diff --git a/doc/analysis.rst b/doc/analysis.rst
index 1f06b66..ee8aa46 100644
--- a/doc/analysis.rst
+++ b/doc/analysis.rst
@@ -4,7 +4,7 @@ Analysis
After using PEtab Select to perform model selection, you may want to operate on all "good" calibrated models.
The PEtab Select Python library provides some methods to help with this. Please request any missing methods.
-See the Python API docs for the ``Models`` class, which provides some methods. In particular, ``Models.df`` can be used
+See the Python API docs for the :class:`petab_select.Models` class, which provides some methods. In particular, :attr:`petab_select.Models.df` can be used
to get a quick overview over all models, as a pandas dataframe.
Additionally, see the Python API docs for the ``petab_select.analysis`` module, which contains some methods to subset and group models,
diff --git a/doc/api.rst b/doc/api.rst
index 6f11132..5a86acf 100644
--- a/doc/api.rst
+++ b/doc/api.rst
@@ -7,6 +7,7 @@ petab-select Python API
:toctree: generated
petab_select
+ petab_select.analyze
petab_select.candidate_space
petab_select.constants
petab_select.criteria
diff --git a/doc/examples/example_cli_famos.ipynb b/doc/examples/example_cli_famos.ipynb
index 7bc4ceb..b5895ac 100644
--- a/doc/examples/example_cli_famos.ipynb
+++ b/doc/examples/example_cli_famos.ipynb
@@ -22,7 +22,7 @@
},
{
"cell_type": "code",
- "execution_count": 1,
+ "execution_count": null,
"id": "1f04dce0",
"metadata": {},
"outputs": [],
@@ -44,7 +44,7 @@
},
{
"cell_type": "code",
- "execution_count": 2,
+ "execution_count": null,
"id": "a81560e6",
"metadata": {},
"outputs": [],
@@ -109,69 +109,10 @@
},
{
"cell_type": "code",
- "execution_count": 3,
+ "execution_count": null,
"id": "bb1a5144",
"metadata": {},
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "Executing iteration 1\n",
- "Executing iteration 2\n",
- "Executing iteration 3\n",
- "Executing iteration 4\n",
- "Executing iteration 5\n",
- "Executing iteration 6\n",
- "Executing iteration 7\n",
- "Executing iteration 8\n",
- "Executing iteration 9\n",
- "Executing iteration 10\n",
- "Executing iteration 11\n",
- "Executing iteration 12\n",
- "Executing iteration 13\n",
- "Executing iteration 14\n",
- "Executing iteration 15\n",
- "Executing iteration 16\n",
- "Executing iteration 17\n",
- "Executing iteration 18\n",
- "Executing iteration 19\n"
- ]
- },
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "petab_select/petab_select/candidate_space.py:1160: RuntimeWarning: Model `model_subspace_1-0001011010010010` has been previously excluded from the candidate space so is skipped here.\n",
- " return_value = self.inner_candidate_space.consider(model)\n"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "Executing iteration 20\n",
- "Executing iteration 21\n",
- "Executing iteration 22\n",
- "Executing iteration 23\n",
- "Executing iteration 24\n",
- "Executing iteration 25\n",
- "Executing iteration 26\n",
- "Executing iteration 27\n",
- "Executing iteration 28\n",
- "Executing iteration 29\n",
- "Executing iteration 30\n",
- "Executing iteration 31\n",
- "Executing iteration 32\n",
- "Executing iteration 33\n",
- "Executing iteration 34\n",
- "Executing iteration 35\n",
- "Executing iteration 36\n",
- "Executing iteration 37\n",
- "Model selection has terminated.\n"
- ]
- }
- ],
+ "outputs": [],
"source": [
"%%bash -s \"$petab_select_problem_yaml\" \"$output_path_str\"\n",
"petab_select_problem_yaml=$1\n",
@@ -217,7 +158,7 @@
},
{
"cell_type": "code",
- "execution_count": 4,
+ "execution_count": null,
"id": "93caf071",
"metadata": {},
"outputs": [],
@@ -227,7 +168,7 @@
},
{
"cell_type": "code",
- "execution_count": 5,
+ "execution_count": null,
"id": "cb61d0f7",
"metadata": {},
"outputs": [],
diff --git a/doc/examples/visualization.ipynb b/doc/examples/visualization.ipynb
index 8010b31..13f36b4 100644
--- a/doc/examples/visualization.ipynb
+++ b/doc/examples/visualization.ipynb
@@ -22,7 +22,7 @@
},
{
"cell_type": "code",
- "execution_count": 1,
+ "execution_count": null,
"id": "ca6ce5b4",
"metadata": {},
"outputs": [],
@@ -40,155 +40,10 @@
},
{
"cell_type": "code",
- "execution_count": 2,
+ "execution_count": null,
"id": "54532b75-53e4-4670-8e64-21e7adda0c0e",
"metadata": {},
- "outputs": [
- {
- "data": {
- "text/html": [
- "\n",
- "
\n",
- " \n",
- " \n",
- " | \n",
- " model_id | \n",
- " model_hash | \n",
- " Criterion.NLLH | \n",
- " Criterion.AIC | \n",
- " Criterion.AICC | \n",
- " Criterion.BIC | \n",
- " iteration | \n",
- " predecessor_model_hash | \n",
- " estimated_parameters | \n",
- "
\n",
- " \n",
- " \n",
- " \n",
- " 0 | \n",
- " M_0-000 | \n",
- " M_0-000 | \n",
- " 17.487615 | \n",
- " None | \n",
- " 37.975230 | \n",
- " None | \n",
- " 1 | \n",
- " virtual_initial_model- | \n",
- " {'sigma_x2': 4.462298422134608} | \n",
- "
\n",
- " \n",
- " 1 | \n",
- " M_1-000 | \n",
- " M_1-000 | \n",
- " -4.087703 | \n",
- " None | \n",
- " -0.175406 | \n",
- " None | \n",
- " 2 | \n",
- " M_0-000 | \n",
- " {'k3': 0.0, 'sigma_x2': 0.12242920113658338} | \n",
- "
\n",
- " \n",
- " 2 | \n",
- " M_2-000 | \n",
- " M_2-000 | \n",
- " -4.137257 | \n",
- " None | \n",
- " -0.274514 | \n",
- " None | \n",
- " 2 | \n",
- " M_0-000 | \n",
- " {'k2': 0.10147824307890803, 'sigma_x2': 0.12142219599557078} | \n",
- "
\n",
- " \n",
- " 3 | \n",
- " M_3-000 | \n",
- " M_3-000 | \n",
- " -4.352664 | \n",
- " None | \n",
- " -0.705327 | \n",
- " None | \n",
- " 2 | \n",
- " M_0-000 | \n",
- " {'k1': 0.20160925279667963, 'sigma_x2': 0.11714017664827497} | \n",
- "
\n",
- " \n",
- " 4 | \n",
- " M_5-000 | \n",
- " M_5-000 | \n",
- " -4.352664 | \n",
- " None | \n",
- " 9.294673 | \n",
- " None | \n",
- " 3 | \n",
- " M_3-000 | \n",
- " {'k1': 0.20160925279667963, 'k3': 0.0, 'sigma_x2': 0.11714017664827497} | \n",
- "
\n",
- " \n",
- " 5 | \n",
- " M_6-000 | \n",
- " M_6-000 | \n",
- " -5.073915 | \n",
- " None | \n",
- " 7.852170 | \n",
- " None | \n",
- " 3 | \n",
- " M_3-000 | \n",
- " {'k1': 0.20924804320838675, 'k2': 0.0859052351446815, 'sigma_x2': 0.10386846319370771} | \n",
- "
\n",
- " \n",
- " 6 | \n",
- " M_7-000 | \n",
- " M_7-000 | \n",
- " -6.028235 | \n",
- " None | \n",
- " 35.943530 | \n",
- " None | \n",
- " 4 | \n",
- " M_3-000 | \n",
- " {'k1': 0.6228488917665873, 'k2': 0.020189424009226256, 'k3': 0.0010850434974038557, 'sigma_x2': 0.08859278245811462} | \n",
- "
\n",
- " \n",
- "
\n"
- ],
- "text/plain": [
- ""
- ]
- },
- "execution_count": 2,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
+ "outputs": [],
"source": [
"models.df.style.background_gradient(\n",
" cmap=matplotlib.colormaps.get_cmap(\"summer\"),\n",
@@ -206,7 +61,7 @@
},
{
"cell_type": "code",
- "execution_count": 3,
+ "execution_count": null,
"id": "09c9df1d",
"metadata": {},
"outputs": [],
@@ -246,21 +101,10 @@
},
{
"cell_type": "code",
- "execution_count": 4,
+ "execution_count": null,
"id": "96d99572-f74d-4e25-8237-0aa158eb29f6",
"metadata": {},
- "outputs": [
- {
- "data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAAWwAAAFsCAYAAADon4O5AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAABBqUlEQVR4nO3deVhUZf8/8PdsgAKDgCyioqiIpflkaMqTlSuW5ZLW41auueSWW/WYWVmZWuYa7qhP7ku5Z6m4m5q5lG24iwIDgsAAyqzn9wffmZ8o6CxnmDnxfl2XV3HmLB+Ge97nnrPcRyYIggAiIvJ4cncXQEREtmFgExFJBAObiEgiGNhERBLBwCYikggGNhGRRDCwiYgkgoFNRCQRDGwiIolgYBMRSQQD2w2mT58OmUyGMWPGWKcVFRVhxIgRCA4Ohp+fH7p3746MjAyb1ykIArRaLTjSANE/FwO7nJ06dQqLFy9G48aNS0wfO3YsduzYgU2bNuHQoUNIS0tDt27dbF5vfn4+AgICkJ+fL3bJROQhGNjlqKCgAH369MHSpUsRGBhonZ6Xl4fExETMmjULbdq0QWxsLFasWIGffvoJJ06ccGPFRORJlO4uoCIZMWIEXnrpJbRr1w6fffaZdfrp06dhMBjQrl0767QGDRogMjISx48fR4sWLR5Yl06ng06ns/6s1WoBAAaDAQaDwYW/BRGJTaVS2TQfA7ucrF+/HmfOnMGpU6ceeE2j0cDLywtVqlQpMT0sLAwajabU9U2bNg1Tpkx5YPqePXtQuXJlUWomovLRpUsXm+ZjYJeDGzdu4O2338bevXvh4+MjyjonTpyIcePGWX/WarWoWbMm4uPjoVarRdkGEXkWBnY5OH36NDIzM/HUU09Zp5lMJhw+fBhff/01fvzxR+j1euTm5pboZWdkZCA8PLzUdXp7e8Pb2/uB6SqVyuavV0QkLQzsctC2bVucP3++xLQBAwagQYMGeO+991CzZk2oVCokJSWhe/fuAIDk5GSkpKQgLi7OHSUTkQdiYJcDf39/NGrUqMQ0X19fBAcHW6cPGjQI48aNQ1BQENRqNUaNGoW4uLhSTzgSUcXEwPYQs2fPhlwuR/fu3aHT6dChQwcsWLDA3WURVXgpKSnIyspyah1Vq1ZFZGSk07XI+BDefwatVouAgADk5eXxpCORSFJSUhATE4OioiKn1uPj44Pk5GSnQ5s3zhARlSErK8vpsAaKh55wtpcOMLCJiCSDgU1EJBEMbCIiiWBgExFJBAObiEgiGNhERBLBwCYikgje6UhEHsmT7jD0FAxsIvI4nnaHoafgIREi8jiedoehp2BgExFJBAObiEgiGNhERBLBwCYikggGNhGRRDCwiYgkgoFNRCQRDGwiIolgYBMRSQQDm4hIIhjYREQSwcAmIpIIBjYRkUQwsImIJIKBTUQkEQxsIiKJYGATEUkEA5uISCIY2EREEsHAJiKSCAY2EZFEMLCJiCSCgU1EJBEMbCIiiWBgExFJBAObiEgiGNhERBLBwC4HCxcuROPGjaFWq6FWqxEXF4fdu3dbXy8qKsKIESMQHBwMPz8/dO/eHRkZGW6smIg8EQO7HNSoUQPTp0/H6dOn8csvv6BNmzbo0qUL/vjjDwDA2LFjsWPHDmzatAmHDh1CWloaunXr5uaqicjTKN1dQEXQqVOnEj9PnToVCxcuxIkTJ1CjRg0kJiZi7dq1aNOmDQBgxYoVeOyxx3DixAm0aNHCHSUTkQdiYJczk8mETZs2obCwEHFxcTh9+jQMBgPatWtnnadBgwaIjIzE8ePHywxsnU4HnU5n/Vmr1QIADAYDDAaDa38JIhczGo2irsvRz0R51aFSqWxaBwO7nJw/fx5xcXEoKiqCn58ftmzZgscffxznzp2Dl5cXqlSpUmL+sLAwaDSaMtc3bdo0TJky5YHpe/bsQeXKlcUun6hcXb58WbR1HT16FOnp6R5dR5cuXWxaBwO7nMTExODcuXPIy8vD5s2b0a9fPxw6dMjh9U2cOBHjxo2z/qzValGzZk3Ex8dDrVaLUTKR25w9e1a0dbVs2RJNmjSRdB0WDOxy4uXlhXr16gEAYmNjcerUKcydOxc9evSAXq9Hbm5uiV52RkYGwsPDy1yft7c3vL29H5iuUqls/npF5KmUSvGiSalUOvyZ8JQ6LHiViJuYzWbodDrExsZCpVIhKSnJ+lpycjJSUlIQFxfnxgqJyNOwh10OJk6ciBdffBGRkZHIz8/H2rVrcfDgQfz4448ICAjAoEGDMG7cOAQFBUGtVmPUqFGIi4vjFSJEVAIDuxxkZmaib9++SE9PR0BAABo3bowff/wR7du3BwDMnj0bcrkc3bt3h06nQ4cOHbBgwQI3V01EnoaBXQ4SExMf+rqPjw8SEhKQkJBQThURkRTxGDYRkUQwsImIJIKBTUQkEQxsIiKJYGATEUkEA5uISCIY2EREEsHAJiKSCAY2EZFEMLCJiCSCgU1EJBEMbCIiiWBgExFJBAObiEgiGNhERBLBwCYikggGNhGRRDCwiYgkgoFNRCQRDGwiIolgYBMRSQQDm4hIIhjYZZg2bRqWL1/+wPTly5djxowZbqiIiCo6BnYZFi9ejAYNGjwwvWHDhli0aJEbKiKiio6BXQaNRoNq1ao9MD0kJATp6eluqIiIKjoGdhlq1qyJY8eOPTD92LFjiIiIcENFRFTRKd1dgKcaPHgwxowZA4PBgDZt2gAAkpKS8O6772L8+PFuro6IKiIGdhneeecdZGdnY/jw4dDr9QAAHx8fvPfee/jvf//r5uqIqCJiYJdBJpNhxowZmDx5Mv766y9UqlQJ0dHR8Pb2dndpRFRB8Rj2ffbv34/HH38cWq0WAODn54dmzZqhUaNGKCoqQsOGDXHkyBE3V0lEFRED+z5z5szB4MGDoVarH3gtICAAQ4cOxaxZs9xQGRFVdAzs+/z666944YUXynw9Pj4ep0+fLseKiIiKMbDvk5GRAZVKVebrSqUSt27dKseKiIiKMbDvU716dfz+++9lvv7bb7+VekMNEZGrMbDv07FjR0yePBlFRUUPvHb37l189NFHePnll91QGRFVdLys7z4ffPABvvvuO9SvXx8jR45ETEwMAODvv/9GQkICTCYTJk2a5OYqiagiYmDfJywsDD/99BPeeustTJw4EYIgACi+LrtDhw5ISEhAWFiYm6skooqIgV2KWrVq4fvvv0dOTg4uXboEQRAQHR2NwMBAd5dGRBUYj2E/RGBgIJo1a4ann37aqbCeNm0amjVrBn9/f4SGhqJr165ITk4uMU9RURFGjBiB4OBg+Pn5oXv37sjIyHD2VyCifxAGdjk4dOgQRowYgRMnTmDv3r0wGAyIj49HYWGhdZ6xY8dix44d2LRpEw4dOoS0tDR069bNjVUTkafhIZH72BqS3333nc3r/OGHH0r8vHLlSoSGhuL06dN47rnnkJeXh8TERKxdu9Y6MuCKFSvw2GOP4cSJE2jRosUD69TpdNDpdNafLbfSGwwGGAwGm2sj8kRGo1HUdTn6mSivOh5278e9GNj3CQgIcPk28vLyAABBQUEAgNOnT8NgMKBdu3bWeRo0aIDIyEgcP3681MCeNm0apkyZ8sD0PXv2oHLlyi6qnKh8XL58WbR1HT161OGHjpRXHV26dLFpHQzs+6xYseKR8zzsxppHMZvNGDNmDJ555hk0atQIQPHTbby8vFClSpUS84aFhUGj0ZS6nokTJ2LcuHHWn7VaLWrWrIn4+PhSx0EhkpKzZ8+Ktq6WLVuiSZMmkq7DgoFto/z8fKxbtw6JiYn45ZdfYDKZHFrPiBEj8Pvvv+Po0aNO1ePt7V3qUK8qlcrmr1dEnkqpFC+alEqlw58JT6nDgicdH+Hw4cPo168fqlWrhpkzZ6J169Y4ceKEQ+saOXIkdu7ciQMHDqBGjRrW6eHh4dDr9cjNzS0xf0ZGBsLDw50pn4j+QdjDLoVGo8HKlSuRmJgIrVaL//znP9DpdNi6dSsef/xxu9cnCAJGjRqFLVu24ODBg4iKiirxemxsLFQqFZKSktC9e3cAQHJyMlJSUhAXFyfK70RE0sce9n06deqEmJgY/Pbbb5gzZw7S0tIwf/58p9Y5YsQIrF69GmvXroW/vz80Gg00Gg3u3r0LoPhE56BBgzBu3DgcOHAAp0+fxoABAxAXF1fqCUciqpjYw77P7t27MXr0aLz11luIjo4WZZ0LFy4EALRq1arE9BUrVqB///4AgNmzZ0Mul6N79+7Q6XTo0KEDFixYIMr2ieifgYF9n6NHjyIxMRGxsbF47LHH8MYbb6Bnz55OrdMyHsnD+Pj4ICEhAQkJCU5ti4j+uXhI5D4tWrTA0qVLkZ6ejqFDh2L9+vWIiIiA2WzG3r17kZ+f7+4SiaiCYmCXwdfXFwMHDsTRo0dx/vx5jB8/HtOnT0doaCg6d+7s7vKIqAJiYNsgJiYGX3zxBW7evIn169eXGAOEiKi88Bi2jSw3zixbtowP4SUit2AP+xHuvXFm0qRJqFmzprtLIqIKioFdCo1Gg+nTpyM6OhodO3aE0WjExo0bkZ6eXuqAS0RE5YGHRO7TqVMnJCUloXXr1vj444/RtWtX+Pr6Wl+XyWRurI6IKjIG9n127dqF3r17Y8yYMWjatKm7yyEisuIhkfv89NNPqFSpEtq0aYOYmBh88sknoo6JS0TkKAb2fe69cea9997Dnj17UL9+fbRo0QLz58/ncxaJyG0Y2GW498aZP//8E8899xw+//zzEk+FISIqTwxsG9x748x3332Hl156yd0lEVEFxMC2g0KhQNeuXbF9+3Z3l0JEFRADm4hIIhjYREQSwcAmIpIIBjYRkUQwsImIJIKBTUQkEQxsIiKJYGATEUkEA5uISCIY2EREEsHAJiKSCAY2EZFEMLCJiCSCgU1EJBEMbCIiiWBgExFJBAObiEgiGNhERBLBwCYikggGNhGRRDCwiYgkgoFNRCQRDGwiIolgYBMRSQQDuxwcPnwYnTp1QkREBGQyGbZu3VridUEQ8OGHH6JatWqoVKkS2rVrh4sXL7qnWCLyWAzsclBYWIh//etfSEhIKPX1L774AvPmzcOiRYtw8uRJ+Pr6okOHDigqKirnSonIkyndXUBF8OKLL+LFF18s9TVBEDBnzhx88MEH6NKlCwDgm2++QVhYGLZu3YqePXuWZ6lE5MEY2G529epVaDQatGvXzjotICAAzZs3x/Hjx8sMbJ1OB51OZ/1Zq9UCAAwGAwwGg2uLpn+slJQUZGdnO72e4OBgREZGOry80Wh0uoZ71+XoZ6K86lCpVDatg4HtZhqNBgAQFhZWYnpYWJj1tdJMmzYNU6ZMeWD6nj17ULlyZXGLpArh1q1bGD58uCg7fJVKhQULFiAkJMSh5S9fvux0DRZHjx5Fenq6R9dh+Xb9KAxsiZo4cSLGjRtn/Vmr1aJmzZqIj4+HWq12Y2UkVWfPnhXt25nBYEDjxo3RpEkTh2sRS8uWLSVfhwUD283Cw8MBABkZGahWrZp1ekZGBp588skyl/P29oa3t/cD01Uqlc1fr4jupVSKGwdKpdLhtihmLf+EOix4lYibRUVFITw8HElJSdZpWq0WJ0+eRFxcnBsrIyJPwx52OSgoKMClS5esP1+9ehXnzp1DUFAQIiMjMWbMGHz22WeIjo5GVFQUJk+ejIiICHTt2tV9RRORx2Fgl4NffvkFrVu3tv5sOfbcr18/rFy5Eu+++y4KCwsxZMgQ5ObmomXLlvjhhx/g4+PjrpKJyAMxsMtBq1atIAhCma/LZDJ88skn+OSTT8qxKvIkKSkpyMrKcmodVatWdepSOvJ8DGwiN0tJSUFMTIzTd7b6+PggOTmZof0PxpOORG6WlZUlyjAERUVFTvfSybMxsImIJIKBTUQkEQxsIiKJYGATEUkEA5uISCIY2EREEsHAJiKSCAY2EZFEMLCJiCSCgU1EJBEMbCIiiWBgExFJBAObiEgiGNhERBLBwCYikggGNhGRRDCwiYgkgoFNRCQRDGwiIolgYBMRSQQDm4hIIhjYREQSwcAmIpIIBjYRkUQwsImIJIKBTUQkEQxsIiKJYGATEUkEA5uISCIY2EREEsHAJiKSCAY2EZFEMLCJiCSCgU1EJBEMbCIiiWBgExFJhNLdBdD/l5CQgC+//BIajQb/+te/MH/+fDz99NPuLusfLSUlBVlZWU6to2rVqoiMjBSpIqKyMbA9xIYNGzBu3DgsWrQIzZs3x5w5c9ChQwckJycjNDTU3eWJzhOCMiUlBTExMSgqKnKqDh8fHyQnJzO0yeUY2B5i1qxZGDx4MAYMGAAAWLRoEXbt2oXly5fjv//9r5urE5enBGVWVpbTNQBAUVERsrKyGNjkcgxsD6DX63H69GlMnDjROk0ul6Ndu3Y4fvx4qcvodDrodDrrz1qtFgBgMBhgMBjK3FZ6ejo0Go1T9YaHh6NatWoOL6/RaEQLSo1G43AtRqPR6RruXdfD3veKVocn1SKFOlQqlU3rkAmCIIhWETkkLS0N1atXx08//YS4uDjr9HfffReHDh3CyZMnH1jm448/xpQpUx6YnpeXB7Va7dJ6icg9eJWIRE2cOBF5eXnWf7m5ucjMzIS/v7+7SyMiF+EhEQ9QtWpVKBQKZGRklJiekZGB8PDwUpfx9vaGt7d3eZRHRB6CPWwP4OXlhdjYWCQlJVmnmc1mJCUllThEQkQVG3vYHmLcuHHo168fmjZtiqeffhpz5sxBYWGh9aoRIiIGtofo0aMHbt26hQ8//BAajQZPPvkkfvjhB4SFhbm7NCLyELxKhIhIIngMm4hIIhjYREQSwcAmIpIIBjYRkUQwsImIJIKBTUQkEQxsIiKJYGATEUkEA5uISCIY2EREEsHAJiKSCAY2EZFEMLCJiCSCgU1EJBEMbCIiiWBgExFJBAObiEgiGNhERBLBwCYikggGNhGRRPCp6WQlCAIEQYBc7p79+J9//olly5YhOTkZ+fn5CAoKQosWLTBw4ECEhoa6pSaz2ey290Or1WL16tVISkpCVlYWKlWqhNq1a6N///5o3rw5ZDJZuddkeWa3u7Z98OBBrF69Gjdv3oRer0dISAhefPFF9OzZE5UqVXJLTeX5meFT0ys4o9GI7Oxs3L59GwaDAQAgl8uhVqtRtWpVVK5c2eU1HDp0CJMnT8aRI0egVCphNBoBFIeCTCaDXC7Ha6+9hs8//xy1a9d2aS2CIECr1SI7OxuFhYXWgKpUqRKCg4NRpUoVl384s7OzMXnyZKxcuRJFRUXWugBY358nnngCH374IV599VWX1gIARUVFyM7ORm5uLkwmk7WOwMBABAcHw8vLy6XbFwQBK1euxLRp03Dx4sUSbUQul8NsNkOtVmPIkCH46KOP4Ofn59J6TCYTcnNzkZ2dbf37yGQy+Pn5ITg4GGq12mXbZmBXYBkZGcjMzMTDmoCvry9q1aoFpdI1X8ZWrlyJQYMGASjuzZZFqVRCrVZj7969eOqpp1xSy927d3Ht2jXrjqs0CoUCNWvWdNmH8vr162jbti2uXbtmDcfSyGQyCIKAjz/+GB999JFLajGbzbhx4wby8vIeOl9QUBCqV6/ukl632WzG6NGjkZCQYP2dy6JQKNCoUSPs2bPHZd/IcnJykJqa+tC26u3tjdq1a8Pb21v07TOwK6i0tDRkZWXZNK+3tzfq1asHhUIhag3btm3DK6+88tAP4b0UCgXUajVOnTqFunXrilrLnTt3cOXKlYd+EC1kMhkiIyMREBAgag23b9/G008/jevXr1t7kLaYPXs2xowZI2otgiDgypUrKCwstGl+tVrtkm8/kyZNwueff27z/EqlEo0bN8aRI0dE/3Z4+/Zt3Lx506Z5FQoF6tWrJ3po86SjG7Vq1Ur0D5otcnNzbQ5rANDpdEhJSRG1Bp1OhwEDBti1jMlkglarFf09M5vNuHbtmk1hDRSHWUpKCvR6vah1fPbZZ7h27ZpdYQ0AEyZMQGpqqqi1pKWl2RzWQPHx9oyMDFFr+P333+0Ka6D4EN+5c+cwb948UWu5e/euXe+xyWTC1atXbe6M2IqB7aGWLl2KZ599FoGBgQgMDES7du3w888/i7LuW7du2b1Mfn4+dDqdKNsHgM2bNyMnJ8fuBm0ymbBr1y5cv35dtFpycnLsDklBEJCdnS1aDXfu3MGyZcseehjkYbUsW7ZMtFpMJhNycnLsXi47O1vUgFq4cKFDh+LMZjO+/vprh97LsmRlZdn9u+n1emi1WtFqABjYHuvgwYPo1asXDhw4gOPHj6NmzZqIj493uid1584d3L1716FlxQyo+fPnO3zyTi6XY8mSJaLV4ujvdfv2bdECav369cjPz3doWbPZjAULFjz02Ls9cnJybP62cS+j0fjI4922ys/Px4oVK+zekVqkpqZi9+7dotRiNBqRm5vr0LJifmYABrZH2bVrFwICArBmzRqsWbMGw4cPx5NPPokGDRpg2bJlMJvNSEpKcmobjoYCANF6CwaDASdPnnQoFIDiHuC+fftEqUWv11vP9DtShz2HDR7m0KFDTp0jyMzMxOXLl0WpxZm/s1ht5OzZsw53LABApVLh0KFDotRSUFDg8I65oKDA4XZeGga2h1i7di169eqFNWvWoE+fPg+8fufOHRgMBgQFBTm1HUd7LABE+4opRi/Mka/spXH2dxLrPbn3kjln1iEGZ+rwlDYiCMI/ro0ADGyPkJCQgOHDh2PHjh14+eWXS53nvffeQ0REBNq1a+fUtpy5hlisy7Z8fHycXodYN0k4e021mO+Js7V4wnsi1jXqzrYRmUzmEe+HGMvfi3c6utnmzZuRmZmJY8eOoVmzZqXOM336dKxfvx4HDx50uiE7s7wYQQsUX9sdGBjocA9IqVQiOjpalFpUKpX15gtHiPWeREVFOVWHXC5HjRo1RKnF29vb4UM9Yl3G5uwlgiaTCVFRUaLU4szvpFKpRL0clj1sN2vSpAlCQkKwfPnyUo+TzZw5E9OnT8eePXvQuHFjp7cXEBDgcANy9nCMhUwmw+DBgx2uw2g04s033xSlFrlcjsDAQIeW9fPzE+0uvwEDBjh8uEqpVKJLly4IDg4WpRZn1iNWG4mOjsa///1vh9uIXC7H66+/LkotlStXdri3Ltb7YcHAdrO6deviwIED2LZtG0aNGlXitS+++AKffvopfvjhBzRt2lSU7TkaUCqVStQbRYYOHepwbzIyMhLx8fGi1eJoQFWtWlW0GmJiYtC6dWuHAspoNGLkyJGi1VKpUiWHbjpRq9Wi3qY+atQoh47/KpVKvPbaa6Le7ehIG5HJZAzsf6L69evjwIED+Pbbb603hcyYMQOTJ0/G8uXLUbt2bWg0Gmg0GhQUFDi9vdDQULs/WGLfelynTh306dPHoeN7H3/8sajHBX18fOwOX7VaLfrt6ZMnT7Z7J6ZQKNCiRQu0bt1a1FqqV69u13usUChQrVo1UWvo1q0bYmJi7LoW2zL+zDvvvCNqLYGBgfD19bVrmfDwcKhUKlHrYGB7iJiYGOzfvx/r1q3D+PHjsXDhQuj1erz66quoVq2a9d/MmTOd3pZSqUSdOnVsOjYnk8lcNnbG0qVLERcXZ1cwvPPOO3bfIWmLiIgIm3tRarUakZGRotfQunVrLFiwwOb5FQoFatWqhe3bt4s+jodlZEBbevxKpRJRUVGi34bt5eWFH3/8EcHBwTaFtiWs16xZgyZNmohai0wmQ+3atW0O7dDQUISEhIhaA8CxRCo0k8mErKysEiP1WchkMgQEBCAkJMSlw1bevXsX/fr1w6ZNm0qMwnYvuVwOmUyGqVOn4t1333Xp0J55eXnIysoq9aSbZcS+wMBAl9awdu1avPnmmw+M1GdheZ+eeeYZbN26VdRDM/fT6XTIysoq9WYahUKBwMBAhISEiN6TvNeNGzfw8ssv47fffiu1jVhO1vr7+2P9+vXo2LGjy2qx3OGanZ1d6p2//v7+qFq1Kvz9/V2yfQY2QRCEEreeWwZZctUIfaU5f/48Fi5ciJUrV5a4YSI8PBwjRozAm2++ifDw8HKrp6ioCIWFhTCZTJDL5ahcuXK5DDVrkZeXh2+++Qbz5s3DpUuXrNMtx2dHjBiBf//73+U2LrVlHBdLWKpUKqjV6nIbB9psNmP//v34+uuvsWPHjhI7j0aNGuHtt99Gr1697D5s4YyCggIUFRXBbDZDoVDA39/f5UPNMrDJo9y9excajQaFhYUICAhARESE6KMESokgCEhPT0dubi68vb0RFhbm8vGePV1eXh4yMzOtN5KFhYW55YEK7sDAJiKSCJ50JCKSCAY2EZFEMLCJiCSCgU1EJBEMbCIiiWBgExFJBAObiEgiGNhERBJh873HzjwLkIiIymbr2CPsYRMRSQQDm4hIIvhMR6L7GAwGfP/99zhz5gzy8/Ph6+uLBg0a4JVXXinXEfs8yZ9//okdO3YgKysLMpkMYWFh6Nq1K+rWrVuudaSlpeHbb79FamoqjEYjAgMDER8fj6ZNm1aIAaBsHvyJx7D/mQRBgFarRU5ODvR6PYDi8YUDAgIQGBhYrkOsFhYW4vbt29YhK+VyOfz8/BAUFCT64PiluX37NhYtWoRly5YhKyurxBjPBoMBfn5+6Nu3L0aOHCnaA28fxmAwICcnB1qt1jrMq5eXFwIDA13yQIn7CYKA7du3IyEhASdOnIBCobAOp2o2m2EymdC6dWuMHDkS7du3d2ktJ0+exNy5c/H9998DgHUER0EQYDQa0ahRI7z11lvo3bt3uYzuWFBQgJycnBJt1d/fH0FBQQ4NsWrrMWwGdgWWm5uLjIyMBx5eYCGTyRAYGIhq1aq5tPdy584dpKamljogvIWfnx9q1Kjhsh3I1atX0blzZ9y4ceOhj+myjBX+7bffivaczfuZzWakpaUhLy+v1AczA8VPYwkPD3dZcJtMJkyYMAGJiYlQKBRlPlvR8tq7776LSZMmuaSdLF26FBMmTIBCoSjzQcWWhxh06tQJiYmJoj3N/n62tFV/f3/UqFHDrh0HA5seKjs7G+np6TbN6+vri9q1a7vkw1hQUICUlBSbnmXo5eWFqKgo0Z9ukpGRgeeffx4ZGRk2PfRVoVDAx8cH+/fvx2OPPSZqLWazGVevXi3xEIeyyGQyREREOPzU97IIgoB33nkHS5cuLXOHUZpJkybhvffeE7WWVatWYcSIETbPL5fL0bFjR6xatUr0nnZ+fj5SUlJsek+8vb0RFRVlcweDV4lIQMeOHUVv4LYoKCiwOayB4kMVaWlpotdhMBge2aO9l16vx/Xr10WvY+zYsTaHNVDc+ywqKkL//v3tCjRb3Lx506awBoqDNS0tDXfu3BG1hr1792LJkiV2/25Tp07F6dOnRavjxo0bGD16tF3LmM1m7Ny5E998841odQDFbe/GjRs2vyc6nc4lbZWB7aG2b9+O559/HjVr1kR4eDieeeYZrFu3TpR137p1y+5lcnNzyzx04qjs7GybQ9KiqKhI1G97N2/exK5du+yuw2Qy4a+//sKJEydEq0Wn00Gr1dq1jCAIyMrKEq0GAFi0aJFDvVOFQoFly5aJVseKFSscWk4mk2HhwoWi7kyzs7PtfqL93bt3UVBQIFoNAAPbYwUGBmLChAnYt28ffvrpJ/Tp0wfDhw/Hvn37nFqvTqcr9QGzjyIIAnJycpzatljru337tmh1rFixwuFDPUqlEkuWLBGtFkd/r/z8fNF2plevXkVSUpLdOzCgeCe2adMmZGdnO12HXq9HYmKiQ3UIgoC///4bJ0+edLoOoLjXnpub69CyYrZVgIHtUX744QfUqFEDGzZswLPPPotOnTohJiYGderUwfDhw9GoUSMcP37cqW3Y24O7V15enlPbvldBQYFDH0agOKDs7e2UZdeuXQ6vy2g0Yvfu3aLUATj+/lqu9BHD3r17nVper9fj0KFDTtdx9uxZpzoISqUSP/zwg9N1AMXtzZm2KmZPn4HtITZu3IhBgwZh6dKl6NGjR4nXBEHAwYMHcfHiRTzzzDNObaess+yuXlbsdYlVi7O9wTt37lgvh3SWo6EAiPd+3L592+mTdWJ8ExOjZypW79aZ99Zy2aFYeOOMB1iyZAk+/fRTbNiwAS1btrROz8vLQ4MGDaDT6aBQKDBr1iy0adPGbXV60o0JYtUixmWCnvBUd096PzxhHTKZTLS/i7PvrZifGwa2m23btg23bt3Cnj17EBsbW+I1f39/HD16FIWFhTh06BDef/991K5dG88++6zD23Pkon4LMS+nc6YOuVwu2vXYERERSEtLc/hra3BwsGjB4OXl9dDrex9GrL9NtWrVnO4RhoWFiVKHM8xms9PrsHCmrSoUClF36Dwk4maNGzdG1apVsXr16gdCQy6Xo27dumjcuDFGjRqFLl264KuvvnJqe1WqVHF4j1+lShWntn0vX19fh+9eDAgIEK3X0qtXL4fDWqFQoHfv3qLUAcDh66kVCgUCAgJEqeGll15yKqACAwPRunVrp+to2LAhoqOjHf47m0wmvPrqq07XARTftOXoe+LM5600DGw3i4qKws6dO7Fr1y5MmDDhofOazWanj5c6+uFWKBSi36ARFBTk0HLBwcGi1dCjRw9UqlTJoWVNJhMGDhwoWi2OfrgDAgKst4yLUUPPnj0d+gajUCgwaNAgUYYRkMlkGDZsmEM7U4VCgTZt2qBOnTpO12HhaNt3tI2XhYHtAaKjo7Fr1y5s377deiPNV199hf379+Pq1atITk7G/PnzsX79+gdOSDoiJCTE7q9poaGhooWCRWBgoN0f7ipVqoh627G/vz+GDBlid1AqFAp07NhR1MGPlEolQkJCXL7Mo7z11lt2B6VMJoNKpcKAAQNEq6NHjx4ICgqyu62aTCa7b7h5FEfGs3GkfT8KA9tDREdHY+fOndi8eTPef/99FBYWYty4cWjevDnat2+Pbdu2YenSpejXr5/T2/L29katWrVs/iCEhISI2qu1kMvlqF27ts2N2t/fH9WrVxe9jg8//BDPPfeczTskhUKBunXrYtGiRaLXEhoaanOvTKlUolatWqLfqt+wYUMsWLAAgG0nzORyOWQyGVatWoWaNWuKVodlzBalUmlXaH/88cein5xXKBSoVauWzYdG1Go1IiIiRK0B4FgiFZpOp0NGRkaZ14p6e3sjJCRE1GPXpTGZTMjIyEBubm6p10SrVCoEBwejatWqLqvh7t27GDx4MLZv3w6lUlnqiTfLQEfNmjXDxo0bXbITs8jJyUFWVlapJyFlMhnUajXCwsKcOt78KJs3b8aQIUNgNpvLvFZdLpfD29sbq1evdtmIfb/88gteffVV6+WCpbVVhUIBs9mMadOmYfjw4S6pAyi+xC8zM7PMturl5YWgoCC72yoHfyKbGQwG5ObmQq/XQxAE63Hu8h772Ww2IycnBzqdrsTwqv7+/uVySaEgCDhy5AiWLFmCnTt3PvCBbNWqFYYOHYoOHTqU27CzBQUF1hs3ZDIZvL29UaVKlXLbfmpqKlasWIFly5Y9cF1zeHg4hg4dir59+4p+WOZ+eXl5WLduHRYtWoQrV66UeM3Pzw/9+/fHwIEDUa9ePZfWYWEymZCbm4uioiIIgmBtq46OnsjAJnKCRqPB+fPnrQ8wqF+/PqKiotxdltvo9XqcOnUK2dnZkMlkCA0NRdOmTcv9GnRBEHD27Fmkp6fDYDAgMDAQzZo1k/yDJRjYREQSweFViYj+YRjYREQSYfMhESIici/2sImIJIKBTUQkEQxsIiKJYGATEUkEA5uISCIY2EREEsHAJiKSCAY2EZFE8JmOBIPBgKSkJNy8edM6oE7r1q1FeTYfOSc1NRWHDx9GTk4OvL29ERkZiTZt2pT7oEt5eXnYt28fbt26BZlMhrCwMMTHx5f7oEt6vR779u1DamoqjEYjgoKC0KZNG5ePFugxBKqw0tLShI8++kgICQkRAAgABJlMJgAQlEql0KNHD+Ho0aPlVo9erxc0Go1w7do14cqVK8L169eF7OxswWQylVsNgiAIJpNJyMrKstZx7do1ISMjQzAYDOWyfbPZLCQlJQldu3YV5HJ5ib8LACEiIkKYOnWqkJmZ6fJafvvtN2Ho0KGCj4+PdfuWf/7+/sKYMWOECxcuuLyOmzdvCh988IEQHBxcalvt06ePcPz4cZfXYVFaW719+7bL2ypvTa+gDhw4gM6dO+POnTtlDk5vGch/woQJmDFjhuiPCLMwGAxIS0uDVqstc3D6oKAghIeHu3RcbLPZDI1Gg9u3b5f6nshkMgQEBCAiIsJl41EbjUaMHDkSixcvLvNBCkDxgwMCAgKwe/duNG/e3CW1fP311xg9ejQUCkWZdSgUCshkMvzvf/8T9YHE99qzZw9eeeUV6HQ6mEymUuexvFfvv/8+PvvsM5e1E71ej/T09Ie21eDgYISFhbmkBgZ2BXTkyBG0adPmoU8Sud/IkSMxb9480RuhTqfDlStXYDAYHjmvr68voqKiXLLjMJlMuHLlCu7evfvIeb28vFCnTh3Rn/YiCAL69++PVatW2fRMRYVCAS8vLxw5cgSxsbGi1jJv3jy8/fbbdi2zZs0a0UM7KSkJL7zwgl1tdcKECfjyyy9FrQMAioqKcOXKlTJ3Xvfy8/NDVFSU6J8XBrabtGrVCk8++STmzJlTrtvVarWIjIxEfn6+zR8AC7EeAmxhMplw8eJFu54Er1arUbt2bdFqsLhy5QoKCgpsnt/b2xvR0dGi7jyWLl2KIUOG2LWMpUd3/fp10R5O/PPPP6NFixZ2P4hXqVTizz//RHR0tCh13L59G7Vq1Xrot8CybNmyBV27dhWlDqD4m8/Fixdt6lhYVKlSBZGRkaLVAPAqEY/0xx9/oHv37qhduzZkMpmoob5q1SpotVq7PwByuRxfffWVaHUAQHZ2tl1hDRTvcO7cuSNqHfn5+XaFNVD8zcDyjEExCIKAmTNn2t0jM5lMyMzMxObNm0WrZe7cuQ6d1BQEAQsXLhStjpUrV6KwsNDutqpQKDBr1izR6gCK26o9YQ0Aubm5Nn1jswcD2wPduXMHderUwfTp0xEeHi7aegVBwLx58xxa1mw249SpUzhz5oxo9dz/jEBbZWdni1aDM+sTs47Dhw/jwoULdvdqgeKdqaN/1/tlZmZi48aNNn3tv5/JZMKyZctE2aGazWbMnz/foffDZDLhyJEj+PPPP52uAyj+3HhKW2Vge4hdu3YhICAAa9asQbNmzfDll1+iZ8+e8Pb2Fm0bf/zxh8OhABR/5d24caMotRQUFNjdu7Yo64nVjjCZTA4//q6oqEi0HtSGDRscPpFp2ZneuHHD6Tq2bdtW5ok9W+Tn52Pv3r1O13H27Flcu3bN4eXFbqv29q4tcnNzHf68lYaB7QHWrl2LXr16Yc2aNejTp4/LtpORkeER6wDg8AcAKO7xOBMq99fhzAfKmd/jXhqNxunfSay/r7PXeHtCO5PJZNBoNE7XATj3NzabzaK1VYCB7XYJCQkYPnw4duzYgZdfftml2xJjT89z1K7hKX8brsOz8U5HN9q8eTMyMzNx7NgxNGvWzOXbE+NusKpVq4pQCZy6jlkmk4l2p5+z11OLdT12SEjIQ693toUYf5uQkBCne4Ri1eEMQRBEu/vRU9oqwB62WzVp0gQhISFYvnx5ufQGnnjiCacuMzIajejWrZsotfj5+UGlUjm0rFqtFu1yOqVSCT8/P4eW9fLyEu3W7G7dujkc1nK5HI0aNRLlcseXX37ZqWuHfXx80L59e6freOqpp1CtWjWHlxezrfr7+zsc2lWqVBH1WmwGthvVrVsXBw4cwLZt2zBq1CiXb08ul2PUqFEOhZ1MJkPDhg0RFxcnSi0ymQxBQUEOLRscHCxKDRaO9gjFrCM+Pt7hnanZbMbo0aNFCYYaNWqgc+fODgWUUqlE//79oVarna5DqVRixIgRDrVVuVyO2NhYPPXUU07XARS31cDAQIeWFbutMrDdrH79+jhw4AC+/fZbjBkzBkDx7a/nzp3DuXPnoNfrkZqainPnzuHSpUtOb2/AgAHw8fGx+8MtCALGjRsnam8hODjY7mDw9fV1uEdcFn9/f1SqVMmuZVQqlcM7nNLI5XKMHTvW7vfXcou6mHcYjhkzxuHL+kaMGCFaHYMGDYJKpbL7PTGbzRg7dqxodQDFO3V726q/v7/og2MxsD1ATEwM9u/fj3Xr1mH8+PFIS0tDkyZN0KRJE6Snp2PmzJlo0qQJ3nzzTae3FRwcbL3cydYPgkwmw+uvv44BAwY4vf17KZVKREVF2XyMr1KlSi65y1EmkyEqKsrmSyjtrdtWo0aNQqdOnWzuVcrlcsjlcmzbtg2+vr6i1fH888/jo48+snu5+fPno1GjRqLVER4ejnXr1gGwr60OHDhQ9FvkVSoVateubVdbFfsuR4C3pldYW7ZsQc+ePWE2mx86sI/JZEK/fv2wdOlSh485P4pOp0NqamqZdxvKZDJUqVIF1atXd9kAVEBxDzE1NRV5eXllnlPw9/dH9erVRR9HxKKoqAhvvPEGNm/ebH3/S2MZR2TLli3o0KGD6HUIgoApU6ZgypQpDx2ESqlUwmQyYe7cuS47rLdx40br5a6PaquDBw/GggULXDY4V1FREVJTU1FYWFjq65bDJxEREa5pqy4dC5A82t9//y2MGDFCqFy5snWYSqVSaR22sk2bNsKWLVsEs9lcLvUUFRUJqampwqVLl4QLFy4Ily9fLtdhTS0sQ2devnxZuHDhgnDp0iUhLS1N0Ol05bJ9k8kkbNiwQXjmmWcEAIJcLrf+bfB/w5qOHTtWuHz5sstrOXjwoNCtWzdBLpcLMpmsRB2WYU1//vlnl9fxxx9/CMOGDbMO83p/W42Pjxd27NhRbm317t27ws2bN0u01czMTMFoNLp0u+xhE/Lz87F161akpqZCr9cjKCgI7du3R0xMjLtLq/B+//137N+/H7m5udYHGHTp0qXcHxyQmpqKHTt2ICsry/oAgy5dupT7gwO0Wq21rRoMBgQFBeGFF15AvXr1yrUOd2FgExFJBE86EhFJBAObiEgiGNhERBLBwCYikggGNhGRRDCwiYgkgoFNRCQRDGwiIomw+YZ7R597R0RED+fv72/TfOxhExFJBAObiEgi+ExHAgCkpKQgPT0dBoMBVapUQYMGDVw2ROXDZGVl4erVq7h79y78/f1Rv359Ucd6tlV+fj4uXryIgoICVK5cGVFRUaI/PcQWer0eycnJyM3NhZeXF2rUqIHq1auXex2CIODChQvWwZ9CQkJQr149UR9oYavr168jPT0dRqMRgYGBaNCggehjk9siMzMT169fx927d6FWqxETE2P3gzDsxcCuwPR6PXbs2IHFixfjxIkTJV4LDQ3F4MGD0a9fP4SHh7u0DkEQcPjwYSxZsgS7du2C2Wy2vla5cmW88cYbGDx4MOrXr+/SOoDi0fESExOxZs0aFBUVWacrFAp07doVQ4YMQYsWLVweVDdv3sSKFSuQmJiI27dvl3jtueeew7Bhw/DCCy+4fKeam5uLdevWYdGiRbh69WqJ1x5//HEMGzYMr732mst3qjqdDtu2bcPixYtx6tSpEq+Fh4djyJAh6Nu3L0JDQ11ah9lsxsGDB7FkyRLs3r27xLjpfn5+6NevHwYOHIjo6GiXbN/m0fp40vGf5dKlS3jllVdw/fr1MgfKtzzRZO7cuXjjjTdcUkdOTg769OmDo0ePljlQvqW+UaNG4dNPP3XJwPBGoxETJkzA8uXLy6zDMj0+Ph4rV64U/VFlFgsXLsTEiRMBoMTOy8LyftSvXx9btmxBzZo1XVLHvn378MYbb+DOnTsA8MBDHWQyGQRBQGBgIDZu3IjmzZu7pI7k5GR069YNN27cgFwuL/U9kcvlUCgUSEhIQM+ePV1SR3Z2Nnr16oUTJ06U+ZmxTB8/fjwmT55sc1u19aQjA7sCunTpEtq2bQutVlvmE03u9+WXX2Lo0KGi1qHVatG+fXtcuHDB5jpef/11JCQkiNrDNZvN6NevH7Zv327T0+vlcjmaNGmCXbt2iT4u9cyZM/HJJ5/YNK9CoUBwcDAOHjyIGjVqiFrH7t270atXLwCl7zTur0OhUGDHjh2iPaTZ4u+//0bbtm1x584dm9vI3LlzRX+cXU5ODtq2bYurV6/aXMfAgQMxe/Zsm9oqA5tKpdPpEBsbi9TUVJsbHlDcm9q5cyeeffZZ0Wrp0aMH9uzZY1cdADB9+nQMHz5ctDpmzJiBqVOn2rWMXC7Ha6+9hqVLl4pWx+7du9GjRw+7llEqlYiOjsZPP/0k2nHcS5cuIS4uDnq93qYdGFD8fvj5+eHMmTOiHZa4c+cOYmNjodFo7GojcrkcP/74o6g9/q5du+LQoUN2t9XZs2dj0KBBj5yvwl7WN2zYMGvPgB60fft2pKSk2N3w5HI5Zs2aJVodycnJ2L17t911AMCsWbMceqp3ae7evYt58+bZvZzZbMbGjRtx8+ZNUeoAinvX9h7uMRqN+Ouvv7B3717R6li8eDGMRqPNYQ0Uvx8FBQVYsWKFaHV89913dncsgOLOxZw5c0Sr47fffsP+/fsdaqszZ850aLmy/OMCe8aMGVi4cKG7y3Da9u3b0aVLF0RFRaF69epo27Yt9u3b5/R6Fy1a5NAxYJPJhP379+PKlStO1wAAy5Ytc7hHmJmZid27d4tSx3fffefwt0e5XC5aQJ0/fx6nTp165OGH0igUCixZskSUOgoKCrBq1SqHQsZsNmPp0qWi7Uydaavff/89UlNTRakjMTHR4ZO7qamponxuLf5xgR0QEIAqVaq4uwynHTt2DK1bt8bmzZtx6NAhPPfcc+jRowd+/fVXh9d55coVh0MBKA6oDRs2OLx9C0EQsHr1aod7HgqFAqtWrXK6DgD45ptvHD6JaTKZ8M0334hSx7p16xwOBZPJhKSkJGRmZjpdx86dO60nGR2RmZmJQ4cOOV3H33//jd9++82ptrpx40an6zAajVi3bp3DOyGFQoG1a9c6XYeFZAN769ataNGiBUJDQ1GrVi107twZhYWFDxwSyc/Px6BBgxAeHo7o6Gh8/fXX6NixI9577z3rPI0aNcIXX3yBIUOGoFq1amjYsCG+//57ZGVloWfPnqhWrRri4uJw5swZ6zLZ2dkYMGAAYmJiEBYWhhYtWmDTpk021Z6VlYV69eph5syZ1mknT560nkACir8pjBkzBrGxsahXrx4++ugj1K1b16mepbM9DplMJkqvJT8/H4WFhQ4vbzKZkJKS4nQdAHDjxg2HQwEoDihnlre4efOmU+sRBAHp6elO15Gamur0sXAx2oizh5rkcrkoh6tyc3NLXN5pL5PJhOvXrztdh4UkA1uj0WDgwIF4/fXXcerUKXz//ffo1KlTqcfc3n//fZw8eRLr16/Htm3bcPz48VJ7qQkJCWjRogWOHDmC+Ph4DBkyBEOGDEGPHj1w+PBhREVFYejQodZt6HQ6NGnSBJs2bcKJEyfQv39/DBkyBL/88ssj669atSoSEhIwbdo0nDlzBvn5+Rg8eDCGDBmCVq1albqM5RhhYGCgfW/WPfR6vcPLAsWh4Ow6AMBgMDi9Dp1O5/Q6AOdrEQRBlEMAer3e6eAX42+j1+udugJHJpN5RBsRq62KsQ6x2iog0RtnNBoNjEYjOnfujMjISABAw4YNH5gvPz8fa9euRWJiojUIFyxYgJiYmAfmjY+Px8CBAwEA//3vf5GYmIinnnoKr7zyCgBgzJgxaNeuHTIzMxEWFoaIiAiMHj3auvywYcOQlJSELVu2oGnTpo/8HTp06IB+/frhzTffRJMmTeDr64uPP/64zPnnzZuHgoICdOvW7ZHrLouzh4pkMpkoh5vUarXT6xDrrsMqVaogIyPD4eV9fHzg5eUlSh1lXdtrzzrEqMOZGgRBEK0OZznTuRGzDjHvkJVkD/uJJ55Aq1atEBcXh759+2LlypXIycl5YL5r167BYDAgNjbWOi0gIKDUu5AaNWpk/X/LZUn37gQs027dugWg+KvOjBkz0KJFC0RGRqJatWpISkqy62vY1KlTYTQasXXrVixbtgze3t6lzrdx40ZMnz4d//vf/xASEmLz+u/XqFEjpxqx0WhE69atHV7eQqVSoWXLlg5/9ZbL5Wjfvr3TdQDFO05H61AoFGjTpo0odbRt29apoIyIiECdOnWcrqNNmzZ2XR1yP4VCgZYtWzpdx5NPPmnzpW6lEautVq5cGc2aNXP4PIdMJkO7du2crsNCkoGtUCiwbds2fPvtt4iJicHixYsRGxuLa9euObzOe0/4WL4SqlSqB6ZZvrbOnTsXCxcuxJgxY7Br1y4cPXoUbdu2tesr1NWrV6HRaGA2m8s8Jrt582aMGjUKK1eudLoBent7Y9CgQQ4HVEREBOLj452qwWLo0KEOB5RMJkP//v1FqWPgwIEO12EymUS7mahz584O70zlcjmGDRsmynXYMTExeOaZZxxal1KpROfOnUUZyqBSpUro37+/Q3XIZDJERUWVeXjRXkOHDnX4cJVSqRT1LmFJBjZQ/Edp0aIFJk2ahKNHj8LLyws7d+4sMU/t2rWhUqlKnCzMy8vDpUuXnN7+iRMn8NJLL6Fnz5544oknEBUVZdd69Xo9Bg8ejG7duuGDDz7AyJEjrb13i02bNmH48OFYvnw5XnjhBadrBoABAwY41IMSMxQAoGPHjggNDbW756JQKNC5c2eEhYWJUkedOnXQtm1bu38vhUKB2rVr4/nnnxelDsvO1JGenEKhwOuvvy5KHUDx4T1HdmJGo1HUu2EHDhzocFAOHTpUtLthu3TpgsDAQIfaavfu3XlI5NSpU5g5cybOnDmDGzduYPv27cjKynpgcCB/f3/07t0bkydPxuHDh/HXX39h5MiRkMvlTv8x69atiwMHDuDkyZNITk7G22+//UDgPswnn3wCrVaLL774AmPHjkW9evVK3L23ceNGDB06FFOnTkXTpk2RkZGBjIwM5OXlOVV3zZo18cUXX9i1jEKhwNNPP4233nrLqW3fS6VSYcWKFZDJZDb/LRQKBUJDQzFjxgzR6gCAOXPmICAgwObQtoxbsXz5clHHNRk/fjwaNmxo985j/vz5qFq1qmh1dO7cGf/5z3/s+t1kMhmGDx+Of//736LVUbduXXz22Wd2LaNQKPDss8/izTffFK0Ob29vLF++HADsaqsRERF230H7KJIMbLVajWPHjuHVV1/FU089hU8//RRTp04t9ev6559/jmbNmuE///kPOnfujObNm6N+/frw8fFxqoZ33nkH//rXv/DKK69Ye4svvfSSTcseOXIECxYswJIlS6BWqyGXy7FkyRIcP34cy5YtAwCsXLkSRqMR48ePR3R0tPXfvZcjOmrIkCHW8SoeFQ5yuRxNmzbFhg0byjzG7qhnn30Wa9asgUqlemQdCoUC4eHh2Llzp+ijB9aqVQs7d+5EcHDwI+tQKpXw8fHBpk2bbDq5bA9fX19s3boVDRs2fGRYKhQKyGQyfPXVV+jdu7eodchkMixYsACdO3e2/lwWS50DBgwQPZwAYOTIkZg0aRKAR7dVmUyGuLg4rF27VpQTwfdq27Yt/ve//0GpVNrUVmvUqIGdO3c6dc6pNBVuLJHCwkI0aNAAU6dORd++fd1djlvt3bsXs2bNwrFjx6BUKiEIAgRBgFwuh9FotA5bOWrUKNHD+l7nz5/Hl19+iR07dli3bzabrXX4+vqib9++mDBhgugfgHulpaXhq6++wurVq1FUVASFQmGtw/Lfbt264Z133in1SiOxFBYWYu7cuVi2bBmysrKgVCphNputwWkymdC6dWuMHz8ezz33nMvqMJvNWLFiBRISEnDp0iVrGwGKw9FoNKJRo0YYPXo0evTo4dIhZ3fv3o3Zs2fjxIkTpbbViIgIDBs2DMOHDxc9rO919uxZzJw5E7t27bJ+O7y3rarVavTr1w/jxo2z61AIB3/6P7/++isuXLiA2NhYaLVazJgxA0ePHsW5c+fcMiC9J0pOTsb69euRmpoKvV6PwMBAtG/f3qkrKByh0Wiwdu1aXLp0CXfu3IFarUazZs3QvXt30UfFe5j8/Hxs3LgR586dg1arhZ+fH2JiYtC7d29RDz08isFgwM6dO3H48GHk5OTA29sbNWrUQO/evVG3bt1yq0MQBBw7dsx66FEmkyEsLAzdunVDbGxsuT7E4M8//8TGjRuRlpYGg8GAwMBAxMfHo3379uXaVtPS0rBmzRpcuXLF+gCD5s2bo1u3bg49xICB/X9+/fVXjBo1ChcvXoRKpUKTJk3w+eefl3rdtlhu3LiBp59+uszXf/75Z5eNYUxE0sPAdiOj0fjQ21Fr1arllsdvEZFnYmATEUmE6IFNRETuJcnL+oiIKiIGNhGRRDCwiYgkgoFNRCQRDGwiIolgYBMRSQQDm4hIIhjYREQSwcAmIpIIBjYRkUQwsImIJIKBTUQkEQxsIiKJYGATEUkEA5uISCL+H0gCnm/wpEwwAAAAAElFTkSuQmCC",
- "text/plain": [
- "