRcAgJu0evVqHT582C0XZtuyZYsGDRqkgQMHatCgQVbHAWBjEREROnTokFavXm11FBRAhmFo0qRJqlWrljp27Kg///zT6kgAAFiCYi8AADcpMjJStWvXVqNGjayOkquOHz+ukJAQ1a9fX++//75b9iIGkHsaN26su+++m4XaYBlfX18tXbpUFy5cUNeuXZWSkmJ1JABALjJN03ZPO6LYCwDATfj999/18ccfu93CbMnJyerUqZNM09SSJUvk7e1tdSQANpe+UNtHH32kY8eOWR0HBVTFihW1ePFibdiwQc8884zVcQAAyHcUewEAuAlTp06Vj4+PevbsaXWUXDVs2DBt27ZNS5cuVdmyZa2OA8BF9OzZU97e3po6darVUVCAtWjRQuPHj9f48eM1Y8YMq+MAAJCvKPYCAHCD0tLSNGXKFHXv3l3+/v5Wx8k1kZGRmjx5sj788EM1adLE6jgAXEhAQIC6d++uqKgopaWlWR0HBdigQYM0YMAADRo0SN9++63VcQAAucC04cOOKPYCAHCDPv30Ux09etStFmbbsGGDhg0bpiFDhqhfv35WxwHggiIiInT06FGtWrXK6igowAzD0IQJE1S3bl2FhITo+PHjVkcCACBfUOwFAOAGRUZGql69emrQoIHVUXLFb7/9ps6dO6tp06Z65513rI4DwEU1aNBAdevW1aRJk6yOggLO29tbS5YskdPpVOfOnZWcnGx1JAAA8hzFXgAAbsCRI0f0ySefuM2s3gsXLigkJEReXl5atGiRPD09rY4EwEWlL9T2ySef6OjRo1bHQQFXrlw5LV26VFu3btXw4cOtjgMAuAmmadruaUcUewEAuAFTpkxR4cKF1b17d6uj3DTTNDVo0CDt3r1by5YtU2BgoNWRALi4Hj16qHDhwpoyZYrVUQA1adJEH374oSIjIxUZGWl1HAAA8hTFXgAAcig1NVVTp05Vr1695OfnZ3WcmzZhwgTNnDlTUVFRql+/vtVxALgBPz8/9ezZU1OmTFFqaqrVcQD169dPQ4YM0bBhw7Rx40ar4wAAkGco9gIAkEMff/yxjh075hYtHL744gs9+eSTeuqpp9SrVy+r4wBwIxERETp27JhWrlxpdRRAkvTOO++oadOm6tSpk37//Xer4wAAcsi04cOOKPYCAJBDkZGRatSokerUqWN1lJty6NAhdenSRa1atdIbb7xhdRwAbqZu3bpq2LAhH5uHbXh6emb0pQ8JCdGFCxesjgQAQK6j2AsAQA4cOnRIn332mcvP6k1MTFTHjh3l5+en6OhoFSpUyOpIANxQRESEVq1apUOHDlkdBZAkBQYGKiYmRrt27dLjjz9u28V1AAC4URR7AQDIgaioKPn5+Sk0NNTqKDfMNE0NGDBA+/fvV0xMjEqWLGl1JABuqlu3bvLz82OhNthK/fr1FRUVpRkzZmjixIlWxwEAXCfTNG33tCOKvQAAXKeUlBRNmzZNvXv3VpEiRayOc8PeeustzZ8/X9OnT1ft2rWtjgPAjRUpUkS9evXS1KlTlZKSYnUcIEOvXr301FNP6d///rfWr19vdRwAAHINxV4AAK7TihUrdPz4cZdu4bB69Wr95z//0ciRI9W1a1er4wAoACIiInT8+HF99NFHVkcBMnnjjTfUqlUrdenSRYcPH7Y6DgAAucIw7TrnGAAAm2nTpo3i4+P1zTffWB3lhvzyyy9q2LChmjRpoo8++kgeHh5WRwJQQDRt2lT+/v767LPPrI4CZHL69Gk1aNBAxYsX14YNG1S4cGGrIwEA/iEuLk4BAQF6eOrD8izsaXWcDCmJKfq0/6eKjY2Vv7+/1XEyMLMXAIDr8Msvv2jNmjUuO6s3Pj5ewcHBKlWqlObNm0ehF0C+ioiI0OrVq/Xrr79aHQXIpGTJkoqJidG+ffs0cOBA2/ZfBADgelHsBQDgOkRFRalYsWIu2frANE2FhYXp0KFDiomJUbFixayOBKCA6dq1qwICAhQVFWV1FCCL2rVra/r06Zo3b57efvttq+MAAHBTKPYCAHANycnJmj59uvr06SNfX1+r4+TYa6+9piVLlmj27Nm68847rY4DoAAqXLiw+vTpo2nTpik5OdnqOEAWXbt21XPPPadnn31Wa9assToOACAbpmna7mlHFHsBALiGmJgYnTx50iVbOHz88cf6v//7P40aNUrBwcFWxwFQgEVEROjkyZNavny51VGAbI0ePVpt2rRRaGgoLUcAAC6LBdoAALiG1q1bKzk5WV9//bXVUXJk3759atSokVq1aqVly5bJ4eA9XgDWat68uby9vbV27VqrowDZOnv2rBo1aiQfHx9t2rRJRYsWtToSABR46Qu0tZ3S1nYLtK0asIoF2gAAcCUHDhzQunXrXG5Wb2xsrDp06KDy5ctr9uzZFHoB2EJERITWrVunAwcOWB0FyFbx4sW1fPlyHTp0SGFhYbb9iC4AFESmDR92xG9+AABcxeTJk1WiRAl17tzZ6ijXzel0qnfv3jp+/LhiYmJs9S4zgIKtc+fOKl68uCZPnmx1FOCK7rzzTs2ePVtLlizRmDFjrI4DAECOUOwFAOAKLly4oOnTp+uxxx6Tj4+P1XGu28svv6yPP/5Y8+bN02233WZ1HADI4Ovrq7CwMM2YMUMXL160Og5wRcHBwRo1apReeOEFrVy50uo4AABcN4q9AABcwdKlS3X69GmXauGwbNkyvfLKK3r11Vf1yCOPWB0HALIIDw/XqVOntHTpUqujAFf14osvqn379urRo4f27dtndRwAKPBM07Td045YoA0AgCto2bKlHA6HvvjiC6ujXJcff/xRTZo0Udu2bbVw4UIZhmF1JADIVqtWrSRJ69evtzQHcC1xcXFq3LixJGnLli20RgIAC6Qv0NYmqo3tFmhbPXA1C7QBAOAKfvrpJ3311VcuM6v37Nmz6tChg6pUqaLp06dT6AVgaxEREfryyy+1d+9eq6MAV+Xv76/ly5fr2LFj6t27t5xOp9WRAAC4Koq9AABkY/LkySpVqpQ6duxodZRrSktLU/fu3XXmzBnFxMSoaNGiVkcCgKsKCQlRqVKlWKgNLuG2227T/Pnz9dFHH+mVV16xOg4AFFimDR92RLEXAIB/SEpK0syZM9W3b195e3tbHeeann/+ea1Zs0bR0dGqWrWq1XEA4Jq8vb0VFhammTNn6sKFC1bHAa7pkUce0auvvqqXX35Zy5YtszoOAABXRLEXAIB/WLx4sc6ePavw8HCro1xTdHS03njjDY0dO1YPPvig1XEA4LqFh4frzJkzWrx4sdVRgOvy3HPPqXPnzurTp49+/PFHq+MAAJAtFmgDAOAfmjdvLh8fH33++edWR7mq77//Xk2bNlVISIhmz55Nn14ALqd169ZKTk7W119/bXUU4LrEx8frnnvuUVJSkr799lsVL17c6kgA4PbSF2h7YPIDtlug7fPwz1mgDQAAO/vxxx+1ceNG2y/MdurUKQUHB+uOO+5QVFQUhV4ALikiIkIbNmxgliRcRtGiRRUTE6PTp0+rR48eSktLszoSAACZUOwFAOAykZGRCgwMVIcOHayOckWpqakKDQ1VQkKCli1bJl9fX6sjAcANCQ4OVmBgIAu1waVUrVpV0dHRWr16tV544QWr4wAAkAnFXgAA/pKYmKhZs2apX79+8vLysjrOFY0YMUJffvmlFi1apEqVKlkdBwBumJeXl/r27atZs2YpKSnJ6jjAdXvwwQc1duxYvf7661q4cKHVcQCgwDBt9LArir0AAPxl4cKFio2N1cCBA62OckWzZs3Su+++q3fffVctW7a0Og4A3LSBAwfq3LlzFMzgcp566in16NFDffv21ffff291HAAAJLFAGwAAGZo2bSp/f3999tlnVkfJ1rZt29S8eXP16NFDU6dOpU8vALfRpk0bxcfH65tvvrE6CpAjiYmJat68uc6ePatt27apZMmSVkcCALdz+QJthQoXsjpOhtTEVBZoAwDArnbt2qXNmzfbdmG2EydOqGPHjqpdu7Y++OADCr0A3EpERIQ2bdqkXbt2WR0FyJHChQsrJiZGCQkJ6tq1q1JTU62OBABuy5Qp07TR06atHCj2AgCgSwuzBQUFqX379lZHySI5OVmdO3dWamqqli5dKh8fH6sjAUCu+te//qWgoCBFRkZaHQXIsUqVKmnRokX68ssv9eyzz1odBwBQwFHsBQAUePHx8Zo9e7b69+8vT09Pq+Nk8eSTT2rLli1asmSJypcvb3UcAMh1np6e6t+/v+bMmaOEhASr4wA51rJlS7377rt65513NHv2bKvjAAAKMIq9AIACb8GCBYqPj7flwmxTpkzRBx98oIkTJ+qee+6xOg4A5JmBAwfq/PnzWrBggdVRgBsyZMgQ9e3bVwMHDtS2bdusjgMAbse04cOOWKANAFDgNWzYUIGBgVq5cqXVUTLZtGmTWrZsqf79++vDDz+0Og4A5LlHHnlEp06d0rfffmt1FOCGXLhwQS1bttSxY8e0bds2lSlTxupIAODy0hdou3/y/Srka6MF2pJStS58HQu0AQBgJ9u3b9e2bdtstzDbsWPHFBISokaNGum9996zOg4A5IuIiAht3bpVO3bssDoKcEN8fHy0dOlSpaSkqEuXLkpJSbE6EgCggKHYCwAo0CIjI1W+fHk98sgjVkfJcPHiRYWEhMjDw0OLFy+Wl5eX1ZEAIF+0a9dO5cuXZ6E2uLTy5ctr6dKl2rx5s5588kmr4wCA2zBN03ZPO6LYCwAosM6fP6958+ZpwIABKlTIHh8HMk1TgwcP1s6dO7Vs2TIFBQVZHQkA8k2hQoXUv39/zZ07V+fPn7c6DnDD7rnnHk2cOFETJ07U1KlTrY4DAChAKPYCAAqsefPmKTExUQMGDLA6SoYPP/xQ06ZN06RJk9SwYUOr4wBAvhswYIASExM1f/58q6MAN2XgwIEaNGiQBg8erM2bN1sdBwBQQLBAGwCgQDJNU/Xr11eFChW0YsUKq+NIkr766iu1bt1agwcPpk8vgAKtffv2OnbsmL777jurowA3JTk5Wffff79+/fVXbdu2TeXKlbM6EgC4nPQF2lpFtrLdAm3rI9azQBsAAHawbds27dixwzYLsx09elSdO3dWixYtNG7cOKvjAIClIiIiMhbQBFyZl5eXFi9eLIfDoU6dOunixYtWRwIAuDmKvQCAAikyMlKVKlVS27ZtrY6ipKQkdezYUYULF1Z0dLQ8PT2tjgQAlnr44YdVsWJFFmqDWwgKCtKyZcu0Y8cODRkyxLYL+gAA3APFXgBAgRMbG6v58+drwIAB8vDwsDSLaZoKDw/Xnj17tGzZMpUuXdrSPABgBx4eHhowYIDmz5+vuLg4q+MAN61hw4aaNGmSpk6dqkmTJlkdBwBckmmatnvaEcVeAECBM3fuXF28eFH9+/e3OoreffddzZkzR1OnTlXdunWtjgMAttG/f39duHBBc+fOtToKkCvCwsI0fPhwDR8+XF9//bXVcQAAbopiLwCgQDFNU5GRkWrfvr3li6R8/vnneuaZZzRixAh1797d0iwAYDfly5fXo48+qsjISNvOnAFyaty4cWrRooU6d+6so0ePWh0HAJCPvvrqq4zfQw3DUExMTKb9pmnqxRdfVNmyZeXr66sHHnhABw4cyPF5KPYCAAqULVu2aNeuXZYvzHbw4EGFhobqgQce0JgxYyzNAgB2FRERoe+//15btmyxOgqQKzw9PRUdHS1fX1917NhRSUlJVkcCAJdh2vCREwkJCapdu7YmTpyY7f6xY8dq/PjxmjRpkrZs2aIiRYrooYce0oULF3J0HsPkbXIAQAHSt29frV+/Xr/88oscDmve80xISNA999yj+Ph4bd26VSVKlLAkBwDYXVpamm699Vbdd999mj59utVxgFyzY8cONWvWTJ06ddKsWbNkGIbVkQDAtuLi4hQQEKB7J92rQr6FrI6TITUpVV8N+kpHjx6Vv79/xnZvb295e3tf9bWGYWjZsmUKDg6WdGlWb7ly5fT000/rmWeekXRprZkyZcpoxowZ6tat23XnYmYvAKDAOHv2rKKjozVw4EDLCr2maapfv3765ZdftHz5cgq9AHAVHh4eCg8PV3R0tM6dO2d1HCDX1K1bV1OnTtWcOXP03nvvWR0HAHATKlasqICAgIznjXxy8+DBgzp+/LgeeOCBjG0BAQFq3LixNm3alKOxKPYCAAqM2bNnKyUlRf369bMsw9ixY7Vw4ULNmjVLtWrVsiwHALiKfv36KSUlRbNnz7Y6CpCrunfvrhEjRuiZZ57R2rVrrY4DALZnmqbtnpJ09OhRxcbGZjxHjhyZ4+/t+PHjkqQyZcpk2l6mTJmMfdeLYi8AoEBIX5gtODhYQUFBlmRYtWqVRo4cqRdeeEEhISGWZAAAVxMUFKQOHTqwUBvc0pgxY9S6dWuFhobq4MGDVscBANwAf3//TM9rtXDIaxR7AQAFwsaNG7Vnzx7LFmY7cOCAunXrpnbt2unll1+2JAMAuKqIiAj9+OOP+uabb6yOAuQqDw8PzZ8/XwEBAerYsaMSEhKsjgQAsED6hKQTJ05k2n7ixIkcT1ai2AsAKBAiIyN166236v7778/3c58/f14dOnRQUFCQ5syZY1m/YABwVa1bt1bVqlUVGRlpdRQg15UoUULLly/Xzz//rP79+zODHQCuwLThI7dUqVJFQUFBmdr6xMXFacuWLWratGmOxuK3TQCA2zt9+rQWLVqk8PDwfC+0Op1O9enTR7/99ptiYmIUEBCQr+cHAHfgcDgUHh6uhQsX6syZM1bHAXJdrVq1NGvWLEVHR+vNN9+0Og4AIA/Ex8dr586d2rlzp6RLi7Lt3LlTR44ckWEY+ve//63Ro0drxYoV2r17t/r06aNy5copODg4R+eh2AsAcHuzZs2S0+lUWFhYvp979OjRiomJ0dy5c1WjRo18Pz8AuIu+ffvK6XRq1qxZVkcB8kRISIheeOEFPffcc1q1apXVcQAAuWzbtm2qW7eu6tatK0l66qmnVLduXb344ouSpGeffVbDhg1TeHi4GjZsqPj4eK1atUo+Pj45Oo9h8hkRAIAbM01Td9xxh+rUqaMFCxbk67lXrFihDh066JVXXtH//d//5eu5AcAdhYaGateuXdqzZ48Mw7A6DpDrnE6nOnTooA0bNujbb79V9erVrY4EAJaLi4tTQECAmn3QTIV8C1kdJ0NqUqo2Dt6o2NhY+fv7Wx0nAzN7AQBu7auvvtK+ffvyfWG2n376Sb169VJISIief/75fD03ALiriIgI7d27V19//bXVUYA84XA4NGfOHJUpU0bBwcE6f/681ZEAAC6GYi8AwK1FRkbqtttuU6tWrfLtnOfOnVOHDh1UqVIlzZgxgwXZACCX3HfffapevToLtcGtBQQEKCYmRkePHlWfPn3kdDqtjgQAcCH89gkAcFunTp3SkiVLFB4enm8f901LS1PPnj31559/KiYmRn5+fvlyXgAoCAzDUHh4uBYvXqxTp05ZHQfIMzVq1NDcuXMVExOjV1991eo4AGALpg0fdkSxFwDgtmbMmCFJeuyxx/LtnC+++KJWrVqlBQsWqFq1avl2XgAoKNIX25w5c6a1QYA81r59e73yyit68cUXtWLFCqvjAABcBMVeAIBbMk1TkydPVufOnVWqVKl8OeeiRYv02muvacyYMXrooYfy5ZwAUNCUKlVKnTp10uTJk8Va03B3zz//vDp27KhevXpp7969VscBALgAir0AALf0xRdf6MCBA/m2MNuuXbsUFham0NBQjRgxIl/OCQAFVUREhPbv36/169dbHQXIUw6HQzNnzlSlSpXUoUMHxcbGWh0JACxjmqbtnnZEsRcA4JYiIyN1xx13qEWLFnl+rjNnzig4OFjVq1fX1KlT860/MAAUVPfee69q1KihSZMmWR0FyHN+fn6KiYnRyZMn1bNnT6WlpVkdCQBgYxR7AQBu58SJE1q2bFm+LMyWmpqqbt26KS4uTjExMSpSpEieng8AcGmhtoiICC1btkwnT560Og6Q56pVq6YFCxbo008/1ahRo6yOAwCwMYq9AAC3M336dDkcDvXp0yfPzzVy5EitW7dOCxcuVOXKlfP8fACAS/r06SOHw6Hp06dbHQXIFw899JDGjBmjV199VYsXL7Y6DgDkO9OGDzui2AsAcCtOp1NRUVEKDQ1ViRIl8vRc8+bN07hx4/TWW2/p/vvvz9NzAQAyK1GihLp27arJkyfL6XRaHQfIFyNGjFBoaKjCwsK0e/duq+MAAGyIYi8AwK18/vnn+vXXX/N8Ybbt27erf//+6tOnj4YPH56n5wIAZC8iIkK//vqr1q5da3UUIF8YhqGpU6eqWrVqCg4O1pkzZ6yOBACwGYq9AAC3EhkZqVq1aqlp06Z5do6TJ08qODhYtWrV0qRJk1iQDQAscs8996hmzZqKjIy0OgqQb4oUKaKYmBjFxsaqW7duSk1NtToSAOQL0zRt97Qjir0AALfxxx9/aPny5YqIiMizAmxKSoq6du2qixcvaunSpfL19c2T8wAAri19obbly5fr+PHjVscB8k3lypW1cOFCrVu3Tv/973+tjgMAsBGKvQAAtzFt2jR5eXmpV69eeXaOp59+Whs3btTixYtVsWLFPDsPAOD69O7dW56enpo2bZrVUYB8df/99+utt97Sm2++qfnz51sdBwBgExR7AQBuIS0tTVFRUerWrZuKFSuWJ+eYPn263n//fY0fP14tWrTIk3MAAHKmWLFiCg0NVVRUFAu1ocAZPny4+vTpo/79+2vHjh1WxwGAPGXa8GFHFHsBAG5h9erVOnz4cJ4tzLZlyxYNGjRIAwYM0KBBg/LkHACAGxMREaFDhw5p9erVVkcB8pVhGJo0aZJq1qyp4OBg/fnnn1ZHAgBYjGIvAMAtREZGqnbt2mrUqFGuj338+HGFhISofv36mjBhAguyAYDNNG7cWHfffTcLtaFA8vX11dKlS3XhwgV17dpVKSkpVkcCAFiIYi8AwOX9/vvv+vjjj/NkYbbk5GR16tRJpmlqyZIl8vb2ztXxAQA3L32hto8++kjHjh2zOg6Q7ypWrKjFixdrw4YNeuaZZ6yOAwB5wjRN2z3tiGIvAMDlTZ06VT4+PurZs2eujz1s2DBt27ZNS5cuVdmyZXN9fABA7ujZs6e8vb01depUq6MAlmjRooXGjx+v8ePHa8aMGVbHAQBYhGIvAMClpaWlacqUKerevbv8/f1zdezIyEhNnjxZH374oZo0aZKrYwMAcldAQIC6d++uqKgopaWlWR0HsMTl6wt8++23VscBAFiAYi8AwKV9+umnOnr0aK4vzLZhwwYNGzZMQ4YMUb9+/XJ1bABA3oiIiNDRo0e1atUqq6MAljAMQxMmTFC9evUUEhKi48ePWx0JAHKNacOHHVHsBQC4tMjISNWrV08NGjTItTF/++03de7cWU2bNtU777yTa+MCAPJWgwYNVLduXU2aNEmS5HQ6FR8fb3EqIH95e3tryZIlcjqd6ty5s5KTk62OBADIRxR7AQAu68iRI/rkk09ydVbvhQsXFBISIk9PTy1atEienp65NjYAIG8ZhqFBgwZp5cqVev7553XrrbcqKCiIYhcKnLJly2rp0qXaunWrhg8fbnUcAEA+KmR1AAAAbtSUKVNUuHBhde/ePVfGM01TgwYN0u7du7VhwwYFBgbmyrgAgLxnmqa++uorffbZZzJNU6+99pokycPDgzfuUCA1adJEH374ofr376+6devmessrAMhvpmnKNO3TOsFOWS5HsRcA4JJSU1M1depU9ezZU35+frky5oQJEzRz5kzNnj1b9evXz5UxAQD5Y8mSJerSpYscjswfXixWrJgMw7AoFWCtfv36afv27Ro2bJhq1aqlZs2aWR0JAJDHaOMAAHBJH3/8sY4dO5Zrs1TWr1+vJ598Uk899ZR69eqVK2MCAPJP69at1bhx4yzbS5UqZUEawD7eeecdNW3aVJ06ddLvv/9udRwAQB6j2AsAcEmRkZFq1KiR6tate9NjHT58WF26dFGrVq30xhtv5EI6AEB+K168uL744gu1b98+00zeMmXKWJgKsF76OgReXl4KCQnRhQsXrI4EADfMtNHDrij2AgBczqFDh/TZZ5/lyqzexMREBQcHq2jRooqOjlahQnQ4AgBX5evrqyVLlmjw4MEZ23Kr1Q/gygIDA7Vs2TLt2rVLjz/+uG37TAIAbh7FXgCAy4mKipKfn59CQ0NvahzTNDVgwADt379fMTExKlmyZC4lBABYxcPDQ++//77+97//SZLi4uIsTgTYQ/369RUVFaUZM2Zo4sSJVscBAOQRpi8BAFxKSkqKpk2bpt69e6tIkSI3NdZbb72l+fPnKzo6WrVr186lhAAAqxmGoRdeeEFly5ZVnTp1rI4D2EavXr20Y8cO/fvf/1atWrXUqlUrnTt3Th999JF69uyZZYFDALAT0zRt9ckEO2W5HMVeAIBLMU1TtWrV0hNPPHFT46xevVr/+c9/9Nxzz6lr1665lA4AYCf9+/e3OgJgO2+88Ya+//57denSRQsWLNDAgQN18OBBVaxYUa1atbI6HgDgJvG2HQDApXh5eWnNmjWqXr36DY/xyy+/qFu3bnrooYc0evToXEwHAABgb4UKFVJ0dLQcDofatGmjI0eOyOFwaMuWLVZHAwDkAmb2AgAKlPj4eAUHB6tUqVKaN2+ePDw8rI4EAACQb5xOp95//32dPHkyY5vD4dCmTZssTAUA12b+9bALO2W5HMVeAECBYZqmwsLCdOjQIW3ZskXFihWzOhIAAEC+mjJlil5++eVM25xOpzZu3CjTNGUYhkXJAAC5gTYOAIAC47XXXtOSJUs0e/Zs3XnnnVbHAQAAyHcdOnRQv379VKhQoUyfcDp16pSOHj1qYTIAQG6g2AsAKBA+/vhj/d///Z9GjRql4OBgq+MAAABYokyZMpo6daqOHDmiESNGqGjRohn7VqxYYWEyALg60zRt97Qjir0AALe3b98+9ezZU+3bt9eLL75odRwAAADLlS1bVmPGjNGxY8f06quvytfXN1MfXwCAazJMu5ahAQDIJU8//bRWrVqlTZs2yd/f3+o4AAAAAIDrFBcXp4CAANV5t448fO2zwHZaUpp2/nunYmNjbfV7JjN7AQBub/To0dqxY4etfgADAAAAAK6facOHHRWyOgAAAHnN19fX6ggAAAAAAOQ5ir2whQMHDuj8+fNWx7AVPz8/Va9e3eoYcANcX9njGkNu4RrLHtcYcgvXWPa4xpBbuMay4voC4Moo9sJyBw4c0G233WZ1DFvav38/Nxm4KVxfV8c1hpvFNXZ1XGO4WVxjV8c1hpvFNXZlXF+A/ZimKTstPWanLJej2AvLpb+LPHToUJUvX97iNPbw+++/a8KECbzDjpuW/m9ozpw5uuOOOyxOYx8//fSTevXqxTWGm5b+b8joZMgoZVicxj7MU6bMJSbXGG5a+r+hOyPuVJFyRSxOYx8JxxK0J3IP1xhuWvq/oagZUbq9xu0Wp7GHfXv3aWDYQK4vAC6LYi9so3z58qpatarVMQC3dMcdd6hevXpWxwDcllHKkFGOYu/l7LpgBVxTkXJF5FfZz+oYgNu6vcbtqlO3jtUxAAC5gGIvAAAAAAAAAFsz/3rYhZ2yXM5hdQAAAAAAAAAAwM2j2AsAAAAAAAAAboBiL9zK+vXrFRoaqpMnT1odJYuXX35ZL7/8stUxAAAAAAAAXI5pmrZ72hHFXtje2LFj1bt3byUlJV3xmPHjx6tHjx45XjF12bJl2rp1681GBNzCjBkzZBiGDMPQhg0bsuw3TVMVK1aUYRh69NFHczT277//rq5du6pYsWLy9/dXhw4d9Ouvv2Z77NSpU3XHHXfIx8dH1atX1/vvv3/TYwJWc+5wKm1UmtJGpck8nPWm0DRNpb11aX/a3LQcjW3GmXIudCptTJrSXktT2rw0mWeyv/F0fudU2vtpSvtfmtLeS5NzszPreKdMOT91Km3KX8eNSpN51p43skC6P77+Q+seW6d1j63Tuf3nsuw3TVMbn9yodY+t0/dvf3/d4yb8kaADcw9o2/+2af2A9Vr32Dol/Xnle9I/t/+pb1/8VusHrNfGJzfq16W/ypmW+Tq7eO6ifl74s7aP2a4vI77UusfW6exPZ687E2CFubPmyt/bX/7e/tq0cVOW/aZp6o5b75C/t7+6BHe57nEP7Dug5555Tg+0fECl/UvL39tfhw8dzvbYJYuWaEDYANW5s478vf31yIOPZHtcfHy8Xn3lVXV8tKMqBVWSv7e/5s6ae92ZAMDVUeyF7TVv3lzJycn69ttvs91/8eJFbdu2TXXq1FG7du00e/ZslS5d+rrGptgLZOXj46N58+Zl2f7ll1/qt99+k7e3d47Gi4+P13333acvv/xS//3vf/Xyyy9rx44datmypU6fPp3p2MjISA0YMEA1a9bU+++/r6ZNm2r48OF64403bnhMwFYKSebubAqnhyTFKcdL55oXTTlnOGUeMmW0MGS0MqTjknO6U2Zi5vM4tzplrjClQMl42JBR0ZD5qSnn15kLUeZRU+YWU7ooqVTO8gBWc3g6dGLTiSzbz+09p4tnLsrhmbNff+J+jtPRNUeVdiFNhcsWvuqxp78/rd3jd6tQ4UKq3qu6StcvrUMrDunA7AOZjkv8I1FHVh7RxbMXVaRCkRzlAazm4+OjhQsWZtm+4asN+v2333N8n/jtlm81aeIkxZ+P1+01br/qsVMnT9UnH32iChUrqFjxYlc87vSp03rj1Te0f99+3XX3XTnKAwDuIIe/UgD5r0GDBvL19dXGjRvVsmXLLPu3bdumixcvqnnz5nI4HPLy8rrqeKZpKiUl5ZrHAQXVI488okWLFmn8+PEqVOjvHxPz5s1T/fr1derUqRyN98EHH+jAgQP69ttv1bBhQ0nSww8/rFq1aumtt97Sa6+9JklKSkrS888/r3bt2mnx4sWSpIEDB8rpdOp///ufwsPDVbx48RyNCdhOdcn80ZT5sCnDw8jYbO42pXKSEnM2nLnVlE5LjnCHjPKXxjOrm3J+4JT5jSnjgb+2pZgy15nSbZJHqMelFzeQnKZT5lemzAamDN9Lxxq3GzJGGjK8DTk3OmUeZ1YvXEfJ2iV1cutJVe9VXQ6Pvwu7JzadkF9lP6XEp+RovFJ1S+neD+9VId9COvLJEf185OcrHvvzgp9VtGJR1RlRJ+PcHj4eOvzxYVVoU0FFyl0q7PpV9lOLiS3kWdRTJ7ee1A8TfriB7xSwRpu2bRSzNEZvvvNmpvvERQsWqW69ujl+0/3hRx/W0ZNH5efnp/Fvj9eu73dd8djJ0yarXPlycjgcaly38RWPCyobpAOHD6hMUBlt/267Wt3TKkeZANiX+dfDLuyU5XLM7IXteXl5qVGjRvrhhx8UGxubZf+GDRvk6+urBg0aZNuzd+jQoXrjjTe0c+dOjRw5Ur1799aaNWsUGhqqixcv6ssvv1RoaKhCQ0P1wQcfSLpUSBo6dGiWcy1atEihoaGZtn3xxRd65ZVXNHDgQPXs2VNPPfWUVq9enct/C0D+6d69u06fPq01a9ZkbEtOTtbixYvVo0ePHI+3ePFiNWzYMKMoK0k1atRQ69attXDh3zNDvvjiC50+fVqDBw/O9PohQ4YoISFBK1euzPGYgN047nJISZIu6zhippoy95gy7jKu+LorMfeYUnllFHolyShtSFUuFZUzHJSUKDkaZr71MxoZUrJk7v/7WKPwpUIv4IrKNCmjlPgUnf3h77YIzlSnTm47qTJNy+R4PM+inirke+35MQm/JyjhWILKtSqXqchcoXUFyZRObv373rSQbyF5FvXMcRbADjqHdtaZ02e07vN1GduSk5MVsyxGXUKvv31DuhIlSsjPz++6jq1QsYIcjmuXMLy9vVUmKOfXOwC4C4q9cAnNmzdXWlqaNm3K3B8qPj5e33//vRo2bHjVmbrHjh3T+PHjddddd+mxxx5T5cqVNXToUHl6eqpGjRoaOnSohg4dqgceeCDH2dasWaNSpUopODhYvXv3VsmSJTV16lR99tlnOR4LsIPKlSuradOmmj9/fsa2Tz/9VLGxserWrVuOxnI6ndq1a5caNGiQZV+jRo30yy+/ZPTa3rFjhyRlObZ+/fpyOBwZ+3MyJmA7xSRV+Ecrh58lXZCMWjkrsJpOUzohGeWyvs4ob0hnLrV5kCTzj7/OV+4fB5aVZEj6I0enBmzLp5SPAm4N0InNf7dyOL3rtFITU1Wmcd4Vf84fvvRzx7+yf6bt3sW95V3CW/FH4vPs3EB+qnRLJTVq0kiLFy7O2LZm1RrFxcapU9dOFiYDAKSjjQNcQq1atVS8eHFt3LhRbdu2zdi+adMmpaWlqXnz5ld9/fHjxzVy5EjVqVMn0/aoqCiVKVNGLVq0uOFsL730UqZCc9u2bfXaa69p5cqVeuihh254XMBKPXr00MiRI5WUlCRfX1/NnTtXLVu2VLly/6wUXd2ZM2d08eJFlS1bNsu+9G3Hjh3T7bffrj/++EMeHh4KDAzMdJyXl5dKliypY8eO5XhMwI6MuwyZa02ZKaYMT0PmLlOqLBn+OZxNmyQpVVLRbPalT5I6L8lbUrwkh2QUzXwOo5AhFf7rOMBNlGlaRr8s+kVpyWny8PLQiW9OqFiNYvIunrNeojmRfC5ZkuRVLOvkA68AL108ezHPzg3kty6hXfTy/72ccZ+4cMFCNb+3ucqWy3pvBgC5yTRNmaZ9WifYKcvlmNkLl+BwOHTPPfdo//79mVo0bNy4UQEBAbrrrqs33g8MDMxS6M0tlxd6ExMTFRcXpzvuuEMnTpxQYmIOmy8CNtG1a1clJSXp448/1vnz5/Xxxx/fUAuHpKRLK5Znt1iHj49PpmOSkpKuOEPfx8cn03HXOyZgR0YtQ0qRtP/SzFtz/421cFDqX39m99Z9+raUy/70uMI4hS61kgDcRWCjQDlTnDq987RSk1J16vtTCmoSlKfnTEtJk6RsF4BzeDrkTHFm2Q64qpDOIUpKStKqT1bp/PnzWvXJqhtq4QAAyBvM7IXLaN68uVauXKmNGzeqY8eOOn36tPbu3au2bdtes3fTP2cK5qa9e/dq0aJFOnDggC5ezDxrIzExUYULX33lZsCOSpcurQceeEDz5s1TYmKi0tLS1Llz5xyP4+vrK0lZrg1JunDhQqZjfH19lZycnO04Fy5cyHTc9Y4J2JFRxJCqSs5dThkphuSUjDtvoNibfheXms2+9G2el/2ZdoVxUv+a4Qu4CS9/LxW/s7iObzqutOQ0mU5TpRuWztNzenheejclu6KuM8WZbREYcFWlSpdSq/tbadGCRRn3iR1COlgdCwDwF4q9cBlVq1ZVuXLlMoq9GzdulGma12zhIOmq/XxzwunMfAN//PhxjR49WuXKlVPv3r1VqlQpeXh4aOfOnVq5cmWW4wFX0qNHDw0cOFDHjx/Xww8/rGLFiuV4jBIlSsjb21t//JG1IWj6tvTWEGXLllVaWppOnjyZ6Q2a5ORknT59OuO4nIwJ2JVxtyFzhSkz3pSqS4bvDRRbfXXpTi67VqDpbRnS2zkUleSUzHgzUysHM9WUEi87DnATZZqW0b7p+5Qcm6ySd5eUZ5G8XRAtvX1D8rlk+ZT0ybQvOTZZ/lX9s3sZ4LK6dOui4Y8P14kTJ/TgQw/e0H0iAOSU+dfDLuyU5XK8xQyX0rx5cx09elSHDx/Wxo0bVbZsWVWrVu2GxzOM7H+5Llq0qBISErJs//PPPzN9/d133yklJUXPPvusHnzwQdWtW1d33313rhWXASt17NhRDodDmzdvvqEWDtKlFix33XWXtm3blmXfli1bVLVq1YwVmNNbrfzz2G3btsnpdGbsz8mYgF0ZNYxLC6P9phtr4SDJcBhSoGQey3qTaf5uSsUlw/vS2EbZv85x7B8HHpNk6tJCbYAbKV2/tGRIcb/EqUyTvFuYLV3RSpeaZ8cdisu0/eLZi7p45mLGfsBdtO/QXg6HQ1u3bFWXbrRwAAA7odgLl5K+kNrChQt16NAhNWvW7KbG8/b2zraoW6ZMGSUmJurw4cMZ286ePautW7dmOi69fcTlTbkTExO1fv36m8oF2EHRokX14Ycf6qWXXlL79u1veJzOnTtr69atmYqz+/bt07p169Sly9+/HNx///0qUaKEPvzww0yv//DDD1W4cGG1a9cux2MCdmV4GzIeNWS0MmTcfuMtFIw7Den3v4q7fzFPmdJByah52bhVJPlKzq2ZP3FibjUlT8moThsHuJdCPoV0+2O3q0pwFZWqWyrPz1e0QlEVLltYx9Yfk+n8+3r8fd3vkiEFNsy7lmKAFYoWLaq3339bI/9vpB5u97DVcQAAl6GNA1xKYGCgbrvttowCT3rx90ZVrVpVu3fv1scff6zixYsrMDBQ1atX1z333KO5c+fqrbfeUtu2bXXx4kWtWbNGZcuW1cGDBzNeX7t2bRUqVEhjx47VAw88oAsXLmjt2rXy9/fX2bNnbyobYAePPfbYTY8xePBgRUVFqV27dnrmmWfk6empt99+W2XKlNHTTz+dcZyvr6/+97//aciQIerSpYseeughff3115ozZ45effVVlShRIsdjAnbmqHPz77kbjQyZ20055zpl3GNIHpK5yZSK6NLX6cd5GjLuN2SuNJUWnSajmiEdlsxdpozWhozCl7V2uGDK3HKpWGUe+evPb02ZPqbkIzkaM1cArqFs85ufsp6amKqja45KkmIPxEqSfvv8NxUqXEiehT1V4cEKGcdW61ZNu97dpZ1v7lRg40Al/Jag3z7/TeXuLaci5YpkGvfg8kv3kwm/X5p0cPyb4zq3/5wkqUqHKjedG8gPPXv3vOkxYmNjFflBpCRp8zebJUmTP5ysgGIBCggIUMTgiIxjN369URs3bJQknTp1SokJiRo7ZqwkqVnzZmrW4u+JQJEfRCo2NlZ/HLvU4uvTlZ/q999/lyRFDI5QQEDATWcHkP9M08w02c5qdspyOYq9cDnNmzfX/v37Va1aNQUF3dzKyn369NHkyZMVHR2t5ORktWzZUtWrV5efn5+eeeYZzZo1S3PnzlVgYKC6d++u48ePZyr2litXTk899ZQWLFig2bNnq1ixYnrwwQfl7++vSZMm3ey3CrgFPz8/rV+/Xk8++aRGjx4tp9OpVq1a6Z133lHp0pkXzBk8eLA8PT311ltvacWKFapYsaLeeecdPfHEEzc8JuDODG9DjjCHnKucMr8yL7VkqCw52jouLQR3GUcjh5wOp8xNpsx9phQgGW0NGU3+Mas3STLXZb5xNb/56+tikhrn1XcD2E9KQooOLj2YadvRVZeKvz6lfDIVe0vVKaW7ht2lgzEHdWDOAXn6eapy+8qq3KFylnH/OeYfX/3dh55iLwqSc2fPafRLozNte//d9yVJlW6plKnY++X6L/X66NczHZv+2udeeC5Tsff9d9/XkcNHMr5eEbNCK2JWSJJCu4dS7AXg1gzTrmVoFBjbt29X/fr1NWbMGFWtWtXqOLbw66+/auTIkfruu+9Ur149q+PAhaVfX/xbyoy/F+SW9H9LjgiHjHK0QkhnHjPljHRyjeGmpV9jDV9uKL/K9GNPd/7QeW0dtZVrDDct/Rr7avNXqlO3jtVxbGHnjp26t8m9XF+AjcTFxSkgIEA1xtWQh6+H1XEypCWlae8zexUbGyt/f/ssxsrMXgAAAAAAAAC2Zv71sAs7ZbkcxV4AwA05c+aMkpOTr7jfw8ODlgrADTITTSntKgc4lKVNA4DrlxKfImeq84r7DYchL3+vfEwEuJczZ84oJTnlivs9PDxUqnTeL54IAAURxV4AwA0JCQnRl19+ecX9t9xyiw4dOpR/gQA34ox2SoeuckAxyeNJ+3yEDXA1u9/frXN7z11xv08pH93z1j35FwhwM71Ce2nDVxuuuL/SLZX0w/4f8jERABQcFHsBADfkrbfe0tmzZ6+439fXNx/TAO7F8ZBDSrrKAZ75FgVwS9W6VVNqYuoV9zs8HfmYBnA/r77xqs6dPXfF/dwnArgRpmnKTkuP2SnL5Sj2AgBuSP369a2OALgtFnsD8pZ/FfssogK4o7r16lodAQAKLN6yBgAAAAAAAAA3QLEXBVJoaKgWLVp0XccOHTpUH3zwQY7PcfLkSYWGhmr9+vU5fi1QUCxcuFB33323fH191bdv30z7Dh06lLHIW7du3XTu3DlrQgI25PzBqbQP0pT2vzQ5l2VeZCpteprSJl5tdbecS5ueprTRaUqbnCbzoD0/rgbklhNbTmjL81u0fsB67Ynak2nf9jHbteW/W3L1fNvHbNf6geu19aWtOvvTldsjAXa0dPFSNa3fVIEBgXp84OOZ9j3y4CNqXLdxnmfw9/bX0088nevjtmrVSu3atdORI0dyfWwAN8a04cOOKPbCZa1fv16hoaH65Zdfbnqsffv2adGiRUpISMiFZACuR0JCgsLCwnT+/Hm9/vrrCg8Pz7S/dOnSmjp1qrp166bo6Gi9/fbbFiUF7MVMNmXGmNJFyXjAkNHgxlo+OL9yKi0qTWlvXCoap72XJuenTpkJWW9aHfc6ZNxnSHHKUlwG3EnaxTT9NOUnpV1I061db1X5+8rf0DiHPjqkba9s09dDv9b6Aeu16dlN2j93v5LjkrMcW7l9ZVUNqaqLZy9qz+Q92YwG2FNCQoIeH/C44s/H66XRLymsf1iOx0hMTNTkDyerwyMdVP2W6ipXspyaN2quKZFTlJaWe29cJiUlaUjEEDWu21gVSldQ2RJldU+De/TB+x8oJSUl29d06dJFq1ev1gsvvJBrOQAgP9CzFwXS7Nmz5eHx9yrm+/fv1+LFi9WyZUsVKVIk07HvvPOODIPeiUBu++mnn5SUlKSnn35aQ4cOzbK/SJEiCgsLU1hYmD777DPt3Lkz/0MCdvSnpBTJuMeQo/GNv29vHjNlBBlSLUlekk5J5nemzP2mHI87ZHj9/bPPuNWQcashZ5pT5lpTZqIpozA/G+F+Eo4lyJnsVKW2lVThwQo3PM75Q+dVtFJRlWlcRh4+Hko4lqBjXx7T6e9Pq9H/GsnD++/70BK1SqhErRJypjr16+JflRKfIs+irMII+9u3d5+SkpI09N9DFTE44obGOHTwkEY8OUKt7mulocOHys/fT2vXrNVTw5/S1m+3KnJqZK5kTUpK0k97flKbtm1U6ZZKcjgc2rJ5i0aOGKltW7dp2qxpWV4zZMgQHT16lHtQAC6HYi8KJC8vr+s+1tOTm23gn1q1aqXKlStrxowZNzxG+kz6MmXKXPPYoKAgnT9//obPBdhF2vQ0GcUMOTrexIer/pqAZBS9uWKrRzePLNvMiqac0U6Z+0wZd2UzftG//kyWVPimTg/kuu1jtsunlI/uHHjnDY+RdvHSTEKvgOu/V8zOXcPuyrItoFqAfpjwg07tOKUyTbL+7Es/Z+qFVIq9yHPp93LDhw+/4TESExIlSYFlAm94jDJlymjz9s264847Mrb1G9hPg8MHa87MOXp25LO6tdqtNzx+uhIlSmjd1+sybesf3l/+/v6a/OFkjRk7RmWCsl6XQUFBOnDgwE2fH0DuME1Tpmmf1gl2ynI52jjAbXzwwQfq06ePzpw5ozfffFN9+vTRgAEDNHv2bDmdmT9yennP3kWLFmnOnDmSpGHDhik0NFShoaE6efKkpKw9e+Pj4zV79mw988wz6tOnj8LCwjRmzBgdOnQof75RuK358+frqaee0u+//251lHyR/oPxembOOxwO2/4ghet4+eWX9cYbbyg+Pt7qKDfnBi4F82dTaaPT5FzklJl2lQGK/fXnhSvsT79cuRzhrtL/befgvZTTu09r/cD1+uGDH+RMu3KbE59SPpKk1MTUbPdn/Dzk+oKLyMm9XLq1a9aqTLEy6tu7r1JTU1WyVMlMhd507f/VXpK0f+/+G8o2dsxYBfgEaNLESVc97pZbbpEkxZ6LzXY/96AAXBHFXrgVp9OpV199VX5+furdu7fuvPNOffzxx/r888+v+JpGjRqpWbNmkqQ+ffpo6NChGjp0qPz9/bM9/sSJE9q6davq1aunPn36qH379jpy5IhefvllnTlzJk++LxQMCxYs0DvvvKPKlStr6NChbl/0TX8TxuG49o8iwzCyvGkD5NR7772n5557ThUqVHDtom8Oi1HmPlPO+U4ZdxoyOhkyPP5+oWmaMhNMmedNmYdNOT9xSg7JqHyFwSn2ws1lFHWu8/o6tfOUdr+3W4ENA1VzUE05PP7+mWaappLPJ+viuYs6t++cDsw5IMNhqFiNYtkPxvUFF5OTezlJ+nTlp+rWqZuCOwVryowpKlToyh80PnHihCSpRKkSOc71yqhX9OrLr+q9ie9p0JBBmfYlJyfr9KnT+u3ob/po+Uca/+54VbqlkqpWq5rtWNyDAnBFFHvhVlJSUnTPPfdo0KBBevDBB/XUU0+pcuXK+uKLL674mltuuUVVqlSRJDVs2FAtWrRQixYt5OPjk+3xlSpV0rvvvqsePXrogQceUKdOnfTyyy8rJSXlqucBrldqaqomTZrk9kXfY8eOSZKKFSt2zWMDAgL0xx9/5HEiFBSxsbEaOXKkyxZ9zfN/VYKy/zGV+dg9l9oyGLUNGcGGDMc/KljxknOsU85xTjmnOaVYXSoIl86+0mV4GxmvA9xR8tlLC6gVKnztbncnt53U7vG7FXRPkO4YcEeW6ys5Nlkbhm7Qxic2avtr23XhzAXdOehOFSlXJNvxCvleOufFcxdv8rsA8kf6vVlAQMA1j10Rs0K9Qnupe8/u+jDqw0zrp/xTcnKyPnj/A1WuXFn1G9TPUabn//O83h77tj6I+iDbBeNWxKxQlfJVdGe1O9Wza0+VK19O0Uujr1h4DggI0J9//qnU1Oxn5APIX6YNH3ZEz164nQcffDDT13fccYe++uqrXBv/8h6+TqdTCQkJ8vHxUdmyZXXw4MFcO8+NSEhI0B133KE///zT0hy4McnJf6/Qnb768MSJEzVx4kRt27ZN9evn7GY3t6SkpCg2NjbLtosXL+rUqVOZtpcoUeKaszvOnTunX375RW+//bb8/f3VsGHDa2Zo2bKlli9frgkTJqhDhw4KCgqypJ/2d999p9atW+viRX4Rd0UXLvzdm8A0TcXGxuq5557TqFGjlJSUlOuLcZppZtZ2CGmSUiUz4R83hr7KWoj953hJpnRWMjeZkrek8lc/v3O3U+ZSU0YDQ8YjRvbfn6/k6OO4lOkPU+ZP5qV+vFdSQVIhyfmVU442DingsgIwkI+cqU6lJmUuvpipppwpTiWfz/yP2LOI5zWvr5SEFCWdTNKRz47Iw9dD/lWy/4RXuuObjuunqJ9U/r7yqt6rerbXl2dRT9V5to6cKU6dP3xef277M6MncHb8b/WXw9Ohwx8dlmc3T3mX9FYhH35dw8272r3c2bNnJV26Pzt96rSKlyh+XfdyB389qInvTZS/v7/qNah31eMXRS9SRL8I9RvYT2++8+Y1f94+88Qz2vvTXi2KWXTV2b+XM01TTz/xtKZPma6oGVHqEtol2+PubXmvln+yXLGxsfpy3ZfavXt3xjoS2WnZsqXee+89vfjiiwoPD1fZsmXl7e19XZkAwCrcPcCteHp6Zmm/UKRIkav+AM8pp9OpTz/9VKtXr9bJkyczfazHz88v185zI3x9fTV27FiKvS5q8uTJ+uGHHzK+NgxDHh4eatOmjWrWrGlZro0bN+q+++7Lsv2bb77RggULMm07ePCgKleufNXxgoOD9eWXX8rf31/Lli27ruvmiSee0KZNmzRs2DANGzZMX3zxhVq1apWTbyNX3H777Ro7dizFXhf13HPPKTExMdO2okWLqn///rle6JUkHZGcM7J+9NM8asr8IXOx1/Fvh1T86sM5FzilQ5K8JUc3x9WLrGclc4kpo6YhR7sr/9JuFDKkv9a9MW43ZFY15ZzqlFnElHF71vENP0OOEIecS51yTnTKqGPI6EixF/kv9kCsdry+I+uOn6WTW05m2tR0XFP5lva96ni7x+/Wub3n5OHrobuG35UxyzY7SX8maU/kHgU2CtRtvW+74nGOQg6VqHnpI+il6pRSiTtL6LvR38nL30ul6pTKcrx3MW/dGXGn9kTu0Zb/blFQ86CbWmwOSHc993L/avsvSdLufbt1S+Vbrjpejy49tOGrDfL399fchXOvei93+NBhDQwbqOBOwRr37rhrZn3vrfc0Y9oMvfDSC3ro4YeueXy6BXMXKD4+Xu+8/84VC73SpcXk0heUCw4J1rg3xin4kWDt+HFHtgu0dezYUU899ZTGjBmjMWPGaPr06QoLC7vuXABgBYq9cCvX2y/qZixbtkwLFy7Ufffdp65du6po0aIyDEMzZ860vHm/w+FQt27dLM2AG/f555/rhx9+kIeHhzw9PTVs2DCNGDFCpUuXtjRX7dq1tWbNmkzbnn76aQUFBWnEiBGZtgcFBV1zvHHjxmn37t165ZVX1Lt3b+3fv19FimT/kdZ006dP16JFizR06FC1adNGtWvXzvk3kguKFi2q8PBwS86Nmzdq1CglJibKMAyVKlVK//d//6eBAwdesW3PTQv6a9bsZZyfOaWikqPZP35eFb32cI42DpknTZnrTTmXOuUY7pDhdYVCq9+lMc0DpszfTRnlr68ga1QyJD/J3JV9sddMMOX8yCmVloxmhowyFHphjaKViqrOs3Uybft5/s/yCvBSpUcqZdruFeB1zfGqdaum+KPxOrT8kPZE7lHTsU3l4Z39x8y9i3nLq5iXTn9/WnEH4645CzhdQPUAeRXz0vFvjmdb7E2OS9be6XtVpFwRVXy4ovwqWTuJAO7javdywcHBGjx4sN4e/7ZurXZrtgXPfxr9+mjt+WGP3nj1DYX3C9f2H7Zf8V6uTFAZBZUN0ppVa7T9u+2qV//Ks4DnzpqrF59/Uf0H9tezI5/N0ffYuGlj7d61W5M/nKyOnTuqRInr6/XboWMHvfLiK1r50Ur1G9gvy/41a9bo3XffVWhoqLp166bGjRvnKBeA3GWapuV1l8vZKcvlKPYCObRlyxbVrFlTgwZlbvafmJh4xUXdgOtRvHhx+fj42KbIm6548eJ64IEHsmwrW7Zslu3Xo0GDBmrQoIEMw1Dfvn21efNmtW7d+qqvWbFihapUqaL3338/x+cD0pUoUUKFChXK+yLvXwzfv2fNZvC9NDvWuDXnRVKjvCGjvCGnnDJjTOk3SdmvJyMVkhw9HXLOcMo5xylHX4eMwOs8Z6pkXrzCjesRSUl/zSy+0iJuQD7wLOKZMWs2XaEiheRVzCvL9uvhX8Vf/lX8ZRiGfpryk2J/jr3iOA5Ph2o/WVs7Xt+h78d9r7oj66pohet4x0aSM8WptKTsWznE7o9VakKqqg2vpuI1rjHVH8iBq93LpRcvGzRqoDp161zXePXq11O9+vVkGIYeH/i4tm7Zqlb3t8r2WB8fHy1ctlDtH2qvkPYh+vTzT3XHnXdkOW7lipUaOmio/hX8L701/q0cfX+SVPXWqvrfmP/pkQcfUUj7EH206qPr+vRYeounuNi4bPd//PHH8vLy0syZM2nfAMBlsEAbIGX8wv/Pj/dmx+FwZHn3ZtOmTTpz5kyeZEPBMXHiRJ04cUJjx461TaE3L1WqdGnm1blz5655bFxcnCpUqJDHieDutm7dqiNHjmjYsGF5XujNS0bAX0XWf/YD/udxPoYcvR1SEck5yynzzN8/u8xkU2Zy1oKuuceUkiSjXPaF3IwiMO9twk15l7xUzElNvPpiTIUKF1LtEbXl6e+pnW/uVOKJv+8h0y6mZdub9+TWk0pNSJVflewLUKkXLp3Tp4Tr/v8JBUuFipfuzf7ZD/ifAgICtOzjZSpdurQ6PNJBv/7ya6b9G7/eqL69+6pZi2aaMnPKDX9as9ZdtbR4+WLt37tfoSGhSkpKyth3+tTpbGfgzZw2U5JUt37dbMeMi4tT6dKlKfQCcCnM7AUkValSRZK0YMEC3XPPPfLw8FD9+vWzLQbUq1dPS5Ys0QcffKDbb79dR44c0YYNG1SmzLU/8gRczbVaGbib9Bv56/noi2ma+dKmBe6teHE3mSmXXoe9jk+NGUUMOfo45JzqlHOmU47+Dhn+hnT6UgHYqGlIpf4a89il9g0qJhlNrjBrN/2cTOqFm8pJ/24vPy/VHVFX3736nXaO3an6z9eXdwlvJR5P1M6xOxXYOFCFyxaWYRiKOxinE5tOyKeUjyq2qZj9gFxfcDE5uZcrWaqkln+yXA/d95A6PNxBn33xmcqVL6cjh4+oW6duMgxDHTp20LIlyzK9rtZdtVTrrlp/f33bpf/+Yf8Pyk6jxo00f/F8de7QWb279db8xfPl6empBfMWaFrUND36r0dVuUplxZ+P1+drPtcXa7/Qw+0eVsv7WmY7HveggP2Y13MTXMBR7AUkVatWTV27dtXnn3+unTt3yjRNvf/++9kWezt27KiLFy9q48aN2rRpk6pUqaL//Oc/mj9/vgXJAdfl4XGpF2L6x+euJikpyfIFEAHb+Ot3TjPVlHEdVSHD35DjMYec05xyzrrU0kH+knGHIfOgKX0vKU2XiryNDBn3GjIKX2HclMwZAHdjOC7923cmZ11cMTveJbxV59k62v7adu14c4fq/beevEt4q3SD0jq756yObzguZ5pTPiV9VKF1Bd3yr1vkWdQz27HSki/NBjY8qPbCNeTkXk6SypUvp+WfLlfb1m3V4ZEOWrV2lQ4fOpwxM/jpJ57O8prnXnguU7E3ISFBVW+9Ug+jS1re11Iz585Ur269NLDvQE2bNU1NmzXVt5u/1eKFi3XyxEkVKlRI1W+rrtfGvqZBQwZdcaykpCQVKkTZBIBr4f9acFmtWrVSq1atMr4ePHiwBg8enOW4Ll26qEuXzCuyRkdHZzmuU6dO6tSpU5btEyZMyPS1p6enevfurd69e2faPmrUqExfBwYGZnsewB2sX7/+pscoX768JGnhwoVq0qSJgoKCVLTo3z0PnU6n/vzzT/3000/avXt3lusYcEUefbNf8ClH/nrfw/zRlFnBlIpKhvffxaHszmGUMOTxTObtxr+uv6BkXjCleMn8yZQ8JBWsDyLARdQbeeWFn66Xd/FLH9U++e1J+Vfzl1eAlwr5/P0rU3bnKFymsJq/1zzTthp9a1z3OVMTU5Ucl6w/v/tThochL79rLygH3Kz0e7nt27ff8Bhly5WVJC1bvEwNGzVUmaAyme7lPlnzSZbXVL21qvYf2p/xdYuWLRR3Mft+uf+096e9On3qtD6M+jDT9uxe/0j7R3Qm4e82e/Xq19PMeTOv6zzpfvzxR23YsEHVqlXL0esAwGrMywAAWKJq1arq2rWrPvroI1WvXl1Dhw7NtP/IkSMKCgrSfffdJy8vLz3++OMWJQXsxShhXGq/sE9yjnfK/CTvP8rmnO+U832n9OulFg9GIWYewj35BvoqsFGgTu08pc3Pbtb+2fuv/aKbtOu9Xdr8n806++NZVXyoohye/IoG11ClahWFdA7Rpys/Vd2adfXMv5/J0/N9tf4rNWrSSG0faZun50nXp08fnTlzRv/+97/z5XwArs2UKdO00dOmLSWY2QsAsEx0dLTGjRunQ4cOqWTJkpn2BQUFae3atQoICFDNmjVdekEtILc5ujpkxprSOUm++XC+hxxSqqQSklGUQi/cW60htXSh2wVdOHXhii0XclP17tWVlpymwmUKyyuAWb1wLTPmztDo10fryOEjKlGyRJ6eK/zxcIU/Hp6n57jczJkzFRISkmm2MgC4Aoq9AABLVaxYURUrZl2sxsfHR/fff78FiQDXYAQYUkA+nascBV4ULD4lfeRTMn/eZPSrTE96uLYKFSuoQsUKVsfIdbVq1aLQC8AlUewFAAAAAAAAYGum7NU6wU5ZLkdDKAAAAAAAAABwAxR7gesUGhqqRYsW5fh1J0+eVGhoaMaKtwAAAAAAAChYXnrpJRmGkelZo0aNXD8PxV64nPXr1ys0NFShoaHau3dvlv2maWrw4MEKDQ3VG2+8YUFCAFeycOFC3X333fL19VXfvn0z7Tt06JA8PDxUunRpdevWTefOnbMmJODCnD84lfZBmtL+lybnMmemfeZZU2kvpSntjTQ5FzllJtnzY2eAnZ3YckJbnt+i9QPWa0/Unkz7kv5M0rqwdfp66Nf64YMflJKQYlFKwDUtXbxUTes3VWBAoB4f+HimfYcPHVYx32KqUr6KwnqFcZ8IFFCmadrumVM1a9bUH3/8kfHcsGFDrv890bMXLsvT01MbNmzI8i7Inj17dPr0aXl65v3qyQCuX0JCgsLCwlSmTBm9/vrratSoUab9pUuX1tSpU/Xdd99pwoQJuu222/TKK69YlBZwPWayKTPGlIpIxgOGjAr/WFStiGR0MKRjkvmtKZWUjPtZeA24XmkX0/TTlJ/k5e+lW7veKv+q/pn2e/l76Y7+d+j8ofP67fPfVDiosKqGVLUoLeBaEhIS9PiAxxUYGKiXRr+k+g3rZ9pfqnQpTYycqB3bd2jyh5NVrXo1vTDqBYvSAsCNK1SokIKCgvL2HHk6OpCH6tatq82bN6tv377y8PDI2L5x40ZVrVpV58+ftzAdgH/66aeflJSUpKefflpDhw7Nsr9IkSIKCwtTWFiYPvvsM+3cuTP/QwKu7E9JKZJxjyFH46wf3jK8DBl1DamulPZLmszjzOwFciLhWIKcyU5ValtJFR6skGW/h7eHyrYoq7Ityur07tOKPxxvQUrANe3bu09JSUka+u+hihgckWV/kSJF1LNPT/Xs01Nr16zV7u93W5ASALIXFxeX6Wtvb295e3tne+yBAwdUrlw5+fj4qGnTphozZowqVaqUq3ko9sJlNWvWTFu3btWuXbtUt25dSVJqaqo2b96skJAQrVq1KtPxFy5c0MKFC7V582bFxsaqdOnSat26tR599FEZxt8zm1JSUjRv3jx9/fXXSklJUc2aNdW/f/9sM5w5c0bR0dHasWOHEhISFBQUpEcffVT33Xdf3n3jgItKSEiQJJUpU+aaxwYFBfGGDZBTf31i3Ch6HbN1i0q6mKdpALeTdjFNkuQV4HXNY70CvJR6ITWvIwFuIzEhUZIUWCbwmseWCSqj+HjeTAEKIvOvh12kZ6lYsWKm7aNGjdJLL72U5fjGjRtrxowZuv322/XHH3/o5ZdfVosWLfTDDz/Iz88v13JR7IXLKl26tKpXr66NGzdmFHt37NihxMRE3XPPPZmKvaZp6s0339SPP/6o++67T5UrV9b333+vOXPm6MyZM3rssccyjo2MjNTXX3+tZs2a6fbbb9cPP/yg119/Pcv5z507pxdeuPTRoYceekj+/v7auXOnJk2apMTERLVr1y6P/wYA15Lez+jyN1euxOFw3FD/I6BAy8klQ/cGIOfSr7HruH4MBxcZkBPcJwJwZUePHpW//9/tna40q/fhhx/O+O+7775bjRs31i233KKFCxdecZLhjaDYC5fWvHlzzZ8/X8nJyfLy8tKGDRt05513qkSJEpmO27Ztm3744QeFhoYqJCRE0qUC7dtvv61PP/1UDz30kIKCgnTo0CF9/fXXatOmTcaF9tBDD2n8+PE6cuRIpjEXLFggp9OpN998M+MdmAcffFDvvfeeFi9erAcffFBeXtee+QEUFE7npcWiHI5rrw1qGIbS0tLyOhLgXnJQiMp0PIDrklFcus5rzHRykQHXi/tEAK7M398/U7H3ehUrVky33Xabfv7551zNc+3/kwI21rRpUyUnJ+u7775TUlKStm/frmbNmmU5bseOHXI4HJneRZGkRx99VKZpZvQG3bFjhyRlOe6RRx7J9LVpmvr2229Vr149maapuLi4jGft2rWVmJioX3/9NRe/U8D1HTt2TNKlH2jXEhAQoD/++COPEwHuxTz/V2HJ5zoO9pFEpxQgR5LPJkuSChW+9nyZQoULKTk2Oa8jAW4j/b4vICDgmsf6+/vr+B/H8zoSABsyTdN2z5sRHx+vX375RWXLls2lv6FLmNkLl+bv76+77rpLGzduVHJyspxOp5o0aZLluFOnTql48eLy9fXNtL1ChQoZ+9P/NAwjS0/RcuXKZfo6Li5OCQkJWrt2rdauXZtttn826AYKqnPnzumXX37R22+/LX9/fzVs2PCar2nZsqWWL1+uCRMmqEOHDgoKCpKnp2c+pAVcj5lkSmclc5MpeUsqf+3XGLcYMveacm5xyqhhSEUlw4OPnQPZSUlIUdLJJB357Ig8fD3kX+XaM3eK3V5Mp7af0m9rflOpeqXkFeAlRyHm2QD/dO7cOR389aAmvjdR/v7+qteg3jVf06xFM638aKUiP4hUu/btVCaoDPeJAFzCM888o/bt2+uWW27RsWPHNGrUKHl4eKh79+65eh6KvXB5zZo10+TJk3Xu3DnVqVNHRYoUyfNzpr9706JFC917773ZHnPLLbfkeQ4gvyUnJ+vMmTOZtpUuXVoeHh5XfE1wcLC+/PJL+fv7a9myZdfVeP6JJ57Qpk2bNGzYMA0bNkxffPGFWrVqdbPxAdszU00p6R8bi1y9/6dzgVM6JMlbcnRzyPC+dtHWaGJIv0nmJ6bMT0w5whxSlZuKDrgEZ6pTKfEpmbZ5+Xtd9RrbPX63zu09Jw9fD901/C4V8r32r1AV21RU3M9x2j9nv/bP2a+6z9VV8TuK33R+wM6Sk5N19szZTNtKlS511fvEHl16aMNXG+Tv76+5C+de133i4GGDtXXLVo14coRGPDlCK1evVIuWLW46PwDktd9++03du3fX6dOnVbp0aTVv3lybN29W6dKlc/U8FHvh8ho1aqSoqCgdOHBA//73v7M9plSpUtq9e7eSkpIyze79/fffM/an/2mapk6cOJFpNm/6x8/T+fv7y9fXV06nU3fffXcuf0eAfX3zzTe67777Mm07ePCgKleufMXXjBs3Trt379Yrr7yi3r17a//+/dd8U2b69OlatGiRhg4dqjZt2qh27dq5ER+wv6OSc4Yz0ybHvx3SVWpEjjYOmSdNmetNOZc65RjukOF19YKvucOU+aMpo5Eho5ohBeVGeMD+Yg/EasfrOzJtazquqXxL+17hFVK1btUUfzReh5Yf0p7IPWo6tqk8vK9cvJKkP77+Qye3nlSFByqoRK0SKlqpaK7kB+xsy6Ytatcm8yLVu/ft1i2VrzwJZvTro7Xnhz1649U3FN4vXNt/2H7N+8Q5M+do2ZJlCn88XK0faK1ad9fKlfwA7M/862EXOc2yYMGCPEqSGcVeuDwfHx8NGDBAJ0+eVP369bM9pm7dulq7dq1WrVqljh07ZmxfuXKlDMNQnTp1Mo5bsGCBPv3000wrIX7yySeZxnM4HGrUqJE2btyoI0eOqFKlSpn2x8XF3VBzbsDuateurTVr1mTaFhR09SpRgwYN1KBBAxmGob59+2rz5s1q3br1VV+zYsUKValSRe+///5NZwZcSpDk6POPj3pfo0ZklDdklDfklFNmjCn9Jqnq1V9j7jOl4pKjHR8rR8FStFJR1Xm2TqZtXgFXX1DXv4q//Kv4yzAM/TTlJ8X+HKsSNUtc9TWndpyST2kf3db7tpuNDLiMWnfX0vJPlmfaViaozBWOvqRe/XqqV7+eDMPQ4wMf19YtW9Xq/lZXfc0nH3+iypUra9y74242MgC4JYq9cAstW7a86v769eurZs2aio6O1p9//qlbbrlFu3bt0rZt2/TII49kFKsqV66sZs2aafXq1UpMTNRtt92mH374QcePZ10AoEePHtqzZ49eeOEF3X///apQoYLi4+N18OBB7d69W9OmTcuT7xWwUvHixfXAAw/c0GvT3xQ5d+7cNY+Ni4vL6KkNFCSGryHdeoOvDTAuzS64cB0HX5TEe5IogDyLeF6zUHsl3iW9JUmpianXPDY1KVXexb1v6DyAqypevLjua33ftQ/MRoWKl+77YmNjr3ns+fPnVa5CuWseBwAFFcVeFAgOh0PPPvusFi5cqG+++Ubr169XYGCgevXqpUcffTTTsYMGDZK/v782bNigrVu3qlatWnruuec0ePDgTMcVK1ZMr776qpYsWaJvv/1Wq1evlp+fnypUqKCePXvm57cHuASH49IMwutZsdQ0zYzjAVyn9M4N1/tpMtZjA3LEMHJ20VytDzCAzLhPBHA9TNO8rv9P5Bc7ZbkcxV64nFatWl3XQk0TJkzI9LWPj4/69OmjPn36XPV1Xl5eCgsLU1hYWKbt0dHRWY4NCAhQv3791K9fvyuOFxgYmO1rgYImfXGOCxeuPe0wKSnpuhboAHCZv37vNVNNGdeq5KZIYtIhkCPpxVtnsvMaR146xsPn6n19Afwtx/eJRblPBIAr4e0wAEC+KF++vCRp4cKF+vnnnxUfH59pv9Pp1IkTJ7R+/Xrt3r0743gA1+mv33vNH02Zp02ZFzPPNDCdpsx4U+ZBUzopGX7MOgRyIr0tw8lvTyrxRKJSL2Ru52A6TSXHJuvsT2cV/1s8bRyAHChbrqwkadniZfrl51+yvU88eeKkvv7ya+35YY/Kli9rRUwAcAkUewEA+aJq1arq2rWrPvroI1WvXl1Dhw7NtP/IkSMKCgrSfffdJy8vLz3++OMWJQVck1HCkFHTkPZJzvFOmZ/842NlsZLzTaecM5ySh2Q0pNgL5IRvoK8CGwXq1M5T2vzsZu2fvT/T/gunL2jD8A3a8foOOQo5VP5+3rQErleVqlUU0jlEn678VHVr1tUz/34m0/6jR46qWqVqatemnby8vNQ/vP8VRgLgzkwbPuyINg4AgHwTHR2tcePG6dChQypZsmSmfUFBQVq7dq0CAgJUs2ZN+fj4WJQScF2Org6ZsaZ0TpLvP3YWlRyPOSQfSaUlw5NiL5BTtYbU0oVuF3Th1AV5FvXMtM8rwEt1/lNHhXwLqUj5IvLwoo0DkBMz5s7Q6NdH68jhIypRMvNCimWCyuijVR/JP8Bfd9x5B/eJAHAVFHsBAPmqYsWKqlixYpbtPj4+uv/++y1IBLgXI8CQArLZ7mlIVfM/D+BufEr6yKdk1kKTh5eHStxZIptXALheFSpWUIWKFbJs9/HxUcv7WlqQCABcD8VeAAAAAAAAALZmmqZM0z6tE+yU5XL07AUAAAAAAAAAN8DMXtjG77//bnUE2+DvArntp59+sjqCrfD3gdxmnrLnu/pW4e8DuS3hWILVEWyFvw/ktn1791kdwTb4uwDg6ij2wnJ+fn6SpAkTJlicxH7S/26AG5X+b6hXr14WJ7EnrjHcrPR/Q+YS+67GayWuMdys9H9DeyL3WJzEnrjGcLPS/w0NDBtocRL74foC7MeUve657ZTlcoZp1wYTKFAOHDig8+fPWx3DVvz8/FS9enWrY8ANcH1lj2sMuYVrLHtcY8gtXGPZ4xpDbuEay4rrC7CXuLg4BQQEKOjVIDl87NOR1nnBqePPH1dsbKz8/f2tjpOBYi8AAAAAAAAAW6LYmzO0cQAAAAAAAABga6Zpyk5zVu2U5XL2KYcDAAAAAAAAAG4YxV4AAAAAAAAAcAO0cQAAAAAAAABga+ZfD7uwU5bLMbMXAAAAAAAAANwAxV4AAAAAAAAAcAO0cQAAAAAAAABga6ZpyjTt0zrBTlkux8xeAAAAAAAAAHADFHsBAAAAAAAAwA3QxgEAAAAAAACArZl/PezCTlkux8xeAAAAAAAAAHADFHsBAAAAAAAAwA3QxgEAAAAAAACArZmmKdO0T+sEO2W5HDN7AQAAAAAAAMANUOwFAAAAAAAAADdAGwcAAAAAAAAAtmb+9bALO2W5HDN7AQAAAAAAAMANUOwFAAAAAAAAADdAGwcAAAAAAAAAtmaapkzTPq0T7JTlcszsBQAAAAAAAAA3QLEXAAAAAAAAANwAbRwAAAAAAAAA2J4pe7ZOsBNm9gIAAAAAAACAG6DYCwAAAAAAAABugDYOAAAAAAAAAGzNNE3ZqYuDadoozGWY2QsAAAAAAAAAboBiLwAAAAAAAAC4Ado4AAAAAAAAALA10049HGS/POmY2QsAAAAAAAAAboBiLwAAAAAAAAC4Ado4AAAAAAAAALA10zRlp84JpmmjMJdhZi8AAAAAAAAAuAGKvQAAAAAAAADgBmjjAAAAAAAAAMDWTDv1cJD98qRjZi8AAAAAAAAAuAGKvQAAAAAAAADgBmjjAAAAAAAAAMDWTNOUnTonmKaNwlyGmb0AAAAAAAAA4AYo9gIAAAAAAACAG6CNAwAAAAAAAABbM+3Uw0H2y5OOmb0AAAAAAAAA4AYo9gIAAAAAAACAG6CNAwAAAAAAAABbM01TduqcYJo2CnMZZvYCAAAAAAAAgBug2AsAAAAAAAAAboA2DgAAAAAAAABszbRTDwfZL086ZvYCAAAAAAAAgBug2AsAAAAAAAAAboA2DgAAAAAAAABszTRN2alzgmnaKMxlmNkLAAAAAAAAAG6AYi8AAAAAAAAAuAHaOAAAAAAAAACwNdNOPRxkvzzpmNkLAAAAAAAAAG6AYi8AAAAAAAAAuAHaOAAAAAAAAACwNdM0ZafOCaZpozCXYWYvAAAAAAAAALgBir0AAAAAAAAA4AZo4wAAAAAAAADA1kw79XCQ/fKkY2YvAAAAAAAAALgBir0AAAAAAAAA4AZo4wAAAAAAAADA1kzTlJ06J5imjcJchpm9AAAAAAAAAOAGKPYCAAAAAAAAgBugjQMAAAAAAAAAWzPt1MNB9suTjpm9AAAAAAAAAOAGKPYCAAAAAAAAgBugjQMAAAAAAAAAWzNNU3bqnGCaNgpzGWb2AgAAAAAAAIAboNgLAAAAAAAAAG6ANg4AAAAAAAAAbM20Uw8H2S9POmb2AgAAAAAAAIAboNgLAAAAAAAAAG6ANg4AAAAAAAAAbM00Tdmpc4Jp2ijMZZjZCwAAAAAAAABugGIvAAAAAAAAALgBir0AAAAAAAAAbM+00eNGTZw4UZUrV5aPj48aN26sb7/9Nhf/hij2AgAAAAAAAECei46O1lNPPaVRo0Zp+/btql27th566CGdPHky185BsRcAAAAAAAAA8tjbb7+tgQMHqm/fvrrzzjs1adIkFS5cWNOmTcu1cxTKtZEAAAAAAAAAIC9ctDrAP/yVJy4uLtNmb29veXt7Zzk8OTlZ3333nUaOHJmxzeFw6IEHHtCmTZtyLRbFXgAAAAAAAAC25OXlpaCgIB1/57jVUbIoWrSoKlasmGnbqFGj9NJLL2U59tSpU0pLS1OZMmUybS9Tpoz27t2ba5ko9gIAAAAAAACwJR8fHx08eFDJyclWR8nCNE0ZhpFpW3azevMTxV4AAAAAAAAAtuXj4yMfHx+rY9yUUqVKycPDQydOnMi0/cSJEwoKCsq187BAGwAAAAAAAADkIS8vL9WvX19r167N2OZ0OrV27Vo1bdo0187DzF4AAAAAAAAAyGNPPfWUHnvsMTVo0ECNGjXSu+++q4SEBPXt2zfXzkGxFwAAAAAAAADyWGhoqP7880+9+OKLOn78uOrUqaNVq1ZlWbTtZhimaZq5NhoAAAAAAAAAwBL07AUAAAAA4P/bsQMZAAAAgEH+1vf4CiMAGJC9AAAAAAADshcAAAAAYED2AgAAAAAMyF4AAAAAgAHZCwAAAAAwIHsBAAAAAAZkLwAAAADAgOwFAAAAABiQvQAAAAAAA7IXAAAAAGAgt2gFN0pxhCoAAAAASUVORK5CYII=", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], + "outputs": [], "source": [ "# # Customize the colors\n", "# criterion_values = [model.get_criterion(petab_select.Criterion.AICC) for model in models]\n", diff --git a/doc/examples/workflow_cli.ipynb b/doc/examples/workflow_cli.ipynb index 930e555..6ddd902 100644 --- a/doc/examples/workflow_cli.ipynb +++ b/doc/examples/workflow_cli.ipynb @@ -13,7 +13,7 @@ }, { "cell_type": "code", - "execution_count": 1, + "execution_count": null, "id": "18dbcbbb", "metadata": {}, "outputs": [], @@ -63,7 +63,7 @@ }, { "cell_type": "code", - "execution_count": 2, + "execution_count": null, "id": "eab391ee", "metadata": {}, "outputs": [], @@ -90,66 +90,10 @@ }, { "cell_type": "code", - "execution_count": 3, + "execution_count": null, "id": "1f6ac569", "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "- criteria: {}\n", - " estimated_parameters: {}\n", - " iteration: 1\n", - " model_hash: M1_0-000\n", - " model_id: M1_0-000\n", - " model_subspace_id: M1_0\n", - " model_subspace_indices:\n", - " - 0\n", - " - 0\n", - " - 0\n", - " parameters:\n", - " k1: 0\n", - " k2: 0\n", - " k3: 0\n", - " petab_yaml: ../model_selection/petab_problem.yaml\n", - " predecessor_model_hash: null\n", - "- criteria: {}\n", - " estimated_parameters: {}\n", - " iteration: 1\n", - " model_hash: M1_1-000\n", - " model_id: M1_1-000\n", - " model_subspace_id: M1_1\n", - " model_subspace_indices:\n", - " - 0\n", - " - 0\n", - " - 0\n", - " parameters:\n", - " k1: 0.2\n", - " k2: 0.1\n", - " k3: estimate\n", - " petab_yaml: ../model_selection/petab_problem.yaml\n", - " predecessor_model_hash: null\n", - "- criteria: {}\n", - " estimated_parameters: {}\n", - " iteration: 1\n", - " model_hash: M1_2-000\n", - " model_id: M1_2-000\n", - " model_subspace_id: M1_2\n", - " model_subspace_indices:\n", - " - 0\n", - " - 0\n", - " - 0\n", - " parameters:\n", - " k1: 0.2\n", - " k2: estimate\n", - " k3: 0\n", - " petab_yaml: ../model_selection/petab_problem.yaml\n", - " predecessor_model_hash: null\n", - "\n" - ] - } - ], + "outputs": [], "source": [ "with open(output_path / \"uncalibrated_models_1.yaml\") as f:\n", " print(f.read())" @@ -171,7 +115,7 @@ }, { "cell_type": "code", - "execution_count": 4, + "execution_count": null, "id": "73665662-60ea-425c-843e-24a98c64c6a6", "metadata": {}, "outputs": [], @@ -205,69 +149,10 @@ }, { "cell_type": "code", - "execution_count": 5, + "execution_count": null, "id": "703da45d", "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "- criteria:\n", - " AIC: 180\n", - " estimated_parameters: {}\n", - " iteration: 1\n", - " model_hash: M1_0-000\n", - " model_id: M1_0-000\n", - " model_subspace_id: M1_0\n", - " model_subspace_indices:\n", - " - 0\n", - " - 0\n", - " - 0\n", - " parameters:\n", - " k1: 0\n", - " k2: 0\n", - " k3: 0\n", - " petab_yaml: ../model_selection/petab_problem.yaml\n", - " predecessor_model_hash: null\n", - "- criteria:\n", - " AIC: 100\n", - " estimated_parameters: {}\n", - " iteration: 1\n", - " model_hash: M1_1-000\n", - " model_id: M1_1-000\n", - " model_subspace_id: M1_1\n", - " model_subspace_indices:\n", - " - 0\n", - " - 0\n", - " - 0\n", - " parameters:\n", - " k1: 0.2\n", - " k2: 0.1\n", - " k3: estimate\n", - " petab_yaml: ../model_selection/petab_problem.yaml\n", - " predecessor_model_hash: null\n", - "- criteria:\n", - " AIC: 50\n", - " estimated_parameters: {}\n", - " iteration: 1\n", - " model_hash: M1_2-000\n", - " model_id: M1_2-000\n", - " model_subspace_id: M1_2\n", - " model_subspace_indices:\n", - " - 0\n", - " - 0\n", - " - 0\n", - " parameters:\n", - " k1: 0.2\n", - " k2: estimate\n", - " k3: 0\n", - " petab_yaml: ../model_selection/petab_problem.yaml\n", - " predecessor_model_hash: null\n", - "\n" - ] - } - ], + "outputs": [], "source": [ "with open(\"model_selection/calibrated_models_1.yaml\") as f:\n", " print(f.read())" @@ -283,7 +168,7 @@ }, { "cell_type": "code", - "execution_count": 6, + "execution_count": null, "id": "22dfcc1f", "metadata": {}, "outputs": [], @@ -327,50 +212,10 @@ }, { "cell_type": "code", - "execution_count": 7, + "execution_count": null, "id": "dd2f8850", "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "- criteria: {}\n", - " estimated_parameters: {}\n", - " iteration: 1\n", - " model_hash: M1_4-000\n", - " model_id: M1_4-000\n", - " model_subspace_id: M1_4\n", - " model_subspace_indices:\n", - " - 0\n", - " - 0\n", - " - 0\n", - " parameters:\n", - " k1: 0.2\n", - " k2: estimate\n", - " k3: estimate\n", - " petab_yaml: ../model_selection/petab_problem.yaml\n", - " predecessor_model_hash: M1_2-000\n", - "- criteria: {}\n", - " estimated_parameters: {}\n", - " iteration: 1\n", - " model_hash: M1_6-000\n", - " model_id: M1_6-000\n", - " model_subspace_id: M1_6\n", - " model_subspace_indices:\n", - " - 0\n", - " - 0\n", - " - 0\n", - " parameters:\n", - " k1: estimate\n", - " k2: estimate\n", - " k3: 0\n", - " petab_yaml: ../model_selection/petab_problem.yaml\n", - " predecessor_model_hash: M1_2-000\n", - "\n" - ] - } - ], + "outputs": [], "source": [ "with open(output_path / \"uncalibrated_models_2.yaml\") as f:\n", " print(f.read())" @@ -386,7 +231,7 @@ }, { "cell_type": "code", - "execution_count": 8, + "execution_count": null, "id": "29cb0d84-4399-4e6b-895c-e92f9cc82d68", "metadata": {}, "outputs": [], @@ -420,37 +265,10 @@ }, { "cell_type": "code", - "execution_count": 9, + "execution_count": null, "id": "54c5b027", "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "criteria:\n", - " AIC: 15\n", - "estimated_parameters:\n", - " k2: 0.15\n", - " k3: 0.0\n", - "iteration: 1\n", - "model_hash: M1_4-000\n", - "model_id: M1_4-000\n", - "model_subspace_id: M1_4\n", - "model_subspace_indices:\n", - "- 0\n", - "- 0\n", - "- 0\n", - "parameters:\n", - " k1: 0\n", - " k2: estimate\n", - " k3: estimate\n", - "petab_yaml: ../model_selection/petab_problem.yaml\n", - "predecessor_model_hash: null\n", - "\n" - ] - } - ], + "outputs": [], "source": [ "with open(\"model_selection/calibrated_M1_4.yaml\") as f:\n", " print(f.read())" @@ -458,7 +276,7 @@ }, { "cell_type": "code", - "execution_count": 10, + "execution_count": null, "id": "818e59e4", "metadata": {}, "outputs": [], @@ -484,34 +302,10 @@ }, { "cell_type": "code", - "execution_count": 11, + "execution_count": null, "id": "9f393030", "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "- criteria: {}\n", - " estimated_parameters: {}\n", - " iteration: 2\n", - " model_hash: M1_7-000\n", - " model_id: M1_7-000\n", - " model_subspace_id: M1_7\n", - " model_subspace_indices:\n", - " - 0\n", - " - 0\n", - " - 0\n", - " parameters:\n", - " k1: estimate\n", - " k2: estimate\n", - " k3: estimate\n", - " petab_yaml: ../model_selection/petab_problem.yaml\n", - " predecessor_model_hash: M1_4-000\n", - "\n" - ] - } - ], + "outputs": [], "source": [ "with open(output_path / \"uncalibrated_models_3.yaml\") as f:\n", " print(f.read())" @@ -519,7 +313,7 @@ }, { "cell_type": "code", - "execution_count": 12, + "execution_count": null, "id": "a4084bd1-5bd7-4e12-8146-67137da4909a", "metadata": {}, "outputs": [], @@ -546,38 +340,10 @@ }, { "cell_type": "code", - "execution_count": 13, + "execution_count": null, "id": "9ef2fe2f", "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "criteria:\n", - " AIC: 20\n", - "estimated_parameters:\n", - " k1: 0.25\n", - " k2: 0.1\n", - " k3: 0.0\n", - "iteration: 2\n", - "model_hash: M1_7-000\n", - "model_id: M1_7-000\n", - "model_subspace_id: M1_7\n", - "model_subspace_indices:\n", - "- 0\n", - "- 0\n", - "- 0\n", - "parameters:\n", - " k1: estimate\n", - " k2: estimate\n", - " k3: estimate\n", - "petab_yaml: ../model_selection/petab_problem.yaml\n", - "predecessor_model_hash: null\n", - "\n" - ] - } - ], + "outputs": [], "source": [ "with open(\"model_selection/calibrated_M1_7.yaml\") as f:\n", " print(f.read())" @@ -585,7 +351,7 @@ }, { "cell_type": "code", - "execution_count": 14, + "execution_count": null, "id": "35ed7ceb-6783-4956-9951-dbc55bfa9239", "metadata": {}, "outputs": [], @@ -603,19 +369,10 @@ }, { "cell_type": "code", - "execution_count": 15, + "execution_count": null, "id": "5fe1e848-e112-4ad2-ae09-57cdb7506ff8", "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "[]\n", - "\n" - ] - } - ], + "outputs": [], "source": [ "with open(output_path / \"uncalibrated_models_4.yaml\") as f:\n", " print(f.read())" @@ -623,7 +380,7 @@ }, { "cell_type": "code", - "execution_count": 16, + "execution_count": null, "id": "02df7ed9-422d-4f28-9b01-8670be873933", "metadata": {}, "outputs": [], @@ -640,19 +397,10 @@ }, { "cell_type": "code", - "execution_count": 17, + "execution_count": null, "id": "57e483fd-5ffa-48a4-8c2a-359f6ebd1422", "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "terminate: true\n", - "\n" - ] - } - ], + "outputs": [], "source": [ "with open(\"output_cli/metadata.yaml\") as f:\n", " print(f.read())" @@ -669,7 +417,7 @@ }, { "cell_type": "code", - "execution_count": 18, + "execution_count": null, "id": "d5b5087d", "metadata": {}, "outputs": [], @@ -690,66 +438,10 @@ }, { "cell_type": "code", - "execution_count": 19, + "execution_count": null, "id": "30721bfa", "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "- criteria: {}\n", - " estimated_parameters: {}\n", - " iteration: 1\n", - " model_hash: M1_3-000\n", - " model_id: M1_3-000\n", - " model_subspace_id: M1_3\n", - " model_subspace_indices:\n", - " - 0\n", - " - 0\n", - " - 0\n", - " parameters:\n", - " k1: estimate\n", - " k2: 0.1\n", - " k3: 0\n", - " petab_yaml: ../model_selection/petab_problem.yaml\n", - " predecessor_model_hash: null\n", - "- criteria: {}\n", - " estimated_parameters: {}\n", - " iteration: 1\n", - " model_hash: M1_5-000\n", - " model_id: M1_5-000\n", - " model_subspace_id: M1_5\n", - " model_subspace_indices:\n", - " - 0\n", - " - 0\n", - " - 0\n", - " parameters:\n", - " k1: estimate\n", - " k2: 0.1\n", - " k3: estimate\n", - " petab_yaml: ../model_selection/petab_problem.yaml\n", - " predecessor_model_hash: null\n", - "- criteria: {}\n", - " estimated_parameters: {}\n", - " iteration: 1\n", - " model_hash: M1_6-000\n", - " model_id: M1_6-000\n", - " model_subspace_id: M1_6\n", - " model_subspace_indices:\n", - " - 0\n", - " - 0\n", - " - 0\n", - " parameters:\n", - " k1: estimate\n", - " k2: estimate\n", - " k3: 0\n", - " petab_yaml: ../model_selection/petab_problem.yaml\n", - " predecessor_model_hash: null\n", - "\n" - ] - } - ], + "outputs": [], "source": [ "with open(output_path / \"uncalibrated_models_5.yaml\") as f:\n", " print(f.read())" @@ -766,7 +458,7 @@ }, { "cell_type": "code", - "execution_count": 20, + "execution_count": null, "id": "73d54111", "metadata": {}, "outputs": [], @@ -786,37 +478,10 @@ }, { "cell_type": "code", - "execution_count": 21, + "execution_count": null, "id": "c36564f1", "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "criteria:\n", - " AIC: 15.0\n", - "estimated_parameters:\n", - " k2: 0.15\n", - " k3: 0.0\n", - "iteration: 1\n", - "model_hash: M1_4-000\n", - "model_id: M1_4-000\n", - "model_subspace_id: M1_4\n", - "model_subspace_indices:\n", - "- 0\n", - "- 0\n", - "- 0\n", - "parameters:\n", - " k1: 0\n", - " k2: estimate\n", - " k3: estimate\n", - "petab_yaml: ../model_selection/petab_problem.yaml\n", - "predecessor_model_hash: null\n", - "\n" - ] - } - ], + "outputs": [], "source": [ "with open(output_path / \"best_model.yaml\") as f:\n", " print(f.read())" @@ -832,18 +497,10 @@ }, { "cell_type": "code", - "execution_count": 22, + "execution_count": null, "id": "d5d03cd6", "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "petab_select/doc/examples/output_cli/best_model_petab/problem.yaml\n" - ] - } - ], + "outputs": [], "source": [ "%%bash -s \"$output_path_str\"\n", "output_path_str=$1\n", diff --git a/doc/examples/workflow_python.ipynb b/doc/examples/workflow_python.ipynb index a384142..ba5d7e7 100644 --- a/doc/examples/workflow_python.ipynb +++ b/doc/examples/workflow_python.ipynb @@ -27,23 +27,10 @@ }, { "cell_type": "code", - "execution_count": 1, + "execution_count": null, "id": "eab391ee", "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Information about the model selection problem:\n", - "YAML: model_selection/petab_select_problem.yaml\n", - "Method: forward\n", - "Criterion: Criterion.AIC\n", - "Version: beta_1\n", - "\n" - ] - } - ], + "outputs": [], "source": [ "import petab_select\n", "from petab_select import Model\n", @@ -131,7 +118,7 @@ }, { "cell_type": "code", - "execution_count": 2, + "execution_count": null, "id": "f0f327ad", "metadata": {}, "outputs": [], @@ -161,25 +148,10 @@ }, { "cell_type": "code", - "execution_count": 3, + "execution_count": null, "id": "edefa697", "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Model subspace ID: M1_0\n", - "PEtab YAML location: model_selection/petab_problem.yaml\n", - "Custom model parameters: {'k1': 0, 'k2': 0, 'k3': 0}\n", - "Model hash: M1_0-000\n", - "Model ID: M1_0-000\n", - "Criterion.AIC: None\n", - "Model calibrated in iteration: 1\n", - "\n" - ] - } - ], + "outputs": [], "source": [ "for candidate_model in iteration[UNCALIBRATED_MODELS]:\n", " print_model(candidate_model)" @@ -195,7 +167,7 @@ }, { "cell_type": "code", - "execution_count": 4, + "execution_count": null, "id": "0f027ef2", "metadata": {}, "outputs": [], @@ -212,25 +184,10 @@ }, { "cell_type": "code", - "execution_count": 5, + "execution_count": null, "id": "1c51dd49", "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Model subspace ID: M1_0\n", - "PEtab YAML location: model_selection/petab_problem.yaml\n", - "Custom model parameters: {'k1': 0, 'k2': 0, 'k3': 0}\n", - "Model hash: M1_0-000\n", - "Model ID: M1_0-000\n", - "Criterion.AIC: 200\n", - "Model calibrated in iteration: 1\n", - "\n" - ] - } - ], + "outputs": [], "source": [ "local_best_model = petab_select.ui.get_best(\n", " problem=select_problem, models=iteration_results[MODELS]\n", @@ -257,7 +214,7 @@ }, { "cell_type": "code", - "execution_count": 6, + "execution_count": null, "id": "b15c30ea", "metadata": {}, "outputs": [], @@ -287,42 +244,10 @@ }, { "cell_type": "code", - "execution_count": 7, + "execution_count": null, "id": "5b6969ca", "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Model subspace ID: M1_1\n", - "PEtab YAML location: model_selection/petab_problem.yaml\n", - "Custom model parameters: {'k1': 0.2, 'k2': 0.1, 'k3': 'estimate'}\n", - "Model hash: M1_1-000\n", - "Model ID: M1_1-000\n", - "Criterion.AIC: 150\n", - "Model calibrated in iteration: 2\n", - "\n", - "Model subspace ID: M1_2\n", - "PEtab YAML location: model_selection/petab_problem.yaml\n", - "Custom model parameters: {'k1': 0.2, 'k2': 'estimate', 'k3': 0}\n", - "Model hash: M1_2-000\n", - "Model ID: M1_2-000\n", - "Criterion.AIC: 140\n", - "Model calibrated in iteration: 2\n", - "\n", - "\u001b[1mBEST MODEL OF CURRENT ITERATION\u001b[0m\n", - "Model subspace ID: M1_3\n", - "PEtab YAML location: model_selection/petab_problem.yaml\n", - "Custom model parameters: {'k1': 'estimate', 'k2': 0.1, 'k3': 0}\n", - "Model hash: M1_3-000\n", - "Model ID: M1_3-000\n", - "Criterion.AIC: 130\n", - "Model calibrated in iteration: 2\n", - "\n" - ] - } - ], + "outputs": [], "source": [ "iteration_results = dummy_calibration_tool(\n", " problem=select_problem, candidate_space=iteration_results[CANDIDATE_SPACE]\n", @@ -347,34 +272,10 @@ }, { "cell_type": "code", - "execution_count": 8, + "execution_count": null, "id": "6d3468d3", "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Model subspace ID: M1_5\n", - "PEtab YAML location: model_selection/petab_problem.yaml\n", - "Custom model parameters: {'k1': 'estimate', 'k2': 0.1, 'k3': 'estimate'}\n", - "Model hash: M1_5-000\n", - "Model ID: M1_5-000\n", - "Criterion.AIC: -70\n", - "Model calibrated in iteration: 3\n", - "\n", - "\u001b[1mBEST MODEL OF CURRENT ITERATION\u001b[0m\n", - "Model subspace ID: M1_6\n", - "PEtab YAML location: model_selection/petab_problem.yaml\n", - "Custom model parameters: {'k1': 'estimate', 'k2': 'estimate', 'k3': 0}\n", - "Model hash: M1_6-000\n", - "Model ID: M1_6-000\n", - "Criterion.AIC: -110\n", - "Model calibrated in iteration: 3\n", - "\n" - ] - } - ], + "outputs": [], "source": [ "iteration_results = dummy_calibration_tool(\n", " problem=select_problem, candidate_space=iteration_results[CANDIDATE_SPACE]\n", @@ -399,26 +300,10 @@ }, { "cell_type": "code", - "execution_count": 9, + "execution_count": null, "id": "9f9c438c", "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\u001b[1mBEST MODEL OF CURRENT ITERATION\u001b[0m\n", - "Model subspace ID: M1_7\n", - "PEtab YAML location: model_selection/petab_problem.yaml\n", - "Custom model parameters: {'k1': 'estimate', 'k2': 'estimate', 'k3': 'estimate'}\n", - "Model hash: M1_7-000\n", - "Model ID: M1_7-000\n", - "Criterion.AIC: 50\n", - "Model calibrated in iteration: 4\n", - "\n" - ] - } - ], + "outputs": [], "source": [ "iteration_results = dummy_calibration_tool(\n", " problem=select_problem, candidate_space=iteration_results[CANDIDATE_SPACE]\n", @@ -443,7 +328,7 @@ }, { "cell_type": "code", - "execution_count": 10, + "execution_count": null, "id": "30344b30", "metadata": {}, "outputs": [], @@ -463,18 +348,10 @@ }, { "cell_type": "code", - "execution_count": 11, + "execution_count": null, "id": "7843fcb6", "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Number of candidate models: 0.\n" - ] - } - ], + "outputs": [], "source": [ "print(f\"Number of candidate models: {len(iteration_results[MODELS])}.\")" ] @@ -489,25 +366,10 @@ }, { "cell_type": "code", - "execution_count": 12, + "execution_count": null, "id": "219d27e4", "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Model subspace ID: M1_6\n", - "PEtab YAML location: model_selection/petab_problem.yaml\n", - "Custom model parameters: {'k1': 'estimate', 'k2': 'estimate', 'k3': 0}\n", - "Model hash: M1_6-000\n", - "Model ID: M1_6-000\n", - "Criterion.AIC: -110\n", - "Model calibrated in iteration: 3\n", - "\n" - ] - } - ], + "outputs": [], "source": [ "best_model = petab_select.ui.get_best(\n", " problem=select_problem,\n", @@ -527,7 +389,7 @@ }, { "cell_type": "code", - "execution_count": 13, + "execution_count": null, "id": "cacda13d", "metadata": {}, "outputs": [], @@ -544,25 +406,10 @@ }, { "cell_type": "code", - "execution_count": 14, + "execution_count": null, "id": "7440cc69", "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Model subspace ID: M1_4\n", - "PEtab YAML location: model_selection/petab_problem.yaml\n", - "Custom model parameters: {'k1': 0.2, 'k2': 'estimate', 'k3': 'estimate'}\n", - "Model hash: M1_4-000\n", - "Model ID: M1_4-000\n", - "Criterion.AIC: None\n", - "Model calibrated in iteration: 1\n", - "\n" - ] - } - ], + "outputs": [], "source": [ "for candidate_model in candidate_space.models:\n", " print_model(candidate_model)" diff --git a/petab_select/analyze.py b/petab_select/analyze.py index eddf89f..9dad49b 100644 --- a/petab_select/analyze.py +++ b/petab_select/analyze.py @@ -1,5 +1,6 @@ """Methods to analyze results of model selection.""" +import warnings from collections.abc import Callable from .constants import Criterion @@ -107,10 +108,18 @@ def get_best( for model in models: if compute_criterion and not model.has_criterion(criterion): model.get_criterion(criterion) + if not model.has_criterion(criterion): + warnings.warn( + f"The model `{model.hash}` has no value set for criterion " + f"`{criterion}`. Consider using `compute_criterion=True` " + "if there is sufficient information already stored in the " + "model (e.g. the likelihood).", + RuntimeWarning, + stacklevel=2, + ) + continue if best_model is None: - if model.has_criterion(criterion): - best_model = model - # TODO warn if criterion is not available? + best_model = model continue if compare(best_model, model, criterion=criterion): best_model = model diff --git a/petab_select/constants.py b/petab_select/constants.py index 52c915d..7ffb2f5 100644 --- a/petab_select/constants.py +++ b/petab_select/constants.py @@ -59,6 +59,13 @@ class Criterion(str, Enum): string.digits + string.ascii_uppercase + string.ascii_lowercase ) PREDECESSOR_MODEL_HASH = "predecessor_model_hash" +ITERATION = "iteration" +PETAB_PROBLEM = "petab_problem" +PETAB_YAML = "petab_yaml" +HASH = "hash" + +# MODEL_SPACE_FILE_NON_PARAMETER_COLUMNS = [MODEL_ID, PETAB_YAML] +MODEL_SPACE_FILE_NON_PARAMETER_COLUMNS = [MODEL_SUBSPACE_ID, PETAB_YAML] # PEtab PETAB_ESTIMATE_TRUE = 1 diff --git a/petab_select/model.py b/petab_select/model.py index 9db7010..149a68c 100644 --- a/petab_select/model.py +++ b/petab_select/model.py @@ -25,6 +25,9 @@ from .constants import ( ESTIMATE, + CRITERIA, + ESTIMATED_PARAMETERS, + ITERATION, MODEL_HASH, MODEL_HASH_DELIMITER, MODEL_ID, diff --git a/test/cli/input/models.yaml b/test/cli/input/models.yaml index b6daa42..b9d12b8 100644 --- a/test/cli/input/models.yaml +++ b/test/cli/input/models.yaml @@ -10,6 +10,11 @@ k2: 0.15 k3: 0.0 model_id: model_1 + model_subspace_id: M + model_subspace_indices: + - 0 + - 1 + - 1 parameters: k1: 0.2 k2: estimate @@ -23,6 +28,11 @@ model_hash: M-110 model_subspace_petab_yaml: ../../../doc/examples/model_selection/petab_problem.yaml model_id: model_2 + model_subspace_id: M + model_subspace_indices: + - 1 + - 1 + - 0 parameters: k1: estimate k2: estimate diff --git a/test/pypesto/generate_expected_models.py b/test/pypesto/generate_expected_models.py index 3bfdcaa..ca6e8b0 100644 --- a/test/pypesto/generate_expected_models.py +++ b/test/pypesto/generate_expected_models.py @@ -47,6 +47,7 @@ def objective_customizer(obj): "objective_customizer": objective_customizer, } + for test_case_path in test_cases_path.glob("*"): if test_cases and test_case_path.stem not in test_cases: continue