diff --git a/doc/examples/README.md b/doc/examples/README.md new file mode 100644 index 0000000..85a3b2d --- /dev/null +++ b/doc/examples/README.md @@ -0,0 +1 @@ +These notebooks need to be run to see the output. Pre-computed output can be viewed in the documentation, at https://petab-select.readthedocs.io/en/stable/examples.html diff --git a/doc/examples/example_cli_famos.ipynb b/doc/examples/example_cli_famos.ipynb index a1527c7..b5895ac 100644 --- a/doc/examples/example_cli_famos.ipynb +++ b/doc/examples/example_cli_famos.ipynb @@ -22,7 +22,7 @@ }, { "cell_type": "code", - "execution_count": 1, + "execution_count": null, "id": "1f04dce0", "metadata": {}, "outputs": [], @@ -44,7 +44,7 @@ }, { "cell_type": "code", - "execution_count": 2, + "execution_count": null, "id": "a81560e6", "metadata": {}, "outputs": [], @@ -109,83 +109,10 @@ }, { "cell_type": "code", - "execution_count": 3, + "execution_count": null, "id": "bb1a5144", "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Executing iteration 1\n", - "Executing iteration 2\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "petab_select/petab_select/candidate_space.py:1143: RuntimeWarning: Model `model_subspace_1-1100110111000111` has been previously excluded from the candidate space so is skipped here.\n", - " return_value = self.inner_candidate_space.consider(model)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Executing iteration 3\n", - "Executing iteration 4\n", - "Executing iteration 5\n", - "Executing iteration 6\n", - "Executing iteration 7\n", - "Executing iteration 8\n", - "Executing iteration 9\n", - "Executing iteration 10\n", - "Executing iteration 11\n", - "Executing iteration 12\n", - "Executing iteration 13\n", - "Executing iteration 14\n", - "Executing iteration 15\n", - "Executing iteration 16\n", - "Executing iteration 17\n", - "Executing iteration 18\n", - "Executing iteration 19\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "petab_select/petab_select/candidate_space.py:1143: RuntimeWarning: Model `model_subspace_1-0001011010010010` has been previously excluded from the candidate space so is skipped here.\n", - " return_value = self.inner_candidate_space.consider(model)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Executing iteration 20\n", - "Executing iteration 21\n", - "Executing iteration 22\n", - "Executing iteration 23\n", - "Executing iteration 24\n", - "Executing iteration 25\n", - "Executing iteration 26\n", - "Executing iteration 27\n", - "Executing iteration 28\n", - "Executing iteration 29\n", - "Executing iteration 30\n", - "Executing iteration 31\n", - "Executing iteration 32\n", - "Executing iteration 33\n", - "Executing iteration 34\n", - "Executing iteration 35\n", - "Executing iteration 36\n", - "Executing iteration 37\n", - "Model selection has terminated.\n" - ] - } - ], + "outputs": [], "source": [ "%%bash -s \"$petab_select_problem_yaml\" \"$output_path_str\"\n", "petab_select_problem_yaml=$1\n", @@ -231,7 +158,7 @@ }, { "cell_type": "code", - "execution_count": 4, + "execution_count": null, "id": "93caf071", "metadata": {}, "outputs": [], @@ -241,7 +168,7 @@ }, { "cell_type": "code", - "execution_count": 5, + "execution_count": null, "id": "cb61d0f7", "metadata": {}, "outputs": [], diff --git a/doc/examples/visualization.ipynb b/doc/examples/visualization.ipynb index b0a9904..16bd485 100644 --- a/doc/examples/visualization.ipynb +++ b/doc/examples/visualization.ipynb @@ -22,7 +22,7 @@ }, { "cell_type": "code", - "execution_count": 1, + "execution_count": null, "id": "ca6ce5b4", "metadata": {}, "outputs": [], @@ -40,155 +40,10 @@ }, { "cell_type": "code", - "execution_count": 2, + "execution_count": null, "id": "54532b75-53e4-4670-8e64-21e7adda0c0e", "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
 model_idmodel_hashCriterion.NLLHCriterion.AICCriterion.AICCCriterion.BICiterationpredecessor_model_hashestimated_parameters
0M_0-000M_0-00017.487615None37.975230None1virtual_initial_model-{'sigma_x2': 4.462298422134608}
1M_1-000M_1-000-4.087703None-0.175406None2M_0-000{'k3': 0.0, 'sigma_x2': 0.12242920113658338}
2M_2-000M_2-000-4.137257None-0.274514None2M_0-000{'k2': 0.10147824307890803, 'sigma_x2': 0.12142219599557078}
3M_3-000M_3-000-4.352664None-0.705327None2M_0-000{'k1': 0.20160925279667963, 'sigma_x2': 0.11714017664827497}
4M_5-000M_5-000-4.352664None9.294673None3M_3-000{'k1': 0.20160925279667963, 'k3': 0.0, 'sigma_x2': 0.11714017664827497}
5M_6-000M_6-000-5.073915None7.852170None3M_3-000{'k1': 0.20924804320838675, 'k2': 0.0859052351446815, 'sigma_x2': 0.10386846319370771}
6M_7-000M_7-000-6.028235None35.943530None4M_3-000{'k1': 0.6228488917665873, 'k2': 0.020189424009226256, 'k3': 0.0010850434974038557, 'sigma_x2': 0.08859278245811462}
\n" - ], - "text/plain": [ - "" - ] - }, - "execution_count": 2, - "metadata": {}, - "output_type": "execute_result" - } - ], + "outputs": [], "source": [ "models.df.style.background_gradient(\n", " cmap=matplotlib.colormaps.get_cmap(\"summer\"),\n", @@ -206,7 +61,7 @@ }, { "cell_type": "code", - "execution_count": 3, + "execution_count": null, "id": "09c9df1d", "metadata": {}, "outputs": [], @@ -246,21 +101,10 @@ }, { "cell_type": "code", - "execution_count": 4, + "execution_count": null, "id": "96d99572-f74d-4e25-8237-0aa158eb29f6", "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAWwAAAFsCAYAAADon4O5AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAABBqUlEQVR4nO3deVhUZf8/8PdsgAKDgCyioqiIpflkaMqTlSuW5ZLW41auueSWW/WYWVmZWuYa7qhP7ku5Z6m4m5q5lG24iwIDgsAAyqzn9wffmZ8o6CxnmDnxfl2XV3HmLB+Ge97nnrPcRyYIggAiIvJ4cncXQEREtmFgExFJBAObiEgiGNhERBLBwCYikggGNhGRRDCwiYgkgoFNRCQRDGwiIolgYBMRSQQD2w2mT58OmUyGMWPGWKcVFRVhxIgRCA4Ohp+fH7p3746MjAyb1ykIArRaLTjSANE/FwO7nJ06dQqLFy9G48aNS0wfO3YsduzYgU2bNuHQoUNIS0tDt27dbF5vfn4+AgICkJ+fL3bJROQhGNjlqKCgAH369MHSpUsRGBhonZ6Xl4fExETMmjULbdq0QWxsLFasWIGffvoJJ06ccGPFRORJlO4uoCIZMWIEXnrpJbRr1w6fffaZdfrp06dhMBjQrl0767QGDRogMjISx48fR4sWLR5Yl06ng06ns/6s1WoBAAaDAQaDwYW/BRGJTaVS2TQfA7ucrF+/HmfOnMGpU6ceeE2j0cDLywtVqlQpMT0sLAwajabU9U2bNg1Tpkx5YPqePXtQuXJlUWomovLRpUsXm+ZjYJeDGzdu4O2338bevXvh4+MjyjonTpyIcePGWX/WarWoWbMm4uPjoVarRdkGEXkWBnY5OH36NDIzM/HUU09Zp5lMJhw+fBhff/01fvzxR+j1euTm5pboZWdkZCA8PLzUdXp7e8Pb2/uB6SqVyuavV0QkLQzsctC2bVucP3++xLQBAwagQYMGeO+991CzZk2oVCokJSWhe/fuAIDk5GSkpKQgLi7OHSUTkQdiYJcDf39/NGrUqMQ0X19fBAcHW6cPGjQI48aNQ1BQENRqNUaNGoW4uLhSTzgSUcXEwPYQs2fPhlwuR/fu3aHT6dChQwcsWLDA3WURVXgpKSnIyspyah1Vq1ZFZGSk07XI+BDefwatVouAgADk5eXxpCORSFJSUhATE4OioiKn1uPj44Pk5GSnQ5s3zhARlSErK8vpsAaKh55wtpcOMLCJiCSDgU1EJBEMbCIiiWBgExFJBAObiEgiGNhERBLBwCYikgje6UhEHsmT7jD0FAxsIvI4nnaHoafgIREi8jiedoehp2BgExFJBAObiEgiGNhERBLBwCYikggGNhGRRDCwiYgkgoFNRCQRDGwiIolgYBMRSQQDm4hIIhjYREQSwcAmIpIIBjYRkUQwsImIJIKBTUQkEQxsIiKJYGATEUkEA5uISCIY2EREEsHAJiKSCAY2EZFEMLCJiCSCgU1EJBEMbCIiiWBgExFJBAObiEgiGNhERBLBwC4HCxcuROPGjaFWq6FWqxEXF4fdu3dbXy8qKsKIESMQHBwMPz8/dO/eHRkZGW6smIg8EQO7HNSoUQPTp0/H6dOn8csvv6BNmzbo0qUL/vjjDwDA2LFjsWPHDmzatAmHDh1CWloaunXr5uaqicjTKN1dQEXQqVOnEj9PnToVCxcuxIkTJ1CjRg0kJiZi7dq1aNOmDQBgxYoVeOyxx3DixAm0aNHCHSUTkQdiYJczk8mETZs2obCwEHFxcTh9+jQMBgPatWtnnadBgwaIjIzE8ePHywxsnU4HnU5n/Vmr1QIADAYDDAaDa38JIhczGo2irsvRz0R51aFSqWxaBwO7nJw/fx5xcXEoKiqCn58ftmzZgscffxznzp2Dl5cXqlSpUmL+sLAwaDSaMtc3bdo0TJky5YHpe/bsQeXKlcUun6hcXb58WbR1HT16FOnp6R5dR5cuXWxaBwO7nMTExODcuXPIy8vD5s2b0a9fPxw6dMjh9U2cOBHjxo2z/qzValGzZk3Ex8dDrVaLUTKR25w9e1a0dbVs2RJNmjSRdB0WDOxy4uXlhXr16gEAYmNjcerUKcydOxc9evSAXq9Hbm5uiV52RkYGwsPDy1yft7c3vL29H5iuUqls/npF5KmUSvGiSalUOvyZ8JQ6LHiViJuYzWbodDrExsZCpVIhKSnJ+lpycjJSUlIQFxfnxgqJyNOwh10OJk6ciBdffBGRkZHIz8/H2rVrcfDgQfz4448ICAjAoEGDMG7cOAQFBUGtVmPUqFGIi4vjFSJEVAIDuxxkZmaib9++SE9PR0BAABo3bowff/wR7du3BwDMnj0bcrkc3bt3h06nQ4cOHbBgwQI3V01EnoaBXQ4SExMf+rqPjw8SEhKQkJBQThURkRTxGDYRkUQwsImIJIKBTUQkEQxsIiKJYGATEUkEA5uISCIY2EREEsHAJiKSCAY2EZFEMLCJiCSCgU1EJBEMbCIiiWBgExFJBAObiEgiGNhERBLBwCYikggGNhGRRDCwiYgkgoFNRCQRDGwiIolgYBMRSQQDm4hIIhjYZZg2bRqWL1/+wPTly5djxowZbqiIiCo6BnYZFi9ejAYNGjwwvWHDhli0aJEbKiKiio6BXQaNRoNq1ao9MD0kJATp6eluqIiIKjoGdhlq1qyJY8eOPTD92LFjiIiIcENFRFTRKd1dgKcaPHgwxowZA4PBgDZt2gAAkpKS8O6772L8+PFuro6IKiIGdhneeecdZGdnY/jw4dDr9QAAHx8fvPfee/jvf//r5uqIqCJiYJdBJpNhxowZmDx5Mv766y9UqlQJ0dHR8Pb2dndpRFRB8Rj2ffbv34/HH38cWq0WAODn54dmzZqhUaNGKCoqQsOGDXHkyBE3V0lEFRED+z5z5szB4MGDoVarH3gtICAAQ4cOxaxZs9xQGRFVdAzs+/z666944YUXynw9Pj4ep0+fLseKiIiKMbDvk5GRAZVKVebrSqUSt27dKseKiIiKMbDvU716dfz+++9lvv7bb7+VekMNEZGrMbDv07FjR0yePBlFRUUPvHb37l189NFHePnll91QGRFVdLys7z4ffPABvvvuO9SvXx8jR45ETEwMAODvv/9GQkICTCYTJk2a5OYqiagiYmDfJywsDD/99BPeeustTJw4EYIgACi+LrtDhw5ISEhAWFiYm6skooqIgV2KWrVq4fvvv0dOTg4uXboEQRAQHR2NwMBAd5dGRBUYj2E/RGBgIJo1a4ann37aqbCeNm0amjVrBn9/f4SGhqJr165ITk4uMU9RURFGjBiB4OBg+Pn5oXv37sjIyHD2VyCifxAGdjk4dOgQRowYgRMnTmDv3r0wGAyIj49HYWGhdZ6xY8dix44d2LRpEw4dOoS0tDR069bNjVUTkafhIZH72BqS3333nc3r/OGHH0r8vHLlSoSGhuL06dN47rnnkJeXh8TERKxdu9Y6MuCKFSvw2GOP4cSJE2jRosUD69TpdNDpdNafLbfSGwwGGAwGm2sj8kRGo1HUdTn6mSivOh5278e9GNj3CQgIcPk28vLyAABBQUEAgNOnT8NgMKBdu3bWeRo0aIDIyEgcP3681MCeNm0apkyZ8sD0PXv2oHLlyi6qnKh8XL58WbR1HT161OGHjpRXHV26dLFpHQzs+6xYseKR8zzsxppHMZvNGDNmDJ555hk0atQIQPHTbby8vFClSpUS84aFhUGj0ZS6nokTJ2LcuHHWn7VaLWrWrIn4+PhSx0EhkpKzZ8+Ktq6WLVuiSZMmkq7DgoFto/z8fKxbtw6JiYn45ZdfYDKZHFrPiBEj8Pvvv+Po0aNO1ePt7V3qUK8qlcrmr1dEnkqpFC+alEqlw58JT6nDgicdH+Hw4cPo168fqlWrhpkzZ6J169Y4ceKEQ+saOXIkdu7ciQMHDqBGjRrW6eHh4dDr9cjNzS0xf0ZGBsLDw50pn4j+QdjDLoVGo8HKlSuRmJgIrVaL//znP9DpdNi6dSsef/xxu9cnCAJGjRqFLVu24ODBg4iKiirxemxsLFQqFZKSktC9e3cAQHJyMlJSUhAXFyfK70RE0sce9n06deqEmJgY/Pbbb5gzZw7S0tIwf/58p9Y5YsQIrF69GmvXroW/vz80Gg00Gg3u3r0LoPhE56BBgzBu3DgcOHAAp0+fxoABAxAXF1fqCUciqpjYw77P7t27MXr0aLz11luIjo4WZZ0LFy4EALRq1arE9BUrVqB///4AgNmzZ0Mul6N79+7Q6XTo0KEDFixYIMr2ieifgYF9n6NHjyIxMRGxsbF47LHH8MYbb6Bnz55OrdMyHsnD+Pj4ICEhAQkJCU5ti4j+uXhI5D4tWrTA0qVLkZ6ejqFDh2L9+vWIiIiA2WzG3r17kZ+f7+4SiaiCYmCXwdfXFwMHDsTRo0dx/vx5jB8/HtOnT0doaCg6d+7s7vKIqAJiYNsgJiYGX3zxBW7evIn169eXGAOEiKi88Bi2jSw3zixbtowP4SUit2AP+xHuvXFm0qRJqFmzprtLIqIKioFdCo1Gg+nTpyM6OhodO3aE0WjExo0bkZ6eXuqAS0RE5YGHRO7TqVMnJCUloXXr1vj444/RtWtX+Pr6Wl+XyWRurI6IKjIG9n127dqF3r17Y8yYMWjatKm7yyEisuIhkfv89NNPqFSpEtq0aYOYmBh88sknoo6JS0TkKAb2fe69cea9997Dnj17UL9+fbRo0QLz58/ncxaJyG0Y2GW498aZP//8E8899xw+//zzEk+FISIqTwxsG9x748x3332Hl156yd0lEVEFxMC2g0KhQNeuXbF9+3Z3l0JEFRADm4hIIhjYREQSwcAmIpIIBjYRkUQwsImIJIKBTUQkEQxsIiKJYGATEUkEA5uISCIY2EREEsHAJiKSCAY2EZFEMLCJiCSCgU1EJBEMbCIiiWBgExFJBAObiEgiGNhERBLBwCYikggGNhGRRDCwiYgkgoFNRCQRDGwiIolgYBMRSQQDuxwcPnwYnTp1QkREBGQyGbZu3VridUEQ8OGHH6JatWqoVKkS2rVrh4sXL7qnWCLyWAzsclBYWIh//etfSEhIKPX1L774AvPmzcOiRYtw8uRJ+Pr6okOHDigqKirnSonIkyndXUBF8OKLL+LFF18s9TVBEDBnzhx88MEH6NKlCwDgm2++QVhYGLZu3YqePXuWZ6lE5MEY2G529epVaDQatGvXzjotICAAzZs3x/Hjx8sMbJ1OB51OZ/1Zq9UCAAwGAwwGg2uLpn+slJQUZGdnO72e4OBgREZGOry80Wh0uoZ71+XoZ6K86lCpVDatg4HtZhqNBgAQFhZWYnpYWJj1tdJMmzYNU6ZMeWD6nj17ULlyZXGLpArh1q1bGD58uCg7fJVKhQULFiAkJMSh5S9fvux0DRZHjx5Fenq6R9dh+Xb9KAxsiZo4cSLGjRtn/Vmr1aJmzZqIj4+HWq12Y2UkVWfPnhXt25nBYEDjxo3RpEkTh2sRS8uWLSVfhwUD283Cw8MBABkZGahWrZp1ekZGBp588skyl/P29oa3t/cD01Uqlc1fr4jupVSKGwdKpdLhtihmLf+EOix4lYibRUVFITw8HElJSdZpWq0WJ0+eRFxcnBsrIyJPwx52OSgoKMClS5esP1+9ehXnzp1DUFAQIiMjMWbMGHz22WeIjo5GVFQUJk+ejIiICHTt2tV9RRORx2Fgl4NffvkFrVu3tv5sOfbcr18/rFy5Eu+++y4KCwsxZMgQ5ObmomXLlvjhhx/g4+PjrpKJyAMxsMtBq1atIAhCma/LZDJ88skn+OSTT8qxKvIkKSkpyMrKcmodVatWdepSOvJ8DGwiN0tJSUFMTIzTd7b6+PggOTmZof0PxpOORG6WlZUlyjAERUVFTvfSybMxsImIJIKBTUQkEQxsIiKJYGATEUkEA5uISCIY2EREEsHAJiKSCAY2EZFEMLCJiCSCgU1EJBEMbCIiiWBgExFJBAObiEgiGNhERBLBwCYikggGNhGRRDCwiYgkgoFNRCQRDGwiIolgYBMRSQQDm4hIIhjYREQSwcAmIpIIBjYRkUQwsImIJIKBTUQkEQxsIiKJYGATEUkEA5uISCIY2EREEsHAJiKSCAY2EZFEMLCJiCSCgU1EJBEMbCIiiWBgExFJhNLdBdD/l5CQgC+//BIajQb/+te/MH/+fDz99NPuLusfLSUlBVlZWU6to2rVqoiMjBSpIqKyMbA9xIYNGzBu3DgsWrQIzZs3x5w5c9ChQwckJycjNDTU3eWJzhOCMiUlBTExMSgqKnKqDh8fHyQnJzO0yeUY2B5i1qxZGDx4MAYMGAAAWLRoEXbt2oXly5fjv//9r5urE5enBGVWVpbTNQBAUVERsrKyGNjkcgxsD6DX63H69GlMnDjROk0ul6Ndu3Y4fvx4qcvodDrodDrrz1qtFgBgMBhgMBjK3FZ6ejo0Go1T9YaHh6NatWoOL6/RaEQLSo1G43AtRqPR6RruXdfD3veKVocn1SKFOlQqlU3rkAmCIIhWETkkLS0N1atXx08//YS4uDjr9HfffReHDh3CyZMnH1jm448/xpQpUx6YnpeXB7Va7dJ6icg9eJWIRE2cOBF5eXnWf7m5ucjMzIS/v7+7SyMiF+EhEQ9QtWpVKBQKZGRklJiekZGB8PDwUpfx9vaGt7d3eZRHRB6CPWwP4OXlhdjYWCQlJVmnmc1mJCUllThEQkQVG3vYHmLcuHHo168fmjZtiqeffhpz5sxBYWGh9aoRIiIGtofo0aMHbt26hQ8//BAajQZPPvkkfvjhB4SFhbm7NCLyELxKhIhIIngMm4hIIhjYREQSwcAmIpIIBjYRkUQwsImIJIKBTUQkEQxsIiKJYGATEUkEA5uISCIY2EREEsHAJiKSCAY2EZFEMLCJiCSCgU1EJBEMbCIiiWBgExFJBAObiEgiGNhERBLBwCYikggGNhGRRPCp6WQlCAIEQYBc7p79+J9//olly5YhOTkZ+fn5CAoKQosWLTBw4ECEhoa6pSaz2ey290Or1WL16tVISkpCVlYWKlWqhNq1a6N///5o3rw5ZDJZuddkeWa3u7Z98OBBrF69Gjdv3oRer0dISAhefPFF9OzZE5UqVXJLTeX5meFT0ys4o9GI7Oxs3L59GwaDAQAgl8uhVqtRtWpVVK5c2eU1HDp0CJMnT8aRI0egVCphNBoBFIeCTCaDXC7Ha6+9hs8//xy1a9d2aS2CIECr1SI7OxuFhYXWgKpUqRKCg4NRpUoVl384s7OzMXnyZKxcuRJFRUXWugBY358nnngCH374IV599VWX1gIARUVFyM7ORm5uLkwmk7WOwMBABAcHw8vLy6XbFwQBK1euxLRp03Dx4sUSbUQul8NsNkOtVmPIkCH46KOP4Ofn59J6TCYTcnNzkZ2dbf37yGQy+Pn5ITg4GGq12mXbZmBXYBkZGcjMzMTDmoCvry9q1aoFpdI1X8ZWrlyJQYMGASjuzZZFqVRCrVZj7969eOqpp1xSy927d3Ht2jXrjqs0CoUCNWvWdNmH8vr162jbti2uXbtmDcfSyGQyCIKAjz/+GB999JFLajGbzbhx4wby8vIeOl9QUBCqV6/ukl632WzG6NGjkZCQYP2dy6JQKNCoUSPs2bPHZd/IcnJykJqa+tC26u3tjdq1a8Pb21v07TOwK6i0tDRkZWXZNK+3tzfq1asHhUIhag3btm3DK6+88tAP4b0UCgXUajVOnTqFunXrilrLnTt3cOXKlYd+EC1kMhkiIyMREBAgag23b9/G008/jevXr1t7kLaYPXs2xowZI2otgiDgypUrKCwstGl+tVrtkm8/kyZNwueff27z/EqlEo0bN8aRI0dE/3Z4+/Zt3Lx506Z5FQoF6tWrJ3po86SjG7Vq1Ur0D5otcnNzbQ5rANDpdEhJSRG1Bp1OhwEDBti1jMlkglarFf09M5vNuHbtmk1hDRSHWUpKCvR6vah1fPbZZ7h27ZpdYQ0AEyZMQGpqqqi1pKWl2RzWQPHx9oyMDFFr+P333+0Ka6D4EN+5c+cwb948UWu5e/euXe+xyWTC1atXbe6M2IqB7aGWLl2KZ599FoGBgQgMDES7du3w888/i7LuW7du2b1Mfn4+dDqdKNsHgM2bNyMnJ8fuBm0ymbBr1y5cv35dtFpycnLsDklBEJCdnS1aDXfu3MGyZcseehjkYbUsW7ZMtFpMJhNycnLsXi47O1vUgFq4cKFDh+LMZjO+/vprh97LsmRlZdn9u+n1emi1WtFqABjYHuvgwYPo1asXDhw4gOPHj6NmzZqIj493uid1584d3L1716FlxQyo+fPnO3zyTi6XY8mSJaLV4ujvdfv2bdECav369cjPz3doWbPZjAULFjz02Ls9cnJybP62cS+j0fjI4922ys/Px4oVK+zekVqkpqZi9+7dotRiNBqRm5vr0LJifmYABrZH2bVrFwICArBmzRqsWbMGw4cPx5NPPokGDRpg2bJlMJvNSEpKcmobjoYCANF6CwaDASdPnnQoFIDiHuC+fftEqUWv11vP9DtShz2HDR7m0KFDTp0jyMzMxOXLl0WpxZm/s1ht5OzZsw53LABApVLh0KFDotRSUFDg8I65oKDA4XZeGga2h1i7di169eqFNWvWoE+fPg+8fufOHRgMBgQFBTm1HUd7LABE+4opRi/Mka/spXH2dxLrPbn3kjln1iEGZ+rwlDYiCMI/ro0ADGyPkJCQgOHDh2PHjh14+eWXS53nvffeQ0REBNq1a+fUtpy5hlisy7Z8fHycXodYN0k4e021mO+Js7V4wnsi1jXqzrYRmUzmEe+HGMvfi3c6utnmzZuRmZmJY8eOoVmzZqXOM336dKxfvx4HDx50uiE7s7wYQQsUX9sdGBjocA9IqVQiOjpalFpUKpX15gtHiPWeREVFOVWHXC5HjRo1RKnF29vb4UM9Yl3G5uwlgiaTCVFRUaLU4szvpFKpRL0clj1sN2vSpAlCQkKwfPnyUo+TzZw5E9OnT8eePXvQuHFjp7cXEBDgcANy9nCMhUwmw+DBgx2uw2g04s033xSlFrlcjsDAQIeW9fPzE+0uvwEDBjh8uEqpVKJLly4IDg4WpRZn1iNWG4mOjsa///1vh9uIXC7H66+/LkotlStXdri3Ltb7YcHAdrO6deviwIED2LZtG0aNGlXitS+++AKffvopfvjhBzRt2lSU7TkaUCqVStQbRYYOHepwbzIyMhLx8fGi1eJoQFWtWlW0GmJiYtC6dWuHAspoNGLkyJGi1VKpUiWHbjpRq9Wi3qY+atQoh47/KpVKvPbaa6Le7ehIG5HJZAzsf6L69evjwIED+Pbbb603hcyYMQOTJ0/G8uXLUbt2bWg0Gmg0GhQUFDi9vdDQULs/WGLfelynTh306dPHoeN7H3/8sajHBX18fOwOX7VaLfrt6ZMnT7Z7J6ZQKNCiRQu0bt1a1FqqV69u13usUChQrVo1UWvo1q0bYmJi7LoW2zL+zDvvvCNqLYGBgfD19bVrmfDwcKhUKlHrYGB7iJiYGOzfvx/r1q3D+PHjsXDhQuj1erz66quoVq2a9d/MmTOd3pZSqUSdOnVsOjYnk8lcNnbG0qVLERcXZ1cwvPPOO3bfIWmLiIgIm3tRarUakZGRotfQunVrLFiwwOb5FQoFatWqhe3bt4s+jodlZEBbevxKpRJRUVGi34bt5eWFH3/8EcHBwTaFtiWs16xZgyZNmohai0wmQ+3atW0O7dDQUISEhIhaA8CxRCo0k8mErKysEiP1WchkMgQEBCAkJMSlw1bevXsX/fr1w6ZNm0qMwnYvuVwOmUyGqVOn4t1333Xp0J55eXnIysoq9aSbZcS+wMBAl9awdu1avPnmmw+M1GdheZ+eeeYZbN26VdRDM/fT6XTIysoq9WYahUKBwMBAhISEiN6TvNeNGzfw8ssv47fffiu1jVhO1vr7+2P9+vXo2LGjy2qx3OGanZ1d6p2//v7+qFq1Kvz9/V2yfQY2QRCEEreeWwZZctUIfaU5f/48Fi5ciJUrV5a4YSI8PBwjRozAm2++ifDw8HKrp6ioCIWFhTCZTJDL5ahcuXK5DDVrkZeXh2+++Qbz5s3DpUuXrNMtx2dHjBiBf//73+U2LrVlHBdLWKpUKqjV6nIbB9psNmP//v34+uuvsWPHjhI7j0aNGuHtt99Gr1697D5s4YyCggIUFRXBbDZDoVDA39/f5UPNMrDJo9y9excajQaFhYUICAhARESE6KMESokgCEhPT0dubi68vb0RFhbm8vGePV1eXh4yMzOtN5KFhYW55YEK7sDAJiKSCJ50JCKSCAY2EZFEMLCJiCSCgU1EJBEMbCIiiWBgExFJBAObiEgiGNhERBJh873HzjwLkIiIymbr2CPsYRMRSQQDm4hIIvhMR6L7GAwGfP/99zhz5gzy8/Ph6+uLBg0a4JVXXinXEfs8yZ9//okdO3YgKysLMpkMYWFh6Nq1K+rWrVuudaSlpeHbb79FamoqjEYjAgMDER8fj6ZNm1aIAaBsHvyJx7D/mQRBgFarRU5ODvR6PYDi8YUDAgIQGBhYrkOsFhYW4vbt29YhK+VyOfz8/BAUFCT64PiluX37NhYtWoRly5YhKyurxBjPBoMBfn5+6Nu3L0aOHCnaA28fxmAwICcnB1qt1jrMq5eXFwIDA13yQIn7CYKA7du3IyEhASdOnIBCobAOp2o2m2EymdC6dWuMHDkS7du3d2ktJ0+exNy5c/H9998DgHUER0EQYDQa0ahRI7z11lvo3bt3uYzuWFBQgJycnBJt1d/fH0FBQQ4NsWrrMWwGdgWWm5uLjIyMBx5eYCGTyRAYGIhq1aq5tPdy584dpKamljogvIWfnx9q1Kjhsh3I1atX0blzZ9y4ceOhj+myjBX+7bffivaczfuZzWakpaUhLy+v1AczA8VPYwkPD3dZcJtMJkyYMAGJiYlQKBRlPlvR8tq7776LSZMmuaSdLF26FBMmTIBCoSjzQcWWhxh06tQJiYmJoj3N/n62tFV/f3/UqFHDrh0HA5seKjs7G+np6TbN6+vri9q1a7vkw1hQUICUlBSbnmXo5eWFqKgo0Z9ukpGRgeeffx4ZGRk2PfRVoVDAx8cH+/fvx2OPPSZqLWazGVevXi3xEIeyyGQyREREOPzU97IIgoB33nkHS5cuLXOHUZpJkybhvffeE7WWVatWYcSIETbPL5fL0bFjR6xatUr0nnZ+fj5SUlJsek+8vb0RFRVlcweDV4lIQMeOHUVv4LYoKCiwOayB4kMVaWlpotdhMBge2aO9l16vx/Xr10WvY+zYsTaHNVDc+ywqKkL//v3tCjRb3Lx506awBoqDNS0tDXfu3BG1hr1792LJkiV2/25Tp07F6dOnRavjxo0bGD16tF3LmM1m7Ny5E998841odQDFbe/GjRs2vyc6nc4lbZWB7aG2b9+O559/HjVr1kR4eDieeeYZrFu3TpR137p1y+5lcnNzyzx04qjs7GybQ9KiqKhI1G97N2/exK5du+yuw2Qy4a+//sKJEydEq0Wn00Gr1dq1jCAIyMrKEq0GAFi0aJFDvVOFQoFly5aJVseKFSscWk4mk2HhwoWi7kyzs7PtfqL93bt3UVBQIFoNAAPbYwUGBmLChAnYt28ffvrpJ/Tp0wfDhw/Hvn37nFqvTqcr9QGzjyIIAnJycpzatljru337tmh1rFixwuFDPUqlEkuWLBGtFkd/r/z8fNF2plevXkVSUpLdOzCgeCe2adMmZGdnO12HXq9HYmKiQ3UIgoC///4bJ0+edLoOoLjXnpub69CyYrZVgIHtUX744QfUqFEDGzZswLPPPotOnTohJiYGderUwfDhw9GoUSMcP37cqW3Y24O7V15enlPbvldBQYFDH0agOKDs7e2UZdeuXQ6vy2g0Yvfu3aLUATj+/lqu9BHD3r17nVper9fj0KFDTtdx9uxZpzoISqUSP/zwg9N1AMXtzZm2KmZPn4HtITZu3IhBgwZh6dKl6NGjR4nXBEHAwYMHcfHiRTzzzDNObaess+yuXlbsdYlVi7O9wTt37lgvh3SWo6EAiPd+3L592+mTdWJ8ExOjZypW79aZ99Zy2aFYeOOMB1iyZAk+/fRTbNiwAS1btrROz8vLQ4MGDaDT6aBQKDBr1iy0adPGbXV60o0JYtUixmWCnvBUd096PzxhHTKZTLS/i7PvrZifGwa2m23btg23bt3Cnj17EBsbW+I1f39/HD16FIWFhTh06BDef/991K5dG88++6zD23Pkon4LMS+nc6YOuVwu2vXYERERSEtLc/hra3BwsGjB4OXl9dDrex9GrL9NtWrVnO4RhoWFiVKHM8xms9PrsHCmrSoUClF36Dwk4maNGzdG1apVsXr16gdCQy6Xo27dumjcuDFGjRqFLl264KuvvnJqe1WqVHF4j1+lShWntn0vX19fh+9eDAgIEK3X0qtXL4fDWqFQoHfv3qLUAcDh66kVCgUCAgJEqeGll15yKqACAwPRunVrp+to2LAhoqOjHf47m0wmvPrqq07XARTftOXoe+LM5600DGw3i4qKws6dO7Fr1y5MmDDhofOazWanj5c6+uFWKBSi36ARFBTk0HLBwcGi1dCjRw9UqlTJoWVNJhMGDhwoWi2OfrgDAgKst4yLUUPPnj0d+gajUCgwaNAgUYYRkMlkGDZsmEM7U4VCgTZt2qBOnTpO12HhaNt3tI2XhYHtAaKjo7Fr1y5s377deiPNV199hf379+Pq1atITk7G/PnzsX79+gdOSDoiJCTE7q9poaGhooWCRWBgoN0f7ipVqoh627G/vz+GDBlid1AqFAp07NhR1MGPlEolQkJCXL7Mo7z11lt2B6VMJoNKpcKAAQNEq6NHjx4ICgqyu62aTCa7b7h5FEfGs3GkfT8KA9tDREdHY+fOndi8eTPef/99FBYWYty4cWjevDnat2+Pbdu2YenSpejXr5/T2/L29katWrVs/iCEhISI2qu1kMvlqF27ts2N2t/fH9WrVxe9jg8//BDPPfeczTskhUKBunXrYtGiRaLXEhoaanOvTKlUolatWqLfqt+wYUMsWLAAgG0nzORyOWQyGVatWoWaNWuKVodlzBalUmlXaH/88cein5xXKBSoVauWzYdG1Go1IiIiRK0B4FgiFZpOp0NGRkaZ14p6e3sjJCRE1GPXpTGZTMjIyEBubm6p10SrVCoEBwejatWqLqvh7t27GDx4MLZv3w6lUlnqiTfLQEfNmjXDxo0bXbITs8jJyUFWVlapJyFlMhnUajXCwsKcOt78KJs3b8aQIUNgNpvLvFZdLpfD29sbq1evdtmIfb/88gteffVV6+WCpbVVhUIBs9mMadOmYfjw4S6pAyi+xC8zM7PMturl5YWgoCC72yoHfyKbGQwG5ObmQq/XQxAE63Hu8h772Ww2IycnBzqdrsTwqv7+/uVySaEgCDhy5AiWLFmCnTt3PvCBbNWqFYYOHYoOHTqU27CzBQUF1hs3ZDIZvL29UaVKlXLbfmpqKlasWIFly5Y9cF1zeHg4hg4dir59+4p+WOZ+eXl5WLduHRYtWoQrV66UeM3Pzw/9+/fHwIEDUa9ePZfWYWEymZCbm4uioiIIgmBtq46OnsjAJnKCRqPB+fPnrQ8wqF+/PqKiotxdltvo9XqcOnUK2dnZkMlkCA0NRdOmTcv9GnRBEHD27Fmkp6fDYDAgMDAQzZo1k/yDJRjYREQSweFViYj+YRjYREQSYfMhESIici/2sImIJIKBTUQkEQxsIiKJYGATEUkEA5uISCIY2EREEsHAJiKSCAY2EZFE8JmOBIPBgKSkJNy8edM6oE7r1q1FeTYfOSc1NRWHDx9GTk4OvL29ERkZiTZt2pT7oEt5eXnYt28fbt26BZlMhrCwMMTHx5f7oEt6vR779u1DamoqjEYjgoKC0KZNG5ePFugxBKqw0tLShI8++kgICQkRAAgABJlMJgAQlEql0KNHD+Ho0aPlVo9erxc0Go1w7do14cqVK8L169eF7OxswWQylVsNgiAIJpNJyMrKstZx7do1ISMjQzAYDOWyfbPZLCQlJQldu3YV5HJ5ib8LACEiIkKYOnWqkJmZ6fJafvvtN2Ho0KGCj4+PdfuWf/7+/sKYMWOECxcuuLyOmzdvCh988IEQHBxcalvt06ePcPz4cZfXYVFaW719+7bL2ypvTa+gDhw4gM6dO+POnTtlDk5vGch/woQJmDFjhuiPCLMwGAxIS0uDVqstc3D6oKAghIeHu3RcbLPZDI1Gg9u3b5f6nshkMgQEBCAiIsJl41EbjUaMHDkSixcvLvNBCkDxgwMCAgKwe/duNG/e3CW1fP311xg9ejQUCkWZdSgUCshkMvzvf/8T9YHE99qzZw9eeeUV6HQ6mEymUuexvFfvv/8+PvvsM5e1E71ej/T09Ie21eDgYISFhbmkBgZ2BXTkyBG0adPmoU8Sud/IkSMxb9480RuhTqfDlStXYDAYHjmvr68voqKiXLLjMJlMuHLlCu7evfvIeb28vFCnTh3Rn/YiCAL69++PVatW2fRMRYVCAS8vLxw5cgSxsbGi1jJv3jy8/fbbdi2zZs0a0UM7KSkJL7zwgl1tdcKECfjyyy9FrQMAioqKcOXKlTJ3Xvfy8/NDVFSU6J8XBrabtGrVCk8++STmzJlTrtvVarWIjIxEfn6+zR8AC7EeAmxhMplw8eJFu54Er1arUbt2bdFqsLhy5QoKCgpsnt/b2xvR0dGi7jyWLl2KIUOG2LWMpUd3/fp10R5O/PPPP6NFixZ2P4hXqVTizz//RHR0tCh13L59G7Vq1Xrot8CybNmyBV27dhWlDqD4m8/Fixdt6lhYVKlSBZGRkaLVAPAqEY/0xx9/oHv37qhduzZkMpmoob5q1SpotVq7PwByuRxfffWVaHUAQHZ2tl1hDRTvcO7cuSNqHfn5+XaFNVD8zcDyjEExCIKAmTNn2t0jM5lMyMzMxObNm0WrZe7cuQ6d1BQEAQsXLhStjpUrV6KwsNDutqpQKDBr1izR6gCK26o9YQ0Aubm5Nn1jswcD2wPduXMHderUwfTp0xEeHi7aegVBwLx58xxa1mw249SpUzhz5oxo9dz/jEBbZWdni1aDM+sTs47Dhw/jwoULdvdqgeKdqaN/1/tlZmZi48aNNn3tv5/JZMKyZctE2aGazWbMnz/foffDZDLhyJEj+PPPP52uAyj+3HhKW2Vge4hdu3YhICAAa9asQbNmzfDll1+iZ8+e8Pb2Fm0bf/zxh8OhABR/5d24caMotRQUFNjdu7Yo64nVjjCZTA4//q6oqEi0HtSGDRscPpFp2ZneuHHD6Tq2bdtW5ok9W+Tn52Pv3r1O13H27Flcu3bN4eXFbqv29q4tcnNzHf68lYaB7QHWrl2LXr16Yc2aNejTp4/LtpORkeER6wDg8AcAKO7xOBMq99fhzAfKmd/jXhqNxunfSay/r7PXeHtCO5PJZNBoNE7XATj3NzabzaK1VYCB7XYJCQkYPnw4duzYgZdfftml2xJjT89z1K7hKX8brsOz8U5HN9q8eTMyMzNx7NgxNGvWzOXbE+NusKpVq4pQCZy6jlkmk4l2p5+z11OLdT12SEjIQ693toUYf5uQkBCne4Ri1eEMQRBEu/vRU9oqwB62WzVp0gQhISFYvnx5ufQGnnjiCacuMzIajejWrZsotfj5+UGlUjm0rFqtFu1yOqVSCT8/P4eW9fLyEu3W7G7dujkc1nK5HI0aNRLlcseXX37ZqWuHfXx80L59e6freOqpp1CtWjWHlxezrfr7+zsc2lWqVBH1WmwGthvVrVsXBw4cwLZt2zBq1CiXb08ul2PUqFEOhZ1MJkPDhg0RFxcnSi0ymQxBQUEOLRscHCxKDRaO9gjFrCM+Pt7hnanZbMbo0aNFCYYaNWqgc+fODgWUUqlE//79oVarna5DqVRixIgRDrVVuVyO2NhYPPXUU07XARS31cDAQIeWFbutMrDdrH79+jhw4AC+/fZbjBkzBkDx7a/nzp3DuXPnoNfrkZqainPnzuHSpUtOb2/AgAHw8fGx+8MtCALGjRsnam8hODjY7mDw9fV1uEdcFn9/f1SqVMmuZVQqlcM7nNLI5XKMHTvW7vfXcou6mHcYjhkzxuHL+kaMGCFaHYMGDYJKpbL7PTGbzRg7dqxodQDFO3V726q/v7/og2MxsD1ATEwM9u/fj3Xr1mH8+PFIS0tDkyZN0KRJE6Snp2PmzJlo0qQJ3nzzTae3FRwcbL3cydYPgkwmw+uvv44BAwY4vf17KZVKREVF2XyMr1KlSi65y1EmkyEqKsrmSyjtrdtWo0aNQqdOnWzuVcrlcsjlcmzbtg2+vr6i1fH888/jo48+snu5+fPno1GjRqLVER4ejnXr1gGwr60OHDhQ9FvkVSoVateubVdbFfsuR4C3pldYW7ZsQc+ePWE2mx86sI/JZEK/fv2wdOlSh485P4pOp0NqamqZdxvKZDJUqVIF1atXd9kAVEBxDzE1NRV5eXllnlPw9/dH9erVRR9HxKKoqAhvvPEGNm/ebH3/S2MZR2TLli3o0KGD6HUIgoApU6ZgypQpDx2ESqlUwmQyYe7cuS47rLdx40br5a6PaquDBw/GggULXDY4V1FREVJTU1FYWFjq65bDJxEREa5pqy4dC5A82t9//y2MGDFCqFy5snWYSqVSaR22sk2bNsKWLVsEs9lcLvUUFRUJqampwqVLl4QLFy4Ily9fLtdhTS0sQ2devnxZuHDhgnDp0iUhLS1N0Ol05bJ9k8kkbNiwQXjmmWcEAIJcLrf+bfB/w5qOHTtWuHz5sstrOXjwoNCtWzdBLpcLMpmsRB2WYU1//vlnl9fxxx9/CMOGDbMO83p/W42Pjxd27NhRbm317t27ws2bN0u01czMTMFoNLp0u+xhE/Lz87F161akpqZCr9cjKCgI7du3R0xMjLtLq/B+//137N+/H7m5udYHGHTp0qXcHxyQmpqKHTt2ICsry/oAgy5dupT7gwO0Wq21rRoMBgQFBeGFF15AvXr1yrUOd2FgExFJBE86EhFJBAObiEgiGNhERBLBwCYikggGNhGRRDCwiYgkgoFNRCQRDGwiIomw+YZ7R597R0RED+fv72/TfOxhExFJBAObiEgi+ExHAgCkpKQgPT0dBoMBVapUQYMGDVw2ROXDZGVl4erVq7h79y78/f1Rv359Ucd6tlV+fj4uXryIgoICVK5cGVFRUaI/PcQWer0eycnJyM3NhZeXF2rUqIHq1auXex2CIODChQvWwZ9CQkJQr149UR9oYavr168jPT0dRqMRgYGBaNCggehjk9siMzMT169fx927d6FWqxETE2P3gzDsxcCuwPR6PXbs2IHFixfjxIkTJV4LDQ3F4MGD0a9fP4SHh7u0DkEQcPjwYSxZsgS7du2C2Wy2vla5cmW88cYbGDx4MOrXr+/SOoDi0fESExOxZs0aFBUVWacrFAp07doVQ4YMQYsWLVweVDdv3sSKFSuQmJiI27dvl3jtueeew7Bhw/DCCy+4fKeam5uLdevWYdGiRbh69WqJ1x5//HEMGzYMr732mst3qjqdDtu2bcPixYtx6tSpEq+Fh4djyJAh6Nu3L0JDQ11ah9lsxsGDB7FkyRLs3r27xLjpfn5+6NevHwYOHIjo6GiXbN/m0fp40vGf5dKlS3jllVdw/fr1MgfKtzzRZO7cuXjjjTdcUkdOTg769OmDo0ePljlQvqW+UaNG4dNPP3XJwPBGoxETJkzA8uXLy6zDMj0+Ph4rV64U/VFlFgsXLsTEiRMBoMTOy8LyftSvXx9btmxBzZo1XVLHvn378MYbb+DOnTsA8MBDHWQyGQRBQGBgIDZu3IjmzZu7pI7k5GR069YNN27cgFwuL/U9kcvlUCgUSEhIQM+ePV1SR3Z2Nnr16oUTJ06U+ZmxTB8/fjwmT55sc1u19aQjA7sCunTpEtq2bQutVlvmE03u9+WXX2Lo0KGi1qHVatG+fXtcuHDB5jpef/11JCQkiNrDNZvN6NevH7Zv327T0+vlcjmaNGmCXbt2iT4u9cyZM/HJJ5/YNK9CoUBwcDAOHjyIGjVqiFrH7t270atXLwCl7zTur0OhUGDHjh2iPaTZ4u+//0bbtm1x584dm9vI3LlzRX+cXU5ODtq2bYurV6/aXMfAgQMxe/Zsm9oqA5tKpdPpEBsbi9TUVJsbHlDcm9q5cyeeffZZ0Wrp0aMH9uzZY1cdADB9+nQMHz5ctDpmzJiBqVOn2rWMXC7Ha6+9hqVLl4pWx+7du9GjRw+7llEqlYiOjsZPP/0k2nHcS5cuIS4uDnq93qYdGFD8fvj5+eHMmTOiHZa4c+cOYmNjodFo7GojcrkcP/74o6g9/q5du+LQoUN2t9XZs2dj0KBBj5yvwl7WN2zYMGvPgB60fft2pKSk2N3w5HI5Zs2aJVodycnJ2L17t911AMCsWbMceqp3ae7evYt58+bZvZzZbMbGjRtx8+ZNUeoAinvX9h7uMRqN+Ouvv7B3717R6li8eDGMRqPNYQ0Uvx8FBQVYsWKFaHV89913dncsgOLOxZw5c0Sr47fffsP+/fsdaqszZ850aLmy/OMCe8aMGVi4cKG7y3Da9u3b0aVLF0RFRaF69epo27Yt9u3b5/R6Fy1a5NAxYJPJhP379+PKlStO1wAAy5Ytc7hHmJmZid27d4tSx3fffefwt0e5XC5aQJ0/fx6nTp165OGH0igUCixZskSUOgoKCrBq1SqHQsZsNmPp0qWi7Uydaavff/89UlNTRakjMTHR4ZO7qamponxuLf5xgR0QEIAqVaq4uwynHTt2DK1bt8bmzZtx6NAhPPfcc+jRowd+/fVXh9d55coVh0MBKA6oDRs2OLx9C0EQsHr1aod7HgqFAqtWrXK6DgD45ptvHD6JaTKZ8M0334hSx7p16xwOBZPJhKSkJGRmZjpdx86dO60nGR2RmZmJQ4cOOV3H33//jd9++82ptrpx40an6zAajVi3bp3DOyGFQoG1a9c6XYeFZAN769ataNGiBUJDQ1GrVi107twZhYWFDxwSyc/Px6BBgxAeHo7o6Gh8/fXX6NixI9577z3rPI0aNcIXX3yBIUOGoFq1amjYsCG+//57ZGVloWfPnqhWrRri4uJw5swZ6zLZ2dkYMGAAYmJiEBYWhhYtWmDTpk021Z6VlYV69eph5syZ1mknT560nkACir8pjBkzBrGxsahXrx4++ugj1K1b16mepbM9DplMJkqvJT8/H4WFhQ4vbzKZkJKS4nQdAHDjxg2HQwEoDihnlre4efOmU+sRBAHp6elO15Gamur0sXAx2oizh5rkcrkoh6tyc3NLXN5pL5PJhOvXrztdh4UkA1uj0WDgwIF4/fXXcerUKXz//ffo1KlTqcfc3n//fZw8eRLr16/Htm3bcPz48VJ7qQkJCWjRogWOHDmC+Ph4DBkyBEOGDEGPHj1w+PBhREVFYejQodZt6HQ6NGnSBJs2bcKJEyfQv39/DBkyBL/88ssj669atSoSEhIwbdo0nDlzBvn5+Rg8eDCGDBmCVq1albqM5RhhYGCgfW/WPfR6vcPLAsWh4Ow6AMBgMDi9Dp1O5/Q6AOdrEQRBlEMAer3e6eAX42+j1+udugJHJpN5RBsRq62KsQ6x2iog0RtnNBoNjEYjOnfujMjISABAw4YNH5gvPz8fa9euRWJiojUIFyxYgJiYmAfmjY+Px8CBAwEA//3vf5GYmIinnnoKr7zyCgBgzJgxaNeuHTIzMxEWFoaIiAiMHj3auvywYcOQlJSELVu2oGnTpo/8HTp06IB+/frhzTffRJMmTeDr64uPP/64zPnnzZuHgoICdOvW7ZHrLouzh4pkMpkoh5vUarXT6xDrrsMqVaogIyPD4eV9fHzg5eUlSh1lXdtrzzrEqMOZGgRBEK0OZznTuRGzDjHvkJVkD/uJJ55Aq1atEBcXh759+2LlypXIycl5YL5r167BYDAgNjbWOi0gIKDUu5AaNWpk/X/LZUn37gQs027dugWg+KvOjBkz0KJFC0RGRqJatWpISkqy62vY1KlTYTQasXXrVixbtgze3t6lzrdx40ZMnz4d//vf/xASEmLz+u/XqFEjpxqx0WhE69atHV7eQqVSoWXLlg5/9ZbL5Wjfvr3TdQDFO05H61AoFGjTpo0odbRt29apoIyIiECdOnWcrqNNmzZ2XR1yP4VCgZYtWzpdx5NPPmnzpW6lEautVq5cGc2aNXP4PIdMJkO7du2crsNCkoGtUCiwbds2fPvtt4iJicHixYsRGxuLa9euObzOe0/4WL4SqlSqB6ZZvrbOnTsXCxcuxJgxY7Br1y4cPXoUbdu2tesr1NWrV6HRaGA2m8s8Jrt582aMGjUKK1eudLoBent7Y9CgQQ4HVEREBOLj452qwWLo0KEOB5RMJkP//v1FqWPgwIEO12EymUS7mahz584O70zlcjmGDRsmynXYMTExeOaZZxxal1KpROfOnUUZyqBSpUro37+/Q3XIZDJERUWVeXjRXkOHDnX4cJVSqRT1LmFJBjZQ/Edp0aIFJk2ahKNHj8LLyws7d+4sMU/t2rWhUqlKnCzMy8vDpUuXnN7+iRMn8NJLL6Fnz5544oknEBUVZdd69Xo9Bg8ejG7duuGDDz7AyJEjrb13i02bNmH48OFYvnw5XnjhBadrBoABAwY41IMSMxQAoGPHjggNDbW756JQKNC5c2eEhYWJUkedOnXQtm1bu38vhUKB2rVr4/nnnxelDsvO1JGenEKhwOuvvy5KHUDx4T1HdmJGo1HUu2EHDhzocFAOHTpUtLthu3TpgsDAQIfaavfu3XlI5NSpU5g5cybOnDmDGzduYPv27cjKynpgcCB/f3/07t0bkydPxuHDh/HXX39h5MiRkMvlTv8x69atiwMHDuDkyZNITk7G22+//UDgPswnn3wCrVaLL774AmPHjkW9evVK3L23ceNGDB06FFOnTkXTpk2RkZGBjIwM5OXlOVV3zZo18cUXX9i1jEKhwNNPP4233nrLqW3fS6VSYcWKFZDJZDb/LRQKBUJDQzFjxgzR6gCAOXPmICAgwObQtoxbsXz5clHHNRk/fjwaNmxo985j/vz5qFq1qmh1dO7cGf/5z3/s+t1kMhmGDx+Of//736LVUbduXXz22Wd2LaNQKPDss8/izTffFK0Ob29vLF++HADsaqsRERF230H7KJIMbLVajWPHjuHVV1/FU089hU8//RRTp04t9ev6559/jmbNmuE///kPOnfujObNm6N+/frw8fFxqoZ33nkH//rXv/DKK69Ye4svvfSSTcseOXIECxYswJIlS6BWqyGXy7FkyRIcP34cy5YtAwCsXLkSRqMR48ePR3R0tPXfvZcjOmrIkCHW8SoeFQ5yuRxNmzbFhg0byjzG7qhnn30Wa9asgUqlemQdCoUC4eHh2Llzp+ijB9aqVQs7d+5EcHDwI+tQKpXw8fHBpk2bbDq5bA9fX19s3boVDRs2fGRYKhQKyGQyfPXVV+jdu7eodchkMixYsACdO3e2/lwWS50DBgwQPZwAYOTIkZg0aRKAR7dVmUyGuLg4rF27VpQTwfdq27Yt/ve//0GpVNrUVmvUqIGdO3c6dc6pNBVuLJHCwkI0aNAAU6dORd++fd1djlvt3bsXs2bNwrFjx6BUKiEIAgRBgFwuh9FotA5bOWrUKNHD+l7nz5/Hl19+iR07dli3bzabrXX4+vqib9++mDBhgugfgHulpaXhq6++wurVq1FUVASFQmGtw/Lfbt264Z133in1SiOxFBYWYu7cuVi2bBmysrKgVCphNputwWkymdC6dWuMHz8ezz33nMvqMJvNWLFiBRISEnDp0iVrGwGKw9FoNKJRo0YYPXo0evTo4dIhZ3fv3o3Zs2fjxIkTpbbViIgIDBs2DMOHDxc9rO919uxZzJw5E7t27bJ+O7y3rarVavTr1w/jxo2z61AIB3/6P7/++isuXLiA2NhYaLVazJgxA0ePHsW5c+fcMiC9J0pOTsb69euRmpoKvV6PwMBAtG/f3qkrKByh0Wiwdu1aXLp0CXfu3IFarUazZs3QvXt30UfFe5j8/Hxs3LgR586dg1arhZ+fH2JiYtC7d29RDz08isFgwM6dO3H48GHk5OTA29sbNWrUQO/evVG3bt1yq0MQBBw7dsx66FEmkyEsLAzdunVDbGxsuT7E4M8//8TGjRuRlpYGg8GAwMBAxMfHo3379uXaVtPS0rBmzRpcuXLF+gCD5s2bo1u3bg49xICB/X9+/fVXjBo1ChcvXoRKpUKTJk3w+eefl3rdtlhu3LiBp59+uszXf/75Z5eNYUxE0sPAdiOj0fjQ21Fr1arllsdvEZFnYmATEUmE6IFNRETuJcnL+oiIKiIGNhGRRDCwiYgkgoFNRCQRDGwiIolgYBMRSQQDm4hIIhjYREQSwcAmIpIIBjYRkUQwsImIJIKBTUQkEQxsIiKJYGATEUkEA5uISCL+H0gCnm/wpEwwAAAAAElFTkSuQmCC", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], + "outputs": [], "source": [ "petab_select.plot.upset(models=models, criterion=petab_select.Criterion.AICC);" ] @@ -279,21 +123,10 @@ }, { "cell_type": "code", - "execution_count": 5, + "execution_count": null, "id": "56b4a27b", "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAd8AAAF4CAYAAAAVGfMOAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAABMRElEQVR4nO3deXiU5bk/8O9Mlsk+yZCQPSSETCYJgUBIUETcQFQUPQpqUdSeWtuKKC6/A1iRaivKoWrt4apKa7Vu7VE8SgWtgksFtSZhEUgymex7CNkmC5NJMvP+/qAZefNOQtZ5Z/l+riuXzD3PTO74JLlzv8vzKARBEEBEREQOo5Q7ASIiIk/D4ktERORgLL5EREQOxuJLRETkYCy+REREDsbiS0RE5GAsvkRERA7m8cVXEAR0dnaCtzsTEZGjeHzx7erqglqtRldXl9ypEBGRh/D44ktERORoLL5EREQOxuJLRETkYCy+REREDsbiS0RE5GAsvkRERA7G4ktERORgLL5EREQOxuJLRETkYCy+REREDsbiS0RE5GAsvkRERA7G4ktERORgLL5EREQOxuJLRETkYCy+REREDsbiS0RE5GAsvkRERA7G4ktERORgLL5EREQOxuJLRETkYCy+REREDsbiS0RE5GAsvkRERA7G4ktERORgTl98n3rqKSgUCsyePVvy3DfffIPFixcjICAAUVFRuP/++9Hd3S1DlkRERKPnLXcCI6mrq8O2bdsQGBgoee7YsWO44oorkJaWhueeew51dXX47W9/i9LSUnz88ccyZEtERDQ6Tl18H3nkEVxwwQWwWCxoaWkRPffoo48iLCwMX375JUJCQgAAiYmJ+OlPf4pPP/0UV155pRwpExERnZfTHnb+6quvsHv3bvzud7+TPNfZ2Yn9+/fj9ttvtxVeALjjjjsQFBSEd955x4GZEhERjY1Tdr4WiwXr16/H3XffjczMTMnzJ06cwMDAABYsWCCK+/r6IisrC0ePHh32vc1mM8xms+1xZ2fn5CVOREQ0Ck7Z+b700kuorq7Gr3/9a7vPNzY2AgCio6Mlz0VHR6OhoWHY93766aehVqttH/Hx8WNP8NChqR1PRERuzemKb2trKx5//HFs2bIFERERdseYTCYAgEqlkjzn5+dne96ezZs3w2g02j5qa2vHluCvfgVcfDGwffvoxm/ffnb8r341ts9DRERuy+kOOz/22GPQaDRYv379sGP8/f0BQHT4eFBvb6/teXtUKpXdoj0qhw4BTzxx9t+bNp3978aNw4/fvv2HcU88ASxdCixePL7PTUREbsOpOt/S0lLs2rUL999/PxoaGlBVVYWqqir09vaiv78fVVVVaGtrsx1uHjz8fK7GxkbExMRMTYKLFwPPPPPD402bhu+Azy28wNnXsfASERGcrPjW19fDarXi/vvvR1JSku3ju+++g8FgQFJSEp588knMnj0b3t7eKCgoEL2+r68Px44dQ1ZW1tQluXHj+QuwvcI7UodMREQexakOO8+ePRvvv/++JP7YY4+hq6sLL7zwApKTk6FWq7F06VK8+eab2LJlC4KDgwEAb7zxBrq7u7F69eqpTXSwkA4W2E2bYLVaUb5qFRL/93/hs2XLD2NZeImIaAiFIAiC3Emcz6WXXoqWlhacPHnSFjty5AgWLVqE9PR03HPPPairq8Ozzz6LJUuW4JNPPhn1e3d2dkKtVsNoNIruGR6VIR2uOSgIqnOXt2ThJSIiO5zqsPNYzJ8/HwcOHIC/vz8efPBB7Nq1Cz/5yU+we/duxyWxcSPqz7kwjIWXiIhGwyU636k0oc4XQFdXF3xjYkSFd0CthndHxyRmSURE7sRlO19nEfyHP4g7XgDeRiMGtm2TKSMiInJ2LL4TYeec7yDvX/5y9AtxEBGRR2HxHa8hhbf6F7/AnldewfE1a34YM9J9wERE5LFYfMfDzn28oU8/DQDQX389CzAREY2IxXeshllAQ61WIy4uDgALMBHRlHGTjW1YfMfi0KERV65KT0+3/dtuAXbSbwIiIpfgRhvbsPiOxeLFwNatZ/9t5z7e0NBQxMbG2h7rr78ehWvXnn2wdSvXdiYiGq+hG9ucrwAP3djGyZof3uc7nvt8Dx0atpC2t7dj//79otjC/n7MuO22iaZKROTZRrtuvgusr8/OdzxG6GDDwsIkuyodCwrCwMDAVGdFROTehtnYpq+vD7Y+0gUKL8DiOyXOPfcLnN13uLy8XKZsiIjciJ0CXLNuHQ4ePIi+X//aJQovwMPOE15ecjhfffUVmpqabI/9/PxwzTXXwNvbqTaSIiJyTS6+sQ073ymSkZEhetzb24uKigqZsiEicjMbN6L3nKuYzy28lm3bnLrwAiy+U2batGmIjIwUxUpKSmCxWGTKiIjIfVitVhxctEi0rC8AWMPC4LV5s0xZjR6L7xQa2v2aTCZUVlbKlA0RkfvQ6/WIfO01ycY2yvZ2l1jUiMV3CoWHh2P69OmiWHFxMbtfIqIJaG9vh2XbNsx5+21brC84+IcBLrCqIIvvFBt65bPJZEJVVZU8yRARuTiLxYLTjzyCzLfessWOr1mDrspKu7chOSsW3yk2ffp0REREiGLsfomIxqf5kUeg/fOfbY+Pr1kDxaZNmDZt2rD3ATsjFl8HGNr9njlzBtXV1TJlQ0Tkmnq2bkX0735ne3x8zRo03nGH+HesixRgFl8HmD59OsLDw0Wx4uJiWK1WmTIiInItA19+icAnn7Q9Pr5mDQz/8R9YuHAhvLy8xIPtFWAnW9uZxdcBFAqFpPvt6elBTU2NTBkREbmWk6GhKFy1CsDZwqu//nqkp6cjNDTU/gvOLcBOuLENl1tykMjISGg0GrS1tdliRUVFSEhIgFLJv4GIiIbT3NwMg8EArF6NU5mZaNHpoNFooNPpRn7hxo3ARRc5XeEF2Pk6jEKhkNz3293djdraWpkyIiJyfv39/cjPz7c9btHpoFQqkZubO7rGxQkLL8Di61BRUVEICwsTxYqKinjul4hoGMePH0dPT48olpmZOalr8cuBxdeB7J377erqQl1dnUwZERE5r6amJsmOcOHh4UhJSZEpo8nD4utgMTExkgsEioqK4OGbSxERifT19YkONwOAl5fX6A83OznX/wpcjL3ut7Ozk90vEdE5jh07BpPJJIrNnTsXQUM2UnBVLL4yiI2NhVqtFsXY/RIRnVVfXy9ZhjcyMhLJycnyJDQFWHxlYK/7NRqNaGhokCkjIiLnYDabUVBQIIr5+PhgwYIFUCgUMmU1+Vh8ZRIXFye5Wq+wsJDdLxF5tMOHD8NsNotiWVlZCAwMlCmjqcHiKxN73W9HRwcaGxtlyoiISF41NTWS619iYmKQmJgoT0JTiMVXRnFxcQg+dw9KsPslIs9kMplw5MgRUczX1xfZ2dludbh5EIuvjJRKpaT7bW9vR1NTk0wZERE5niAIKCgoQF9fnyg+f/58+Pv7y5TV1GLxlVl8fLzk0nl2v0TkSaqqqiSn3OLj45GQkCBTRlOPxVdmSqUSaWlpolhbWxtOnTolU0ZERI7T09ODY8eOiWIqlQrz58+XJyEHYfF1AjNmzJBcycf7fonI3Q0ebu7v7xfFFyxYAJVKJVNWjsHi6wTsdb8tLS1obm6WKSMioqlXXl4uOcqXmJiI2NhYmTJyHBZfJzFjxgwEBASIYkVFRTJlQ0Q0tbq7u/H999+LYv7+/sjKypInIQdj8XUSXl5eku739OnT7H6JyO1YrVbk5eXBYrGI4jk5OfD19ZUpK8di8XUiiYmJksvq2f0SkbspLS1FS0uLKJacnIyoqCiZMnI8Fl8n4uXlBZ1OJ4o1NzdLvkmJiFxVZ2cnTpw4IYoFBgZizpw5MmUkDxZfJzNz5kz4+fmJYux+icgdWK1WfPfdd7BaraJ4bm4ufHx8ZMpKHiy+TsZe99vU1ITW1laZMiIimhx6vR7t7e2imFarRUREhEwZyYfF1wmx+yUid9Pe3o7CwkJRLDg4GLNnz5YpI3mx+Dohb29vpKamimKNjY1oa2uTKSMiovGzWCzIy8sTLRykUCiQm5sLb29vGTOTD4uvk0pOTpas8MLul4hcUVFREYxGoyim0+kwbdo0mTKSH4uvk7LX/TY0NEjOlxARObPW1lbo9XpRTK1WS3Z08zQsvk4sOTlZcsM5u18ichUDAwOSw81KpRILFy6El5eXjJnJz+mKb2FhIVavXo2ZM2ciICAA4eHhWLJkCT788EPJ2OLiYlx11VUICgqCRqPB2rVrcfr0aRmynho+Pj7QarWiWH19PTo6OuRJiIhoDE6ePImuri5RLD09HaGhofIk5EScrvhWV1ejq6sLd955J1544QVs2bIFALBy5Urs2rXLNq6urg5LlixBWVkZtm3bhkceeQT79u3DsmXLJBsyu7KUlBTJ/W/sfonI2TU3N8NgMIhiGo1Gciulp1IILrBvncViQXZ2Nnp7e23nDu6991689tpr0Ov1tg2XDxw4gGXLluHll1/GPffcM6r37uzshFqthtFoREhIyJR9DRNRWFgouUR/+fLlUKvVMmVERDS8/v5+fPrpp+jp6bHFlEolrrzySqf9PetoTtf52uPl5YX4+HjR4db33nsP1157ra3wAsDSpUuh1WrxzjvvyJDl1LHX/RYXF8uUDRHRyI4fPy4qvACQmZnJwnsOpy2+PT09aGlpQXl5OZ5//nl8/PHHuOKKKwCcPe/Z3NyMBQsWSF6Xm5uLo0ePOjrdKeXr64uUlBRRrKamBp2dnTJlRERkX1NTE8rLy0Wx8PBwye8wT+e0dzc//PDDePnllwGcPVxx4403YufOnQDOLjgBANHR0ZLXRUdHo62tDWazWXKfLACYzWaYzWbbY1cpYCkpKTAYDBgYGLDFiouLsXDhQhmzIiL6QV9fH/Lz80UxLy8v5ObmQql02l5PFk77f2PDhg3Yv38//vKXv+Dqq6+GxWKxXUhlMpkAwG5xHVyWcXDMUE8//TTUarXtIz4+foq+gsmlUqnsdr9DryQkIpLLsWPHJL97586di6CgIJkycl5OW3x1Oh2WLl2KO+64A3v37kV3dzeuu+46CIJg2/P23A52UG9vLwBI9sUdtHnzZhiNRttHbW3t1H0Rk0yr1YqWYhMEged+icgp1NfXo6qqShSLjIxEcnKyPAk5OactvkOtWrUK+fn5MBgMtsPNg4efz9XY2AiNRmO3KwbOdpAhISGiD1ehUqkk38jV1dXo7u6WKSMiorONUEFBgSjm4+ODBQsWQKFQyJSVc3OZ4jt4KMNoNCI2NhYRERGSyQaAvLw8ZGVlOTg7x0lNTRWtDMPul4jkdvjwYcmRyKysLAQGBsqUkfNzuuLb3NwsifX39+P111+Hv7+/bT3Qm266CXv37hUdNv7ss89gMBiwevVqh+XraH5+fpLut6qqSnJZPxGRI9TU1KCurk4Ui4mJQWJiojwJuQinW2TjP/7jP9DZ2YklS5YgNjYWTU1NeOutt6DX6/Hss8/ioYceAgDU1tZi3rx5CA0NxQMPPIDu7m7s2LEDcXFxyM/PH/aw81CusMjGUCaTCR999BEsFostlpycjOzsbBmzIiJPYzKZ8Mknn4hWFfT19cXy5cuHve6GznK64vu3v/0Nr7zyCk6cOIHW1lYEBwcjOzsb69evx8qVK0VjCwsL8dBDD+HQoUPw9fXFihUr8OyzzyIyMnLUn88Viy8AHD16FKWlpbbHSqUS11xzDQICAmTMiog8hSAIOHTokOTamwsuuEC0+BHZ53TF19FctfiaTCbs27cPVqvVFps1axbmz58vY1ZE5CkqKysl9/TGx8fjwgsvlCkj1+J053xpdPz9/TFz5kxRrKKiAmfOnJEpIyLyFD09PTh27JgoplKp+Mf/GLD4ujCdTidaNcZqtaKkpETGjIjI3QmCgIKCAvT394viCxYsGPW1NsTi69ICAgKQlJQkilVUVAy7uhcR0USVl5fj1KlTolhiYiJiY2Nlysg1sfi6OJ1OJ7qJ3WKxsPsloinR3d2N77//XhTz9/d367UVpgqLr4sLDAyU3E9XXl5uW2aTiGgyWK1W5OXliW5xBICcnBz4+vrKlJXrYvF1A2lpaex+iWhKlZaWoqWlRRRLTk5GVFSUTBm5NhZfNxAUFIQZM2aIYuXl5XY3niAiGiuj0YgTJ06IYoGBgZgzZ45MGbk+Fl83MbT7HRgYgMFgkDEjInIHg4ebz11TAAByc3Ph4+MjU1auj8XXTQQHB0tWlSktLWX3S0QTotfr0d7eLopptVpERETIlJF7YPF1I2lpaaLHAwMDoiUoiYjGor29HYWFhaJYcHAwZs+eLVNG7oPF142EhITY7X7PXfSciGg0LBYL8vLycO4KxAqFArm5ufD29pYxM/fA4utmhna//f397H6JaMyKiopgNBpFMZ1Oh2nTpsmUkXth8XUzarUacXFxopjBYJAsBUdENJzW1lbo9XpRTK1W2/ZTp4lj8XVDQ39A2P0S0WgNDAxIDjcrlUosXLgQXl5eMmbmXlh83VBoaKhknVV2v0Q0GidPnkRXV5colp6ejtDQUHkSclMsvm5qaPfb19eH8vJymbIhIlfQ3NwsWR9Ao9FAp9PJlJH7YvF1U2FhYYiJiRHFSkpKMDAwIFNGROTM+vv7kZ+fL4oplUrk5uaKti6lycH/o25saPdrNpvZ/RKRXcePH0dPT48olpmZiZCQEJkycm8svm5Mo9EgOjpaFGP3S0RDNTU1Sf4wDw8PR0pKikwZuT8WXzc3tPvt7e1FRUWFTNkQkbPp6+uTHG728vLi4eYpxv+zbm7atGmSLb/0er1kT04i8kxHjx6FyWQSxebOnYugoCCZMvIMLL4egN0vEdlTX1+P6upqUSwyMhLJyckyZeQ5WHw9QHh4OKZPny6Ksfsl8mxmsxkFBQWimI+PD3JyckTbk9LUYPH1EBkZGaLHJpMJlZWVMmVDRHI7fPiwZMvRrKwsBAQEyJSRZ2Hx9RARERGS/TfZ/RJ5ppqaGtTV1YliMTExSExMlCchD8Ti60GGnvs9c+aM5HwPEbk3k8mEI0eOiGK+vr7Izs7m4WYHYvH1INOnT0d4eLgoVlxcDKvVKlNGRORIgiCgoKBAssf3/Pnz4e/vL1NWnmlcxffrr7/GQw89hKamJrvPNzY24qGHHsK//vWvCSVHk0uhUEi6356eHna/RB6iqqoKjY2Nolh8fDwSEhJkyshzjav4Pvfcc/jwww8l948Oio6Oxt69e/H8889PKDmafJGRkZLNsNn9Erm/np4eHDt2TBTz8/PD/Pnz5UnIw42r+Obn52Px4sUjjlmyZAk7Xydkr/vt7u5GTU2NTBkR0VQbPNw8dFvR7OxsqFQqmbLybOMqvs3NzZL9YoeKiopCc3PzuJKiqRUVFYWwsDBRjN0vkfsqLy/HqVOnRLHExMTz/h6nqTOu4hsaGnreTqm6uprLkzkphUIhue+3q6tLcusBEbm+7u5ufP/996KYv78/srKy5EmIAIyz+F5wwQV4//33UVtba/f5mpoafPDBB1i0aNGEkqOpEx0djdDQUFGsqKgIgiDIkxARTTqr1Yq8vDzJ/fw5OTnw9fWVKSsCxll8H3roIZw5cwYXXXQRXn/9ddvVc42NjfjLX/6Ciy66CCaTCQ8//PCkJkuTx17329nZye6XyI2UlpaipaVFFEtOTh72YllyHO/xvGjJkiV47rnn8PDDD+PHP/4xgLO/zAe7JqVSiRdeeAFLliyZvExp0sXExECtVsNoNNpiRUVFiIuL4832RC7OaDTixIkTolhgYCDmzJkjU0Z0LoUwgeOMx48fx0svvYT8/HwYjUaEhoYiNzcXP//5zzF79uzJzHPKdHZ22gpQSEiI3Ok4XG1tLb799ltRbNGiRYiLi5MpIyKaKKvVis8++wzt7e2i+GWXXSZZZpbkMa7Od9CcOXPwhz/8YbJyIRnExcUhJCQEnZ2dtlhRURFiY2PZ/RK5KL1eLym8Wq2WhdeJcHlJD2fvvt+Ojg40NDTIlBERTUR7ezsKCwtFseDgYJc5GukpxlR8n3rqKTz66KOSG7XP1dfXh0cffRTPPPPMhJMjx4iLi0NwcLAoxiufiVyPxWJBXl6e6GdXoVAgNzcX3t4TOtBJk2zUxffAgQN4/PHHMW3aNPj4+Aw7ztfXF+Hh4fjlL3+JL774YlKSpKmlVCol3W97e/uwa3cTkXMqKioSXUAJADqdTrKkLMlv1MX39ddfR1hYGO67777zjl23bh00Gg1effXVCSVHjhMfHy9ZFKWwsJDdL5GLaG1thV6vF8XUarXkD2tyDqMuvt988w2WLl06qnVAVSoVli5diq+//npCyZHj2Ot+29raJEvSEZHzGRgYkBxuViqVWLhwIby8vGTMjIYz6uLb0NCAmTNnjvqNk5KSJFtXkXNLSEhAYGCgKMbul8j5nTx5El1dXaJYenq6ZBU7ch6jLr5KpXLEC62G6u/vh1LJi6ldiVKpRFpamijW2trKDTKInFhzczMMBoMoptFooNPpZMqIRmPU1TEmJgYnT54c9RufPHmSO2a4oBkzZiAgIEAUKyoqkikbIhpJf38/8vPzRTGlUonc3Fw2P05u1LNz8cUX4/PPP0dVVdV5x1ZVVeHzzz/n8pIuyMvLS9L9nj59mt0vkRM6fvw4enp6RLHMzEyPXK3P1Yy6+K5btw79/f1YtWqVZKHuc7W2tmL16tUYGBjAL37xi0lJkhwrMTGR3S+Rk2tqakJ5ebkoFh4ejpSUFJkyorEYdfGdP38+NmzYgCNHjiA9PR2PP/44vvjiC5SWlqK0tBRffvkltmzZgvT0dBw+fBgPPvgg5s+fP5W50xTx8vKSnC9qbm7G6dOnZcqIiM7V19cnOdzs5eXFw80uZEyz9Oyzz2LTpk1ob2/HU089haVLl0Kn00Gn0+GKK67AU089hba2NmzevBk7duwYV0L5+fm47777kJGRgcDAQCQkJODmm2+WXFAAAMXFxbjqqqsQFBQEjUaDtWvXskBMkqSkJPj7+4ti7H6JnMPRo0dhMplEsblz50ru1SfnNa5djcrLy/Hqq6/im2++sa2CFBUVhYsuugh33XUXkpOTx53QqlWr8PXXX2P16tWYM2cOmpqasHPnTnR3d+Nf//qXbX3Suro6zJs3D2q1Gvfffz+6u7vx29/+FgkJCcjLyxv1RtGevqvRSAwGA44dOyaKXX755QgPD5cnISJCfX29ZA2FyMhILFmyhJuhuJAJbSk4Fb755hssWLBAVDxLS0uRmZmJVatW4c033wQA3HvvvXjttdeg1+uRkJAA4OwSmMuWLcPLL7+Me+65Z1Sfj8V3eAMDA/joo4/Q29tri0VFRfFCOiKZmM1m/OMf/4DZbLbFfHx8sHz5csl1GuTcnO7kwKJFiyRda0pKCjIyMlBcXGyLvffee7j22mtthRcAli5dCq1Wi3feecdh+bozb29vpKamimJNTU1oa2uTKSMiz3b48GFR4QWArKwsFl4X5HTF1x5BEHDq1Cnb4c76+no0NzdjwYIFkrG5ubk4evTosO9lNpvR2dkp+qDhJScnS5YU5blfIserqalBXV2dKBYTE4PExER5EqIJGfUeU9dcc82Y31yhUGDfvn1jft1Qb731Furr6/Hkk08CgG3ZyujoaMnY6OhotLW1wWw2212H+umnn8YTTzwx4Zw8xWD3e/z4cVusoaEB7e3tCAsLkzEzIs9hMplw5MgRUczX1xfZ2dk8z+uiRl18//GPf4z5zSfjm0Kv12PdunW48MILceeddwKA7So/e8XVz8/PNsbe85s3b8ZDDz1ke9zZ2Yn4+PgJ5+nOkpOTodfr0dfXZ4sVFRXhoosukjErIs8gCAIKCgpEP3/A2ds/h96RQK5j1MW3srJyKvOwq6mpCStWrIBarcbu3bttu3MMfsMNPfcBwHZx0HDflCqValQ7M9EPfHx8kJqaihMnTthi9fX16Ojo4MLtRFOsqqpKsklNfHy86HoXcj2jLr4zZswY85vbK46jZTQacfXVV6OjowMHDx5ETEyM7bnBw832dk1qbGyERqNhgZ1ks2bNQklJiaT7XbRokYxZEbm3np4eye1+fn5+XMDIDUzJBVdHjhzBunXrRAVzLHp7e3HdddfBYDBg7969kn1mY2NjERERgYKCAslr8/LykJWVNa7PS8Pz8fGRLFtXV1cHo9EoU0ZE7m3wcPPQ3eSys7PZXLiBSSu+HR0d2LlzJ+bNm4ecnBy8+OKLovtDR8tiseCWW27Bt99+i3fffRcXXnih3XE33XQT9u7di9raWlvss88+g8FgwOrVq8f9ddDwUlJS4OPjI4rxymeiqVFeXo5Tp06JYomJidwtzk1MeJGNAwcO4JVXXsGePXtgNpshCAIuvPBC/PjHP8Ytt9yC4ODgMb3fhg0b8MILL+C6667DzTffLHn+9ttvBwDU1tZi3rx5CA0NxQMPPIDu7m7s2LEDcXFxyM/PH/VfhlxkY2xOnjwpKbhXXXUV/98RTaKuri58+umnsFgstpi/vz+WL18+6tX7yLmNq/jW1tbi1VdfxauvvoqamhoIgoDY2FjU19fjrrvuwp///OdxJ3TppZfin//857DPn5tuYWEhHnroIRw6dAi+vr5YsWIFnn32WURGRo7687H4jk1fXx/27t2LgYEBWywhIQEXXHCBjFkRuQ+r1Yovv/xSsnvckiVLEBUVJVNWNNlGfcFVf38/PvjgA7zyyiv47LPPYLFYEBgYiNtuuw133HEHLr/8cnh7e8Pbe9RvadeXX3456rEZGRn45JNPJvT5aGx8fX2RkpIiWm2strYWGRkZYz7KQURSpaWlksKbnJzMwutmRl0pY2Ji0NbWBoVCgcsuuwx33HEHbrzxRgQGBk5lfuSEtFotSktLbd2vIAgoLi5Gbm6uzJkRuTaj0Si6pQ8AAgMDMWfOHJkyoqky6guuWltboVAo8OCDD+Ltt9/G2rVrWXg9lEqlwqxZs0Sx6upqdHd3y5QRkeuzWq3Iy8uD1WoVxXNzcyUXOpLrG3Xxveuuu+Dv74/nnnsOcXFxWLlyJd59913JqivkGbRarW3RE+CH7peIxkev16O9vV0U02q1iIiIkCkjmkqjLr5//vOf0djYiJdffhnz58/H3r17ceuttyIyMhI/+9nPcOjQoanMk5yMn5+fpPutqqpCT0+PTBkRua729nYUFhaKYsHBwbb9y8n9jOk+36CgINx999349ttvUVhYiA0bNsDX1xd//OMfcckll0ChUKCkpATV1dVTlS85kdTUVHa/RBNksViQl5cnupNDoVAgNzd3whewkvMa9yIbaWlpePbZZ1FfX4933nkHV155JRQKBQ4ePIjk5GRcccUVeOONNyYzV3Iyfn5+mDlzpijG7pdobIqKiiQrxel0OkybNk2mjMgRJrzIxrnq6ups9/9WVVVBoVCIbhJ3RrzPd2JMJhP27dsnukgkOTkZ2dnZMmZF5BpaW1vx+eefi7petVqNpUuXio4qkfuZ1LWd4+LisGXLFlRUVODAgQO44YYbJvPtyQn5+/tLut/KykqcOXNGpoyIXMPAwIDkcLNSqcTChQtZeD3AlG2s8N577+GLL76YircnJ6PT6aBU/vCtZLVaUVJSImNGRM7v5MmT6OrqEsXS09O5TaeHmLSz+R0dHXjzzTfxyiuv4Pjx4xAEAQqFYrLenpxYQEAAkpKSUF5ebotVVFRAp9Nxs28iO5qbm2EwGEQxjUYDnU4nU0bkaBPufA8cOIAf/ehHiImJwQMPPIDjx4/jkksu4X6THmZo92uxWNj9EtnR39+P/Px8UUypVCI3N1f0M0TubVwzXVtbiyeffBJJSUlYvnw5/vd//xczZ87Etm3bUF1djc8//xzz5s2b7FzJiQUGBiIxMVEUKy8vH9e2kkTu7Pvvv5fcEZCZmckLPj3MhDZWiIqKwoYNG7B27VpuYE/Q6XSorKy0XUAy2P3OnTtX5syInENTUxMqKipEsfDwcKSkpMiUEcllzBsrBAQE4NZbb8XatWuxdOlSHiYhm6CgIMyYMQNVVVW2WFlZGVJTU+Hn5ydfYkROoK+vT3K42cvLi4ebPdSYNlZQq9X4/e9/jz/96U+48sor+Q1DEunp6aIL7SwWi+TCEiJPdPToUZhMJlFs7ty5CAoKkikjktOYNlbo7+/H3XffjaioKPz0pz8dcdN78kxBQUFISEgQxcrKymA2m2XKiEh+9fX1kmV3IyMjkZycLFNGJLdxbayg0+nwyiuv4PLLL8eMGTPwy1/+EkVFRVOZJ7mQtLQ0Ufc7MDDA7pc8ltlsRkFBgSjm4+ODnJwc3o7pwSa8sUJvby+efvppZGZmYsGCBXjhhRdw6tSpqcqXXEBISAji4+NFsbKyMm4/SR5HEAQcPnxYcuQnKysLAQEBMmVFzmDCazsPDAzYroLev38/BEGAl5cXgoOD0dHRwbWdPZTRaMQnn3wiimVkZCAjI0OmjIgcr6amBv/6179EsZiYGFx00UXsej3chK+Y8vb2xqpVq/Dxxx+jqqoKv/rVrxAfHy/ZFJo8i1qtlnS/BoOB3S95DJPJhCNHjohivr6+yM7OZuGlqdlYoby8HPv378ett946mW9PLiYtLU30uL+/H2VlZTJlQ+Q4giCgoKBA8sfm/PnzueQqAZiijRUA4IorrsBbb701VW9PLiA0NBRxcXGimMFgQH9/v0wZETlGVVUVGhsbRbH4+HjJnQDkuXijLk2pod1vX18fu19yaz09PTh27Jgo5ufnx/XuSYTFl6ZUWFgYYmJiRDF2v+SuBg83D/3+zs7OhkqlkikrckYsvjTl0tPTRY/NZrNo+0Eid1FeXi651TIxMRGxsbEyZUTOisWXppxGo0F0dLQoVlJSgoGBAZkyIpp8XV1d+P7770Uxf39/bjpDdrH4kkPY636H7u5C5KqsVivy8/Ml6xrk5OTA19dXpqzImbH4kkNMmzYNUVFRopher2f3S26htLQULS0tolhycrLke55oEIsvOczQ7re3txeVlZUyZUM0OYxGI06cOCGKBQYGYs6cOTJlRK6AxZccJjw8HJGRkaKYXq93+iVIiYZjtVqRl5cHq9Uqiufm5sLHx0emrMgVsPiSQw3tfk0mE7tfcll6vV6ylK5Wq0VERIRMGZGrYPElh4qIiJD8YmL3S66ovb0dhYWFolhwcDBmz54tU0bkSlh8yeGG7mx05swZVFVVyZMM0ThYLBbk5eXh3E3hFAoFcnNz4e3tLWNm5CpYfMnhIiIiEB4eLorp9XrJeTMiZ1VUVASj0SiK6XQ6TJs2TaaMyNWw+JLDKRQKSffb09OD6upqmTIiGr3W1lbo9XpRTK1WS65nIBoJiy/JYvr06ZIuobi4mN0vObWBgQHJ4WalUomFCxfCy8tLxszI1bD4kiwUCoWkU+ju7kZNTY1MGRGd38mTJ9HV1SWKpaenIzQ0VJ6EyGWx+JJsoqKioNFoRLGioiJ2v+SUmpubYTAYRDGNRgOdTidTRuTKWHxJNsN1v7W1tTJlRGRff38/8vPzRTGlUonc3Fwolfw1SmPH7xqSVXR0NMLCwkQxnvslZ/P999+jp6dHFMvMzERISIhMGZGrY/ElWdnrfjs7O1FfXy9TRkRiTU1Nkh24wsPDkZKSIlNG5A5YfEl2MTExkgtWCgsLRVeUEsmhr69PcrjZy8uLh5tpwvjdQ7Jj90vO6ujRozCZTKLY3LlzERQUJFNG5C5YfMkpxMbGSs6fsfslOdXX10sWfomMjERycrJMGZE7YfElp2Cv+zUajWhoaJApI/JkZrMZBQUFopiPjw9ycnKgUChkyorcCYsvOY24uDgEBweLYkVFRex+yaEEQcDhw4dhNptF8aysLAQEBMiUFbkbFl9yGkqlUtL9tre3o7GxUaaMyBPV1tairq5OFIuJiUFiYqI8CZFbYvElpxIfH8/ul2RjMplw5MgRUczX1xfZ2dk83EyTyumKb3d3N7Zu3YqrrroKGo0GCoUCr732mt2xxcXFuOqqqxAUFASNRoO1a9fi9OnTjk2YJpVSqURaWpoo1tbWhqamJpkyIk8hCAIKCgrQ19cnimdnZ8Pf31+mrMhdOV3xbWlpwZNPPoni4mLMnTt32HF1dXVYsmQJysrKsG3bNjzyyCPYt28fli1bJvnhIdeSkJCAwMBAUYzdL021qqoqySmO+Ph4xMfHy5QRuTNvuRMYKjo6Go2NjYiKikJBQQFycnLsjtu2bRt6enpw+PBhJCQkAAByc3OxbNkyvPbaa7jnnnscmTZNosHu99yrTVtbW9Hc3IzIyEgZMyN31dPTg6NHj4pifn5+mD9/vkwZkbtzus5XpVIhKirqvOPee+89XHvttbbCCwBLly6FVqvFO++8M5UpkgMkJiZKul/e90tTYfBw88DAgCienZ0NlUolU1bk7pyu+I5GfX09mpubsWDBAslzubm5kr9gz2U2m9HZ2Sn6IOejVColW7W1tLTwnD5NuvLycpw6dUoUS0xMRGxsrEwZkSdwyeI7eF4mOjpa8lx0dDTa2tok9+gNevrpp6FWq20fPJ/jvBITEyX3VRYWFsqUDbmjrq4ufP/996KYv78/srKy5EmIPIZLFt/BtVbtHRLy8/MTjRlq8+bNMBqNtg/uHeu8vLy8JN3v6dOn2f3S6B06NOxTVqsV+fn5sFgstli4Xo+cnBz4+vo6IjvyYC5ZfAcv+7fX3fb29orGDKVSqRASEiL6IOeVlJQkmcuioiKZsiGX8qtfARdfDGzfbvfp0tJStLS02B7r9uzB5Vu3IuqllxyUIHkylyy+g4eb7a181NjYCI1Gwwsl3IS97vfUqVOiX5pEEocOAU88cfbfmzZJCrDRaMSJEydsj3V79mDO22+fffDEEyN2zESTwSWLb2xsLCIiIiQLnwNAXl4ez9e4maSkJNvphEHsfmlEixcDzzzzw+NzCrDVakVeXh6sViuAIYUXOPu6xYsdmS15IJcsvgBw0003Ye/evaJztp999hkMBgNWr14tY2Y02by9vSXdb1NTE1pbW2XKiFzCxo12C7Ber0d7ezuAYQrvxo0OTpQ8kUJwwhsnd+7ciY6ODjQ0NODFF1/EjTfeiHnz5gEA1q9fD7VajdraWsybNw+hoaF44IEH0N3djR07diAuLg75+fmjPuzc2dkJtVoNo9HI879ObGBgAPv27ROd54+OjsbFF18sY1bkErZvP1t4/+34mjXQX389Cy/JyimLb2JiomQT60GVlZW23UUKCwvx0EMP4dChQ/D19cWKFSvw7LPPjmkVJBZf16HX63H8+HFRbOnSpdBoNDJlRK6i/ze/gc+WLbbH5qAgqLq7fxjAwksO5pTF15FYfF1Hf38/PvroI1H3GxMTg8U8P0fD6OjoQElJCWpra6F9/31xpzuIhZdkwOLL4utSiouLRVepAsCyZcsQFhYmU0bkbARBQFNTE0pKStDc3Cx67vqf/ETU8QoaDRS8doBk4LIXXJFnmjVrlmQBhOLiYpmyIWdisVhQUVGBTz75BAcPHpQUXt2ePeJDzQAUbW3D3gdMNJWcblcjopH4+PhAq9Xi5MmTtlhdXR2MRiPUarWMmZFczGYzysrKUFZWNuyyspKLqzQaoK3t7L8HL8bioWdyIHa+5HJmzZoFHx8fUYz3/Xqerq4uHD58GHv37kVhYeGwhTdj3z7pVc2trcPeB0zkCOx8yeX4+vpCq9WKNlmora1Feno6u183JwgCTp8+DYPBgIaGhhHHhoSEIOeLLzDt9dd/CJ57cdXgfwc7X3bA5EAsvuSSUlJSYDAY0N/fb4sVFxfjggsukDErmipWqxV1dXUoKSmxLZAxnOnTpyM1NRVRf/kLFP/93z88Ye+qZhZgkgmvdubVzi7rxIkTooutFAoFli9fznl0I319faisrERpaSnOnDkz7DiFQoGEhARotdqzV74fOnR2U4VB57udaMhCHDh4kEtM0pRi50suS6vVorS0FAMDAwDOHpIsLi7GwoULZc6MJqqnpwelpaWoqKiwza89Pj4+SE5OxqxZs8R7Py9eDGzdenaThNHcx3tuB7x1KwsvTTl2vux8Xdrx48eh1+ttjxUKBa666ioEBwfLmBWNV1tbG0pKSlBXV4eRfjUFBgYiJSUFSUlJkovvRA4dGlshHet4onFi8WXxdWlmsxn79u0TdUdJSUnIycmRMSsaC0EQ0NDQAIPBgNOnT484dtq0adBqtYiNjYVSyZs1yHXxsDO5NJVKheTkZJSUlNhiVVVVSEtLQ1BQkIyZ0fkMDAygqqoKpaWl6OrqGnacQqFAbGwstFotwsPDHZgh0dRh8SWXl5qairKyMlgsFgBnOym9Xo8FCxbInBnZ09vbi9LSUpSXl6Ovr2/Ycd7e3khMTIRWq+UfUuR2WHzJ5fn5+SE5ORkGg8EWG+x+AwMDZcyMzmU0GmEwGFBdXW3byN4ef39/zJo1C8nJyZKlRIncBYsvuYXB7nfwl7rVaoVer0d2drbMmXk2QRDQ3NyMkpISNDU1jThWrVYjNTUV8fHx8PLyclCGRPJg8SW34O/vj5kzZ6KsrMwWq6ysRFpamvgWFHIIi8WC2tpaGAwGdHR0jDg2KioKqampmD59OhQKhWMSJJIZiy+5DZ1Oh4qKCkn3O3/+fJkz8xx9fX0oLy9HWVkZTCbTsOOUSiVmzJgBrVbLJUHJI7H4ktsICAhAUlISysvLbbGKigqkpaXB399fxszcX3d3NwwGAyorK20Xvtnj6+uLWbNmYdasWfDz83NghkTOhcWX3IpOp0NlZaWk+503b57MmbmnlpYWlJSUoKGhYcRFMYKCgqDVapGYmAhvb/7aIeJPAbmVwMBAJCYmoqKiwharqKiATqdj9ztJrFYr6uvrYTAY0NraOuLYiIgIaLVaxMTE8Hwu0TlYfMntpKWlobKy0taJWSwWGAwGzJ07V+bMXFt/f79tk4Oenp5hxykUCsTFxSE1NRUajcaBGRK5DhZfcjuD3W9lZaUtVlZWhtTUVJ5nHIczZ86grKwM5eXloi0ch/L29sbMmTORkpLC+6uJzoPFl9xSWloaqqqqJN3vnDlzZM7MdXR0dKCkpAQ1NTUjns8NCAiwbXLARTGIRofFl9xSUFAQZsyYgaqqKltssPtVqVTyJebkBEFAU1MTSkpK0NzcPOLYsLAwpKamIi4ujpscEI0Riy+5rbS0NFRXV9u6toGBARgMBmRmZsqcmfOxWCyorq6GwWBAZ2fniGNjYmKQmpqK8PBwXkRFNE4svuS2goODER8fj5qaGlustLQUqampPDz6b2azGWVlZSgrK4PZbB52nJeXl22TA+6VTDRxLL7k1tLT00XFd7D7nT17toxZya+zs9O2ycFIi2KoVCrbohg8XE80eVh8ya2FhIQgPj4etbW1tlhpaSm0Wq3Hdb+CIOD06dMwGAxoaGgYcWxISAi0Wi1mzJjBTQ6IpgCLL7m99PR0UfHt7+9HWVkZ0tPTZczKcaxWK+rq6lBSUoL29vYRx0ZGRkKr1SIqKornc4mmEIsvuT21Wo24uDjU1dXZYgaDASkpKfDx8ZExs6nV19eHiooKlJWV4cyZM8OOUyqViI+PR2pqKkJDQx2XIJEHY/Elj5Ceni4qvn19fSgrK0NaWpqMWU2Nnp4elJaWoqKiAgMDA8OO8/HxQXJyMmbNmsVtF4kcjMWXPEJoaChiY2NRX19vi5WUlGDWrFlu0/22tbWhpKQEdXV1Iy6KERgYaNvkwF2+diJXw+JLHiM9PV1UfAf3ntXpdDJmNTGCIKChoQElJSVoaWkZcey0adOQmpqKmJgYLopBJDMWX/IYYWFhiI6ORmNjoy022P262jZ3AwMDqKqqgsFgQHd397DjFAoFYmNjodVqER4e7sAMiWgkrvUbh2iCMjIyRMXXbDajvLwcqampMmY1eiaTybbJQV9f37DjvL29bYtiBAUFOTBDIhoNFl/yKBqNBlFRUWhqarLFSkpKkJyc7NTdr9FotG1yYLVahx3n7++PWbNmITk52ePuYyZyJc7724ZoiqSnp4uKb29vLyoqKqDVamXMSkoQBJw6dQoGg0GUrz2hoaHQarWIj4/nohhELoDFlzxOeHg4IiMjcerUKVtssPt1hsJlsVhQW1uLkpISGI3GEcdGRUUhNTUV06dP56IYRC6ExZc8Unp6uqj4mkwmVFZWYtasWbLlZDabUVFRgdLSUvT29g47TqlUYsaMGdBqtVCr1Q7MkIgmC4sveaSIiAhMnz5dtGdtcXExkpKSHN79dnd3w2AwoLKycsRNDnx9fW2bHPj5+TkwQyKabCy+5LHS09NFxddkMqGqqgrJyckO+fwtLS0oKSkR3XtsT3BwsG2TA2e+KIyIRo8/yeSxpk+fjoiICJw+fdoWG+x+p2oRCqvVivr6ehgMBrS2to44NiIiAqmpqYiOjub5XCI3w+JLHi09PR3//Oc/bY/PnDmDqqoqzJw5c1I/T39/PyorK1FaWoqenp5hxykUCsTHx0Or1UKj0UxqDkTkPFh8yaNNnz4d06ZNE3WhxcXFSExMnJTu98yZM7ZNDvr7+4cd5+3tjZkzZyIlJQWBgYET/rxE5NxYfMmjKRQKZGRk4KuvvrLFenp6UFNTg8TExHG/b3t7OwwGA2pqakbc5CAgIAApKSmYOXMmNzkg8iAsvuTxIiMjkdTQgMqYGFusqKgICQkJw3e/hw4BixeLQoIgoKmpCSUlJaILuewJCwtDamoq4uLiuMkBkQfiTz15PMUTTyDnwQeh27PHFuvu7kZtba39F2zfDlx8MfCrXwE4uyhGRUUFPvnkExw8eHDEwhsTE4PLLrsMS5cuHbm4E5FbUwgjHRPzAJ2dnVCr1TAajQgJCZE7HXK0Q4fOFtJ/O75mDfTXXw/g7C0+y5cvFxfI7duBTZtsDytffx3HQ0JgNpuH/RReXl62TQ6Cg4Mn/2sgIpfj0n92m81mbNy4ETExMfD398fChQuxf/9+udMiV7J4MfDMM7aHc95+29YBd3V1oa6u7oexQwrvidtuQ75KNWzh9fPzw+zZs3HttdciOzubhZeIbFz6nO9dd92F3bt3Y8OGDUhJScFrr72Ga665Bl988QUWDzkfRzSsjRvP/vffhXXO228DAPTXX4+ioiLEx8cD27dDsXmz7SXH16yBfuVKu28XEhJiWxTDGdaKJiLn47KHnfPy8rBw4ULs2LEDjzzyCICzu9PMnj0b06dPxzfffDOq9+FhZ7IZ0tkOHoK+6OuvEfv730viQ0VGRkKr1SIqKoqLYhDRiFy28929eze8vLxwzz332GJ+fn74yU9+gkcffRS1tbVnOxai0dq4EYIg2DrcOW+/jdS//x2q7m7bkKGFV6lUIiEhAVqtFqGhoY7OmIhclMsW36NHj0Kr1Uq61dzcXADAsWPH7BZfs9ksOkfX2dk5tYmSS1Fs2oQOoxGh/z4PPFzh9fX1tS2K4e/vL0uuROS6XPaCq8bGRkRHR0vig7GGhga7r3v66aehVqttH+yOaaiQp55C35CLo8xBQdBffz0CAwMxb948rFixAnPmzGHhJaJxcdniazKZoFKpJPHBrdZMJpPd123evBlGo9H2Mey9nOSxlDt2wLerSxRTdXdj+bFjuPrqq5GSksLVqIhoQlz2sLO/v7/dWzwGNyEfriNRqVR2izYRAMlFV5bQUHh1dAAA1E8/DajVP1wdTUQ0Ti7b+UZHR6OxsVESH4zFnLNUINGoDCm8eOYZeLW3i+4DxqZNZ8cREU2AyxbfrKwsGAwGyQVT3333ne15olGzU3htHe7GjSzARDSpXLb4rlq1ChaLBbt27bLFzGYzXn31VSxcuJAXUtHojVR4B7EAE9EkctlFNgDg5ptvxvvvv48HH3wQs2bNwl/+8hfk5eXhs88+w5IlS0b1Hlxkw8MNWdvZbuE919BCffCgZHcjIqLzcdnOFwBef/11bNiwAW+88Qbuv/9+9Pf3Y+/evaMuvERYvBjYuvXsv89XeAFxB7x1KwsvEY2LS3e+k4GdLwGwuz/vpI4nIjoHiy+LLxEROZhLH3YmIiJyRSy+REREDsbiS0RE5GAsvkRERA7G4ktERORgLL5EREQOxuJLRETkYCy+REREDsbiS0RE5GAsvkRERA7G4ktERORgLL5EREQOxuJLRETkYCy+REREDsbiS0RE5GAsvkRERA7G4ktERORgLL5EREQOxuJLRETkYCy+REREDuYtdwJyEwQBANDZ2SlzJkRE5AyCg4OhUCim9HN4fPHt6uoCAMTHx8ucCREROQOj0YiQkJAp/RwKYbD181BWqxUNDQ0T/kuns7MT8fHxqK2tnfJJI8fgnLonzqv7mew5ZefrAEqlEnFxcZP2fiEhIfyBdjOcU/fEeXU/rjSnvOCKiIjIwVh8iYiIHIzFd5KoVCps3boVKpVK7lRoknBO3RPn1f244px6/AVXREREjsbOl4iIyMFYfImIiByMxZeIiMjBWHyJiIgcjMWXiIjIwVh8J6i7uxtbt27FVVddBY1GA4VCgddee03utGic8vPzcd999yEjIwOBgYFISEjAzTffDIPBIHdqNAGFhYVYvXo1Zs6ciYCAAISHh2PJkiX48MMP5U6NJtFTTz0FhUKB2bNny53KeXn88pIT1dLSgieffBIJCQmYO3cuvvzyS7lTognYvn07vv76a6xevRpz5sxBU1MTdu7cifnz5+Nf//qXS/xQk1R1dTW6urpw5513IiYmBmfOnMF7772HlStX4uWXX8Y999wjd4o0QXV1ddi2bRsCAwPlTmVUeJ/vBJnNZrS3tyMqKgoFBQXIycnBq6++irvuukvu1GgcvvnmGyxYsAC+vr62WGlpKTIzM7Fq1Sq8+eabMmZHk8lisSA7Oxu9vb3Q6/Vyp0MTdOutt+L06dOwWCxoaWnByZMn5U5pRDzsPEEqlQpRUVFyp0GTZNGiRaLCCwApKSnIyMhAcXGxTFnRVPDy8kJ8fDw6OjrkToUm6KuvvsLu3bvxu9/9Tu5URo2HnYnOQxAEnDp1ChkZGXKnQhPU09MDk8kEo9GIv//97/j4449xyy23yJ0WTYDFYsH69etx9913IzMzU+50Ro3Fl+g83nrrLdTX1+PJJ5+UOxWaoIcffhgvv/wygLPbid54443YuXOnzFnRRLz00kuorq7GgQMH5E5lTFh8iUag1+uxbt06XHjhhbjzzjvlTocmaMOGDVi1ahUaGhrwzjvvwGKxoK+vT+60aJxaW1vx+OOPY8uWLYiIiJA7nTHhOV+iYTQ1NWHFihVQq9XYvXs3vLy85E6JJkin02Hp0qW44447sHfvXnR3d+O6664Drzt1TY899hg0Gg3Wr18vdypjxuJLZIfRaMTVV1+Njo4O/OMf/0BMTIzcKdEUWLVqFfLz83kftwsqLS3Frl27cP/996OhoQFVVVWoqqpCb28v+vv7UVVVhba2NrnTHBaLL9EQvb29uO6662AwGLB3716kp6fLnRJNEZPJBODsH1vkWurr62G1WnH//fcjKSnJ9vHdd9/BYDAgKSnJqa/T4DlfonNYLBbccsst+Pbbb7Fnzx5ceOGFcqdEk6C5uRnTp08Xxfr7+/H666/D39+ff2C5oNmzZ+P999+XxB977DF0dXXhhRdeQHJysgyZjQ6L7yTYuXMnOjo60NDQAAD48MMPUVdXBwBYv3491Gq1nOnRGDz88MP4+9//juuuuw5tbW2SRTVuv/12mTKjifjZz36Gzs5OLFmyBLGxsWhqasJbb70FvV6PZ599FkFBQXKnSGMUHh6OG264QRIfvNfX3nPOhCtcTYLExERUV1fbfa6yshKJiYmOTYjG7dJLL8U///nPYZ/nj4tr+tvf/oZXXnkFJ06cQGtrK4KDg5GdnY3169dj5cqVcqdHk+jSSy91iRWuWHyJiIgcjBdcERERORiLLxERkYOx+BIRETkYiy8REZGDsfgSERE5GIsvERGRg7ll8f3v//5v6HQ6WK1WuVOZUhdccAH+67/+S+40HMJT5vTWW2/FzTffLHcaDuMp87pp0yYsXLhQ7jQcwlPm9KWXXkJCQgLMZvP43kBwM0ajUdBoNMKf//xnWwyAAED4yU9+Yvc1jz76qG3M6dOnx/T5LBaLsH37diExMVFQqVRCZmam8Pbbb9sdW1RUJCxfvlwIDAwUwsLChNtvv11obm4e93v+3//9nxAQECA0NjaOKWdX4+g5/c1vfiNcd911wvTp0wUAwtatW4cdW1dXJ6xevVpQq9VCcHCwsHLlSqG8vNzu2D/96U+CTqcTVCqVMGvWLOH3v/+9ZMyRI0cEpVIpHDt2bEw5uyJnnVe9Xi9s2LBBuPDCCwWVSiUAECorK4d93z179gjz5s0TVCqVEB8fLzz++ONCf3+/aExjY6OgUqmEPXv2jClnV+MOc/q3v/1NuO2224RZs2YJAIRLLrnE7jiTySRERkYKL7zwwphyHuR2xff5558XQkJCBJPJZIsBEPz8/ITQ0FDBbDZLXpOUlCT4+fmNa/I3bdokABB++tOfCrt27RJWrFghABD++te/isbV1tYK4eHhQnJysvDCCy8ITz31lBAWFibMnTtXktNo39NisQhRUVHCli1bxpSzq3H0nAIQoqKihOXLl4/4A93V1SWkpKQI06dPF7Zv3y4899xzQnx8vBAXFye0tLSIxr700ksCAOGmm24Sdu3aJaxdu1YAIDzzzDOS983NzRXWrl07ppxdkbPO66uvvioolUph9uzZQlZW1oi/qD/66CNBoVAIl112mbBr1y5h/fr1glKpFH7+859Lxt58883CxRdfPKacXY07zOkll1wiBAUFCZdddpkQFhY2bPEVBEH4r//6L2HGjBmC1WodU96C4IbFd86cOcLtt98uigEQbrjhBkGpVAoffPCB6Lmvv/7a9ktxrJNfV1cn+Pj4COvWrbPFrFarcPHFFwtxcXHCwMCALf6LX/xC8Pf3F6qrq22x/fv3CwCEl19+eVzvKQiCcN9994178l2FI+dUEATbD+Xp06dH/IHevn27AEDIy8uzxYqLiwUvLy9h8+bNttiZM2eEadOmCStWrBC9/rbbbhMCAwOFtrY2Ufy3v/2tEBgYKHR1dY0pb1fjrPPa2toqdHZ2CoIgCDt27BjxF3V6erowd+5cUaf7y1/+UlAoFEJxcbFo7O7duwWFQjHskRF34A5zWlNTI1gsFkEQBCEjI2PE4ltQUCAAED777LMx5S0IguBW53wrKytx/PhxLF26VPJcbGwslixZgrffflsUf+utt5CZmYnZs2eP+fPt2bMH/f39uPfee20xhUKBX/ziF6irq8O3335ri7/33nu49tprkZCQYIstXboUWq0W77zzzrjeEwCWLVuG6upqHDt2bMz5uwJHzymAUa/FvXv3buTk5CAnJ8cW0+l0uOKKK0Rz+sUXX6C1tVU0pwCwbt069PT0YN++faL4smXL0NPTg/37948rf1fgzPOq0WgQHBx83nFFRUUoKirCPffcA2/vH/aouffeeyEIAnbv3i0aP/i17tmzZ/RJuxB3mFMAiI+Ph1I5utKYnZ0NjUYzrjl1q+L7zTffAADmz59v9/k1a9bgww8/RHd3NwBgYGAA7777LtasWTOuz3f06FEEBgYiLS1NFM/NzbU9D5zdd7K5uRkLFiyQvEdubq5t3Fjec1B2djYA4Ouvvx7X1+DsHD2no2W1WnH8+PFh57S8vBxdXV0AfpizoWOzs7OhVColc5qeng5/f3+3nVPAeed1LIab15iYGMTFxUnmVa1WIzk52W3n1R3mdDzmz58/rjl1q+Kr1+sBAElJSXafX7VqFSwWCz744AMAwKeffoqWlhb86Ec/Gtfna2xsRGRkJBQKhSgeHR0NALYtBhsbG0XxoWPb2tpsV8yN9j0HxcbGwtfXF0VFReP6Gpydo+d0tAbnbLg5BcTz7+XlJdlP1tfXF9OmTZPMqbe3N+Lj4912TgHnndexON/P9dB5BYCZM2e67by6w5yOx3jn1K2Kb2trK7y9vYfdmzMsLAxXXXUV/vrXvwIA3n77bSxatAgzZswY1+czmUxQqVSSuJ+fn+35c/872rGjGXeusLAwtLS0jOdLcHqOntPRGuuc+vr62n0fPz8/j5tTwHnndSzO9z3gafPqDnM6HmFhYTCZTDhz5syYXudWxXc01qxZg/3796OmpgYffPDBhA55+Pv7273Hq7e31/b8uf8d7djRjDuXIAiSTtmTTOacjtZY57Svr8/u+/T29nJOhyHHvI7F+b4HOK9Szj6n4yH8e1fesc6rWxXfadOmYWBgwHauzZ6VK1dCpVLhzjvvhNlsntCCBtHR0WhqapJssD54OComJsY27tz40LEajcb21/No3/NcHR0dCA8PH/fX4cwcPaejNThnw80pIJ5/i8WC5uZm0bi+vj60trbandP29na3nVPAeed1LM73c+1p8+oOczoe7e3tCAgIsPvH1kjcqvjqdDoAZ6+6G46/vz9uuOEGfPnll1i2bNmEfhCysrJw5swZFBcXi+Lfffed7Xng7HnZiIgIFBQUSN4jLy/PNm4s7zmovr4efX19kgu03IWj53S0lEolMjMz7c7pd999h5kzZ9qurhycs6FjCwoKYLVaJXM6MDCA2tpat51TwHnndSyGm9eGhgbU1dVJ5hU4+/W667y6w5yOx3jn1K2K74UXXghA+sMw1COPPIKtW7diy5YtE/p8119/PXx8fPCHP/zBFhMEAS+99BJiY2OxaNEiW/ymm27C3r17UVtba4t99tlnMBgMWL169bjeEwAOHz4MAJK4u3D0nI7FqlWrkJ+fL8qtpKQEn3/+uWhOL7/8cmg0Grz44oui17/44osICAjAihUrRPGioiL09va67ZwCzj2vo5WRkQGdToddu3bBYrHY4i+++CIUCgVWrVolGm80GlFeXu628+oOczoeR44cGdecep9/iOuYOXMmZs+ejQMHDuA///M/hx03d+5czJ07d8KfLy4uDhs2bMCOHTvQ39+PnJwcfPDBBzh48CDeeusteHl52cY++uijePfdd3HZZZfhgQceQHd3N3bs2IHMzEz8+Mc/Htd7AsD+/fuRkJCAefPmTfjrcUaOnlMAeOONN1BdXW27gOKrr77Cb37zGwDA2rVrbReI3HvvvfjjH/+IFStW4JFHHoGPjw+ee+45REZG4uGHH7a9n7+/P379619j3bp1WL16NZYvX46DBw/izTffxFNPPQWNRiP6/Pv370dAQACWLVs2KV+PM3LmeTUajfif//kfAD/cwrdz506EhoYiNDQU9913n+09d+zYgZUrV+LKK6/ErbfeipMnT2Lnzp24++67Jd3QgQMHIAgCrr/++kn5epyNu8zpV199ha+++goAcPr0afT09Njec8mSJViyZIlt7OHDh9HW1ja+OR3zshxO7rnnnhOCgoKEM2fO2GIARCtG2bN169Zxr+28bds2YcaMGYKvr6+QkZEhvPnmm3bHnjx5UrjyyiuFgIAAITQ0VLjtttuEpqamcb+nxWIRoqOjhccee2xMObsaR8/pJZdcYltrdujHF198IRpbW1srrFq1SggJCRGCgoKEa6+9VigtLbX7vrt27RJSU1MFX19fITk5WXj++eftrky2cOFCySpB7shZ57WysnLYcTNmzJC87/vvvy9kZWUJKpVKiIuLEx577DGhr69PMu6WW24RFi9ePKacXY07zOlgLvY+hq6gtXHjRiEhIYHLSwqCIHR0dAgajUb405/+JHcqU+79998X/P39hYaGBrlTmVKeNKdHjx4VFAqFcPToUblTmXKeNK+NjY2Cn5+fZHlFd+NJc9rb2ytERUUJv/vd78b1ercrvoIgCM8884yQmppqW5/TXV1wwQXC//t//0/uNBzCU+b0lltuEVavXi13Gg7jKfO6ceNGIScnR+40HMJT5vTFF18U4uPjhd7e3nG9XiEIQ+5pIZhMJhiNxhHHaDSaYRdOIOfDOXVPnFf34zFzOql/CriJV199ddhj/rBzPoGcH+fUPXFe3Y+nzCk7XzsaGxtRWFg44pjs7GyEhYU5KCOaKM6pe+K8uh9PmVMWXyIiIgdzq0U2iIiIXAGLLxERkYOx+BIRETkYiy8REZGDsfgSERE5GIsvERGRg7H4EhEROdj/B3jKilAyAVNPAAAAAElFTkSuQmCC", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], + "outputs": [], "source": [ "petab_select.plot.line_best_by_iteration(\n", " models=models,\n", @@ -314,21 +147,10 @@ }, { "cell_type": "code", - "execution_count": 6, + "execution_count": null, "id": "862a78ef", "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA7YAAAOwCAYAAAAKo+iFAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAC3hElEQVR4nOzdd3xUVeL+8WfSCCWht4QuAUnovROQEggloSgiXQTsigoroq6oiy64siqyoDI0BRGYIbTQEQkEJBBaKBlAiAmCdEKAtPn94Y98l6UlkOTOJJ/36+Ufe++5Nw++XJIn58w5JrvdbhcAAAAAAE7KxegAAAAAAAA8CootAAAAAMCpUWwBAAAAAE6NYgsAAAAAcGoUWwAAAACAU6PYAgAAAACcGsUWAAAAAODUKLYAAAAAAKfmlplB6enpSkhIkJeXl0wmU05nAgAAAADkc3a7XVevXpWPj49cXO4/J5upYpuQkKCKFStmSzgAAAAAADIrLi5OFSpUuO+YTBVbLy+vjBd6e3s/ejIAAAAAAO7jypUrqlixYkYfvZ9MFdtby4+9vb0ptgAAAACAXJOZj8OyeRQAAAAAwKlRbAEAAAAATo1iCwAAAABwahRbAAAAAIBTo9gCAAAAAJwaxRYAAAAA4NQotgAAAAAAp0axBQAAAAA4NYotAAAAAMCpUWwBAAAAAE6NYgsAAAAAcGoUWwAAAACAU6PYAgAAAACcGsUWAAAAAODUKLYAAAAAAKdGsQUAAAAAODWKLQAAAADAqVFsAQAAAABOjWILAAAAAHBqFFsAAAAAgFOj2AIAAAAAnBrFFgAAAADg1Ci2AAAAAACnRrEFAAAAADg1ii0AAAAAwKlRbAEAAAAATo1iCwAAAABwahRbAAAAAIBTo9gCAAAAAJwaxRYAAAAA4NQotgAAAAAAp0axBQAAAAA4NYotAAAAAMCpUWwBAAAAAE6NYgsAAAAAcGoUWwAAAACAU6PYAgAAAACcGsUWAAAAAODUKLYAAAAAAKdGsQUAAAAAODWKLQAAAADAqbkZHQBA9ouNjdXVq1eNjuFwvLy85OfnZ3QMAAAAZDOKLZDHxMbGqkaNGkbHcFhHjx6l3AIAAOQxFFsgj7k1UztwxkCVrVHW4DSO48zRM5o/aj4z2QAAAHkQxRbIo8rWKKuK9SoaHQMAAADIcWweBQAAAABwahRbAAAAAIBTo9gCAAAAAJwan7EFAADAI+GYuTtxxByQuyi2AAAAeGgcM3dvHDEH5B6KLQAAAB7arZnal156Sb6+vgancQzx8fH66quvmMUGchHFFgAAAI/M19dX1apVMzoGgHyKzaMAAAAAAE6NYgsAAAAAcGoUWwAAAACAU6PYAgAAAACcGsUWAAAAAODUKLYAAAAAAKdGsQUAAAAAODWKLQAAAADAqVFsAQAAAABOjWILAAAAAHBqFFsAAAAAgFOj2AIAAAAAnBrFFgAAAADg1Ci2AAAAAACnRrEFAAAAADg1ii0AAAAAwKlRbAEAAAAATs3N6AAAjLHjhx1a8NICSdIrq15RtebVbrtvt9v1QZ0PdCnhkvw7+2vkwpGZfvelhEuyvmPV4U2HZU+3y6+Nn0I+DlGpKqXuGBs5L1Ibv9qoC6cuqJhvMbUd2VZtR7a9bcyZ2DPaZt6mk1En9fu+35V6M1XvRr+rkpVKPsSfHAAAAHkNM7ZAPufu6a6oxVF3XLdF2HQp4ZLcCmTt9183E29qWq9psm2zqdOYTur6t676fd/v+qr7V7p24dptYyNmR2jhqwtV/vHy6vNJH1VpUkVL/7ZU6/+9/rZxv/36m7bM3KKbiTdVtkbZrP8hAQAAkKcxYwvkc7U61lL0smj1/qS3XN1cM67vXrxbFetXVOL5xCy9b+usrfrz2J8as36MKjWslPE1Pm31qTZN26Tu73aXJCVfT9aqj1bJv7O/hs0ZJklqMaSF7Ol2rZ2yVi2HtFShYoUkSbW71takE5Pk6eWpjV9uVPz++Oz4owMAACCPYMYWyOca9mmopAtJOrLpSMa11ORU7Q3bq4Z9Gmb5fXvD9qpSw0oZpVaSytYoK7+2foq2Rmdcs2216dqFa2r9bOvbnm/9bGslX0tWzNqYjGuFixeWp5dnlrMAAAAgf6DYAvlciUolVKVJFe1eujvj2qH1h3T9ynU17J21Ypuenq6EgwmqWL/iHfcqN6yscyfO6cbVG5Kk3/f9Lkl3jK1Yv6JMLqaM+wAAAMCDUGwBqGHfhtq/cr+SrydLkqJ+ilL1VtVVtHzRLL0n6WKSUm+myrus9x33vMv9de3yH5clSVfOXJGLq4u8SnvdNs7Nw02FSxTOGAcAAAA8CMUWgBqENFDKjRTFrInRjas3dHDtwYdahpxyPUWS7rrh1K1rKTdSMsa6erjeMe7W2FvjAAAAgAdh8ygAKlKqiGq0q6GoJVFKvp6s9LR01etVL8vvcS/oLklKvZl6x71b19w93TPGpiWn3fU9qTdTM8YBAPKGzZs3a/r06ZKkDz74QI8//vht9+12u1588UWdP39eDRs21Lhx4zL13oSEBK1bt042m00nTpxQSkqKvvzyS5UpU+aOsdu2bVNUVJRsNpv++OMP+fv76/33379j3I0bNxQWFiabzSabzaZr167p+eefV2BgYNb/4AByBTO2ACRJjfo20qH1hxRhjlCtjrVUqGihLL+jUPFCcivgpitnrtxx78off10rWu6v5c3eZb2Vnpauq39evW1canKqrl24ljEOAJC3uLu7a+vWrXdcj4mJ0fnz5+XunrVfbB49elSrV6/W9evX5evre9+x69at065du1SyZEkVLlz4nuOuXLmiJUuWKD4+XpUrV85SHgDGoNgCkCTVDa4rk4tJJ3edVKM+jR7qHS4uLirvX15x0XF33DsZdVIlq5TM2N3Yt85fP3z879i4PXGyp9sz7gMA8pYGDRooMjJSaWm3r9qJiIhQtWrVVKxYsSy9r3HjxjKbzZoyZYpat25937EvvviizGaz3nvvPRUvXvye44oXL64ZM2Zo2rRpGjhwYJbyADAGxRaAJKlAkQLqN6WfgsYFKSAo4KHfU69nPZ3afUqn9pzKuHYm9oxif4lV/V71M675tfFToeKFFDEr4rbnI8wR8ijkIf/O/g+dAQDguFq1aqXExETt27cv41pqaqoiIyPVqlWrLL+vSJEiKliwYKbGlipVSi4uD/7x193dPcsFG4Cx+IwtgAxNn276yO9oPby1IudGamb/merwYge5uLto89eb5VXGS+1fbJ8xzqOgh7qN76bFby2WeahZj3d4XMcjj2vXol0KnhCswsX/b4nY9SvX9cvMXyRJx3cclyRt/WarChYtqIJFC6rNc20eOTcAIHeULl1afn5+ioiIUIMGDSRJe/bsUVJSklq2bKnw8HCDEwJwRhRbANnK08tTL4W9JMs7Fq39bK3sdruqt6qukI9DVKRUkdvGtn62tVzdXLXp6006EH5AxX2LK+TjELUb3e62cUmXkrTqH6tuu7Zp2iZJUvGKxSm2AOBkWrdurQULFig5OVkeHh7aunWr/P39VaJECaOjAXBSFFsgn2o2oJmaDWj2wHHv771zt8gHKeZbTMNmD8vU2BZDWqjFkBb3HVOyUklNvTA1yzkAAI6pRYsWmjNnjqKiolS/fn3t3r1bQ4cONToWACdGsQUAAECu8vb2Vp06dRQREaHk5GSlp6erefPmRscC4MQotgAy5drFa/c8d1aSXFxd7lhqDADAvbRq1UozZ87UpUuXVL9+/fsevwMAD0KxBZApswbP0rGIY/e8X7xi8YdatgwAyJ+aNm2qb775RrGxsXrttdeMjgPAyVFsAWRKyIchSrqUdM/77p7uuZgGAODsPD09NWLECJ09e1aNGj3c+ekAcAvFFkCmVKxf0egIAIA8pl27dg8e9ABJSUlavXq1JOno0aOSpDVr1qhQoUIqXLiwgoKCMsbGxMTo0KFDkqSrV6/q5s2bWrJkiSSpVq1a8vf/vzPUw8PDde3aNV28eFGSFBUVpfPnz0uSunbtqkKFCj1ydgDZh2ILAAAAp5WYmKhFixbddm3FihWS/joz97+L7cGDB7V48eLbxt56tm/fvrcV2xUrVujPP//M+N87d+7Uzp07JUlt2rSh2AIOhmILAACAHBcYGKjAwMAHjvvqq6+y9N4yZcroxx9/zNTYfv36qV+/fpkam9UcAIzlYnQAAAAAAAAeBTO2AAAAcDiJiYlKTU29530XFxd5e3vnYiIAjoxiCwAAAIfz2WefKSYm5p73S5cuzXJhABkotgAAAHA4gwYNUmJi4j3ve3h45GIaAI6OYgsAAACHU61aNaMjAHAibB4FAAAAAHBqFFsAAAAAgFOj2AIAAAAAnBrFFgAAAADg1Ci2AAAAAACnRrEFAAAAADg1ii0AAAAAwKlRbAEAAAAATo1iCwAAAABwam5GBwAAo+3du1cDBgxQixYtVKdOHVWqVEmVKlVS5cqVVbJkSZlMJqMjAgAA4D4otgDyvWvXrikmJkYxMTEymUyy2+0Z90qUKKFDhw6pTJkyBiYEAADA/bAUGUC+17JlSz377LN3lFqTyaSSJUuqaNGiBqYDAADAg1BsAUDSp59+Ki8vr9uu2e12mc1mFShQwKBUAAAAyAyKLQBIKlmypD7++OM7rr/11ls6fPiwAYkAAACQWRRbAPj/Ro8erZo1a0qSqlSponXr1un8+fOqX7++Pv30U6WmphqcEAAAAHdDsQWA/8/NzU3Tp09X0aJFNWfOHHXs2FHR0dF65ZVXNH78eDVv3lz79+83OiYAAAD+B7siA3nUmaNnjI7gUDL776N9+/Y6d+6c3Nz++uuxYMGC+uc//6m+fftq+PDhatSokSZMmKC//e1v8vDwyMnIAAAAyCSKLZDH3NoAaf6o+QYncUz/u0HU3dwqtf+tadOmioqK0kcffaSJEydqyZIlmjVrlho1apQTMQEAAJAFFFsgj/Hz89PRo0d19epVo6M4HC8vL/n5+T308wUKFNCHH36o3r17a/jw4WrWrJnGjh2r9957T56entmYFAAAAFlBsQXyoEcpb3iwBg0aaOfOnfr00081ceJEWa1WzZo1S82bNzc6GgAAQL7E5lEA8BDc3d01YcIE7d69W0WKFFGrVq305ptvKikpyehoAAAA+Q7FFgAeQe3atbVt2zZ98skn+uqrr1SvXj1t2bLF6FgAAAD5CsUWAB6Rm5ub3nrrLe3du1dly5ZVu3bt9PLLLysxMdHoaAAAAPkCn7EFgGxSs2ZN/fzzz5o2bZrefvttrVixQt988406duxodDQAyHHx8fFGR3AY/LsAcp/JbrfbHzToypUrKlq0qC5fvixvb+/cyAUATu348eMaMWKENm3apBEjRmjKlCkqWrSo0bEAINvFxsaqRo0aRsdwSEePHmVDR+ARZKWHUmwBIIekp6frm2++0VtvvSVvb2/NnDlT3bp1MzoWAGS72NhYjpn7H496xBwAii0AOJRTp05p5MiRWrNmjQYPHqzPP/9cJUqUMDoWAACAQ8tKD2XzKADIYZUqVdLq1atlNpsVFhYmf39/WSwWo2MBAADkGRRbAMgFJpNJQ4cO1cGDB9WsWTP17t1bTz31lP7880+jowEAADg9ii0A5CIfHx9ZrVb98MMP2rBhg/z9/bVw4UJl4lMhAAAAuAeKLQDkMpPJpKeffloxMTFq3769nn76aYWGhur06dNGRwMAAHBKFFsAMEiZMmW0aNEiLV68WNu3b5e/v7/mzJnD7C0AAEAWUWwBwGB9+vRRTEyMunfvrqFDhyo4OFhxcXFGxwIAAHAaFFsAcAAlS5bUvHnztHz5cu3du1cBAQGaOXMms7cAAACZQLEFAAfSvXt3HTx4UE8++aRGjRqljh076sSJE0bHAgAAcGgUWwBwMMWKFdO3336rtWvXymazqXbt2vryyy+Vnp5udDQAAACHRLEFAAfVqVMnHThwQEOHDtUrr7yidu3a6ejRo0bHAoAcc+7cOa1YscLoGACcEMUWAByYl5eXpk2bps2bN+v06dOqV6+epkyZorS0NKOjAUC2unz5smrXrq2ePXvydxyALKPYAoATaNeunfbt26fnn39eY8eOVcuWLXXw4EGjYwFAtrh69ao6d+6sM2fOyG636+TJk0ZHAuBkKLYA4CQKFSqkf/3rX4qIiNCVK1fUsGFDffzxx0pJSTE6GgA8tKSkJHXt2lW7du3KuHbo0CEDEwFwRhRbAHAyLVq00J49ezRmzBi9//77atasmaKjo42OBQBZduPGDXXv3l3bt2/P2CDPxcWFYgsgyyi2AOCEPD09NWnSJEVGRio1NVVNmjTRe++9p5s3bxodDQAy7a233tKmTZtu2/WdYgvgYVBsAcCJNW7cWLt27dI777yjSZMmqVGjRvr111+NjgUAmdKrVy+1a9dOLi5//Ujq4uKi1NRU7d+/3+BkAJwNxRYAnJyHh4f+/ve/a9euXSpQoICaN2+ucePG6fr160ZHA4D76tixozZv3qxPPvlELi4u6tKliwoUKKDLly8bHQ2Ak6HYAkAeUa9ePe3YsUMfffSRpk6dqgYNGigiIsLoWADwQGvXrtUTTzyhVatW6cKFC4qMjDQ6EgAnQ7EFgDzEzc1Nb7/9tqKjo1W8eHG1adNGr732mq5du2Z0NAC4q4sXL2rz5s0KDQ2V9NcO8MWLFzc4FQBnQ7EFgDyoVq1a2rp1q6ZMmaIZM2aobt262rRpk9GxAOAOK1euVGpqqnr27Gl0FABOjGILAHmUq6urxowZo3379qlChQrq0KGDnn/+eV25csXoaACQwWKxqFmzZvL19TU6CgAnRrEFgDzOz89PmzZt0ldffaV58+apdu3aWrNmjdGxAEDXr19XeHi4QkJCjI4CwMlRbAEgH3BxcdGLL76oAwcOqGbNmgoKCtLw4cN18eJFo6MByMfWrVunpKSkjM/XAsDDotgCQD5SpUoVrV27Vt98842WLFmigIAAhYWFGR0LQD5lsVhUq1Yt1axZ0+goAJwcxRYA8hmTyaQRI0bo4MGDatCggXr16qVnnnlG586dMzoagHwkNTVVy5cvZxkygGxBsQWAfKpChQpasWKF5s6dq9WrVysgIECLFy82OhaAfGLr1q06f/48y5ABZAuKLQDkYyaTSYMGDVJMTIxatWqlfv36qW/fvjpz5ozR0QDkcRaLRb6+vmrcuLHRUQDkARRbAIDKlSunJUuW6Mcff9TPP/8sf39/zZ8/X3a73ehoAPIgu90uq9WqkJAQmUwmo+MAyAMotgAASX/N3j755JOKiYlR586dNWjQIPXs2VPx8fFGRwOQx+zZs0enTp1iGTKAbEOxBQDcpnTp0lqwYIEsFot27dqlgIAAzZo1i9lbANnGarWqePHiatu2rdFRAOQRFFsAwF2FhIQoJiZGISEhevbZZ9WlSxedPHnS6FgA8gCLxaLu3bvL3d3d6CgA8giKLQDgnooXL67Zs2dr1apVOnTokGrXrq3p06crPT3d6GgAnJTNZtOBAwdYhgwgW1FsAQAP1LVrVx08eFDPPPOMXnjhBXXo0EE2m83oWACckNVqlaenpzp37mx0FAB5CMUWAJAp3t7e+s9//qP169fr5MmTqlu3rj7//HOlpaUZHQ2AE7FYLOrSpYsKFy5sdBQAeQjFFgCQJU888YT279+vESNGaMyYMWrTpo0OHz5sdCwATuCPP/7Q9u3bWYYMINtRbAEAWVakSBF98cUX2rJli86dO6f69evr008/VWpqqtHRADiwsLAwubi4qHv37kZHAZDHUGwBAA+tTZs22rt3r15++WWNHz9ezZs31/79+42OBcBBWSwWtW3bViVLljQ6CoA8hmILAHgkBQsW1OTJk7Vt2zZdv35djRo10sSJE5WcnGx0NAAO5MqVK9qwYYNCQkKMjgIgD6LYAgCyRbNmzbR7926NGzdOEydOVJMmTRQVFWV0LAAOYtWqVUpJSaHYAsgRFFsAQLYpUKCAPvzwQ/36668ymUxq1qyZxo8frxs3bhgdDYDBLBaLGjVqpEqVKhkdBUAeRLEFAGS7Bg0a6Ndff9X777+vKVOmqGHDhoqMjDQ6FgCD3Lx5U6tWrWK2FkCOodgCAHKEu7u73n33Xe3evVuFCxdWq1at9OabbyopKcnoaABy2YYNG5SYmMgxPwByDMUWAJCjateure3bt2vSpEn66quvVK9ePW3ZssXoWABykcVikZ+fn/z9/Y2OAiCPotgCAHKcm5ubxo4dq71796pMmTJq166dXn75ZSUmJhodDUAOS0tLU1hYmEJCQmQymYyOAyCPotgCAHJNzZo1tWXLFk2dOlXfffed6tSpo/Xr1xsdC0AO2r59u86ePcsyZAA5imILAMhVrq6uevXVV7V//35VqVJFnTp10nPPPafLly8bHQ1ADrBarSpXrpyaNWtmdBQAeRjFFgBgiMcee0wbNmzQ9OnTtXDhQgUEBGjVqlVGxwKQjex2uywWi3r16iUXF37sBJBz+BsGAGAYFxcXjR49WgcPHlRAQICCg4M1ZMgQXbhwwehoALLB/v37dfz4cZYhA8hxFFsAgOEqVaqk8PBwzZo1S8uWLZO/v78sFovRsQA8IqvVKm9vb7Vv397oKADyOIotAMAhmEwmDRs2TDExMWratKl69+6tp556Sn/++afR0QA8JIvFouDgYHl4eBgdBUAeR7EFADgUHx8fLVu2TN9//73Wr18vf39/LVy4UHa73ehoALLgxIkTio6OVkhIiNFRAOQDFFsAgMMxmUwaMGCAYmJi1L59ez399NMKDQ3V6dOnjY4GIJOWLVumAgUKqGvXrkZHAZAPUGwBAA6rbNmyWrRokRYvXqzt27fL399fc+bMYfYWcAIWi0UdO3aUl5eX0VEA5AMUWwCAw+vTp49iYmIUHBysoUOHqlu3boqLizM6FoB7+PPPP7V161aWIQPINRRbAIBTKFmypObPn6+wsDDt27dPAQEBmjlzJrO3gANavny5JKlnz54GJwGQX1BsAQBOpUePHjp48KCefPJJjRo1Sh07dtTx48eNjgXgv1gsFrVq1UplypQxOgqAfIJiCwBwOsWKFdO3336rNWvWyGazqU6dOvryyy+Vnp5udDQg30tMTNS6detYhgwgV1FsAQBOq3Pnzjpw4ICGDBmiV155Re3atdPRo0eNjgXka+Hh4bp58ybFFkCuotgCAJyal5eXvv76a23atEkJCQmqV6+epkyZorS0NKOjAfmSxWJR3bp1Va1aNaOjAMhHKLYAgDwhMDBQ+/bt0+jRozV27Fi1bNlSBw8eNDoWkK8kJydr5cqVCg0NNToKgHyGYgsAyDMKFy6szz//XFu3btXly5fVsGFDffzxx0pJSTE6GpAvbN68WZcvX6bYAsh1FFsAQJ7TsmVLRUdHa8yYMXrvvffUtGlTRUdHGx0LyPOsVquqVKmiunXrGh0FQD5DsQUA5Emenp6aNGmSduzYodTUVDVp0kTvvfeebt68aXQ0IE9KT0+X1WpVaGioTCaT0XEA5DMUWwBAnta4cWNFRUVp/PjxmjRpkho1aqRff/3V6FhAnrNz506dPn2aZcgADEGxBQDkeR4eHvrggw+0a9cueXh4qHnz5ho3bpyuX79udDQgz7BarSpdurRatmxpdBQA+RDFFgCQb9SrV087duzQRx99pKlTp6p+/fqKiIgwOhbg9Ox2uywWi3r27ClXV1ej4wDIhyi2AIB8xd3dXW+//bb27Nmj4sWLq02bNnrttdd07do1o6MBTuvQoUM6evSoQkJCjI4CIJ+i2AIA8iV/f39FRERo8uTJmjFjhurWratNmzYZHQtwSlarVUWKFFHHjh2NjgIgn6LYAgDyLVdXV73xxhvat2+ffH191aFDBz3//PO6cuWK0dEAp2KxWNS1a1d5enoaHQVAPkWxBQDke35+ftq8ebO+/PJLzZs3T7Vr19aaNWuMjgU4hbi4OO3atYtlyAAMRbEFAECSi4uLXnrpJe3fv181atRQUFCQhg8frosXLxodDXBoy5Ytk7u7u4KDg42OAiAfo9gCAPBfqlatqnXr1mnmzJlavHixAgICFBYWZnQswGFZLBZ16NBBRYsWNToKgHyMYgsAwP8wmUx67rnndPDgQdWvX1+9evXSM888o3PnzhkdDXAoFy5c0M8//8wyZACGo9gCAHAPFStW1MqVKzVnzhytWrVK/v7++umnn4yOBTiMFStWKC0tTb169TI6CoB8jmILAMB9mEwmDR48WDExMWrVqpWefPJJ9e3bV2fOnDE6GmA4i8Wi5s2bq3z58kZHAZDPUWwBAMiE8uXLa+nSpVq4cKF+/vln+fv7a/78+bLb7UZHAwyRlJSkNWvWKDQ01OgoAECxBQAgs0wmk5566inFxMSoU6dOGjRokHr27Kn4+HijowG5bu3atbp+/TrFFoBDoNgCAJBFpUuX1sKFC7V06VLt2rVLAQEBmjVrFrO3yFesVqv8/f3l5+dndBQAoNgCAPCwQkNDdfDgQYWEhOjZZ59Vly5ddPLkSaNjATkuNTVVy5cvZ7YWgMOg2AIA8AhKlCih2bNna+XKlTp06JBq166t6dOnKz093ehoQI7ZsmWLLly4QLEF4DAotgAAZINu3brpwIEDGjBggF544QV16NBBNpvN6FhAjrBarapYsaIaNmxodBQAkESxBQAg2xQtWlQzZszQ+vXrdfLkSdWtW1eff/650tLSjI4GZBu73S6r1aqQkBCZTCaj4wCAJIotAADZ7oknntD+/fs1YsQIjRkzRm3atNHhw4eNjgVki6ioKMXFxSkkJMToKACQgWILAEAOKFKkiL744gtt2bJFf/75p+rXr69PP/1UqampRkcDHonValWJEiXUtm1bo6MAQAaKLQAAOahNmzbau3evXn75ZY0fP17NmzfX/v37jY4FPDSLxaIePXrIzc3N6CgAkIFiCwBADitUqJAmT56sbdu2KSkpSY0aNdLEiROVnJxsdDQgS44ePaqYmBiWIQNwOBRbAABySbNmzbRnzx6NHTtWEydOVJMmTRQVFWV0LCDTrFarChYsqM6dOxsdBQBuQ7EFACAXFShQQB999JF+/fVXmUwmNWvWTOPHj9eNGzeMjgY8kMViUVBQkAoVKmR0FAC4DcUWAAADNGjQQDt37tT777+vKVOmqGHDhoqMjDQ6FnBPp0+fVmRkJMuQATgkii0AAAbx8PDQu+++q6ioKBUuXFitWrXSm2++qaSkJKOjAXdYtmyZXF1d1b17d6OjAMAdKLYAABisTp062r59uyZNmqSvvvpK9erV05YtW4yOBdzGYrGoXbt2KlGihNFRAOAOFFsAAByAm5ubxo4dq+joaJUuXVrt2rXTyy+/rMTERKOjAbp06ZI2btyo0NBQo6MAwF1RbAEAcCCPP/64fvnlF02dOlXfffed6tSpo/Xr1xsdC/ncqlWrlJqaql69ehkdBQDuimILAICDcXV11auvvqr9+/erSpUq6tSpk5577jldvnzZ6GjIp6xWqxo3bqyKFSsaHQUA7opiCwCAg3rssce0YcMGTZ8+XQsXLlRAQIBWrVpldCzkMzdu3NDq1atZhgzAoVFsAQBwYC4uLho9erQOHDiggIAABQcHa8iQIbpw4YLR0ZBPrF+/XomJiRRbAA6NYgsAgBOoXLmywsPDNWvWLC1btkz+/v6yWCxGx0I+YLVaVaNGDT3++ONGRwGAe6LYAgDgJEwmk4YNG6aDBw+qSZMm6t27t5566in9+eefRkdDHpWWlqawsDCFhobKZDIZHQcA7oliCwCAk/H19VVYWJi+//57rV+/Xv7+/lq4cKHsdrvR0ZDHRERE6M8//1RISIjRUQDgvii2AAA4IZPJpAEDBigmJkaBgYF6+umnFRoaqtOnTxsdDXmI1WpV+fLl1bRpU6OjAMB9UWwBAHBiZcuW1U8//aSffvpJ27dvl7+/v+bMmcPsLR6Z3W6XxWJRSEiIXFz4kRGAY+NvKQAA8oC+ffvq4MGDCg4O1tChQxUcHKy4uDijY8GJ7du3T7/99hvLkAE4BYotAAB5RKlSpTR//nyFhYVp7969CggI0MyZM5m9xUOxWCwqWrSoAgMDjY4CAA9EsQUAII/p0aOHDh48qH79+mnUqFHq2LGjTpw4YXQsOBmLxaLu3bvLw8PD6CgA8EAUWwAA8qBixYrpu+++05o1a2Sz2VS7dm19+eWXSk9PNzoanMDx48e1b98+liEDcBoUWwAA8rDOnTvrwIEDGjJkiF555RW1a9dOR48eNToWHJzValWBAgUUFBRkdBQAyBSKLQAAeZyXl5e+/vprbdq0SQkJCapXr56mTJmitLQ0o6PBQVksFnXq1ElFihQxOgoAZArFFgCAfCIwMFD79u3T6NGjNXbsWLVs2VIxMTFGx4KDOXv2rCIiIhQaGmp0FADINIotAAD5SOHChfX5559r69atunz5sho0aKCPP/5YKSkpRkeDgwgLC5PJZFKPHj2MjgIAmUaxBQAgH2rZsqWio6P1+uuv67333lOzZs0UHR1tdCw4AKvVqtatW6t06dJGRwGATKPYAgCQT3l6euqTTz5RZGSkUlJS1KRJE7333ntKTk42OhoMcvXqVa1bt45lyACcDsUWAIB8rkmTJoqKitL48eM1adIkNWrUSL/++qvRsWCA1atXKzk5mWN+ADgdii0AAJCHh4c++OAD7dq1S+7u7mrevLnGjRun69evGx0Nuchqtap+/fqqUqWK0VEAIEsotgAAIEO9evW0Y8cOffTRR5o6daoaNGigbdu2GR0LuSA5OVkrV65kGTIAp0SxBQAAt3F3d9fbb7+tPXv2qFixYmrdurVee+01Xbt2zehoyEEbN27UlStXWIYMwClRbAEAwF35+/srIiJCU6ZM0YwZM1S3bl1t2rTJ6FjIIVarVdWqVVOdOnWMjgIAWUaxBQAA9+Tq6qoxY8Zo37598vX1VYcOHfT888/r6tWrRkdDNkpPT9eyZcsUGhoqk8lkdBwAyDKKLQAAeCA/Pz9t3rxZX375pebNm6fatWtrzZo1RsdCNomMjNQff/zBMmQATotiCwAAMsXFxUUvvfSS9u/fLz8/PwUFBWn48OG6ePGi0dHwiKxWq8qUKaMWLVoYHQUAHgrFFgAAZEnVqlW1bt06ffPNN1qyZIkCAgK0fPlyo2PhIdntdlksFvXq1Uuurq5GxwGAh0KxBQAAWWYymTRixAgdOHBA9evXV8+ePfXMM8/o3LlzRkdDFsXExMhms7EMGYBTo9gCAICHVrFiRa1cuVJz587V6tWrFRAQoMWLFxsdC1lgsVhUpEgRPfHEE0ZHAYCHRrEFAACPxGQyadCgQTp48KBatmypfv36qW/fvjpz5ozR0ZAJFotF3bp1U4ECBYyOAgAPjWILAACyRfny5bV06VItXLhQP//8s/z9/fX999/LbrcbHQ33cOrUKe3evVuhoaFGRwGAR0KxBQAA2cZkMumpp55STEyMOnfurIEDB6pnz56Kj483Ohruwmq1yt3dXd26dTM6CgA8EootAADIdqVLl9aCBQtksVi0a9cuBQQEaNasWczeOhiLxaInnnhC3t7eRkcBgEdCsQUAADkmJCREBw8eVEhIiJ599ll16dJFJ0+eNDoWJJ0/f15btmxhGTKAPIFiCwAAclSJEiU0e/ZsrVq1SocOHVLt2rU1ffp0paenGx0tX1u+fLnsdrt69uxpdBQAeGQUWwAAkCu6du2qAwcOaMCAAXrhhRf0xBNP6NixY0bHyresVqtatGihcuXKGR0FAB4ZxRYAAOSaokWLasaMGVq/fr1+++031alTR1OnTlVaWprR0fKVa9euac2aNSxDBpBnUGwBAECue+KJJ7R//36NGDFCr7/+utq0aaPDhw8bHSvfWLNmjW7cuKGQkBCjowBAtqDYAgAAQxQpUkRffPGFtmzZonPnzql+/fr69NNPlZqaanS0PM9qtap27dqqXr260VEAIFtQbAEAgKHatGmj6Ohovfzyyxo/frxatGih/fv3Gx0rz0pJSdHy5ctZhgwgT6HYAgAAwxUqVEiTJ0/Wtm3blJSUpEaNGmnixIlKTk42Olqe8/PPP+vSpUssQwaQp1BsAQCAw2jWrJl2796tsWPHauLEiWrSpIl2795tdKw8xWq1qnLlymrQoIHRUQAg21BsAQCAQylQoIA++ugj/frrrzKZTGratKneeecd3bx50+hoTi89PV1Wq1UhISEymUxGxwGAbEOxBQAADqlBgwbauXOn3n//fU2ePFkNGjTQjh07jI7l1KKiohQfH88yZAB5DsUWAAA4LA8PD7377rvavXu3ChcurJYtW+rNN99UUlKS0dGcksViUcmSJdW6dWujowBAtqLYAgAAh1e7dm1t375dkyZN0ldffaV69erpl19+MTqW07FYLOrRo4fc3NyMjgIA2YpiCwAAnIKbm5vGjh2rvXv3qkyZMmrbtq1efvllJSYmGh3NKRw+fFiHDx/mmB8AeRLFFgAAOJWaNWtqy5Ytmjp1qr777jvVqVNH69evNzqWw7NarSpUqJA6depkdBQAyHYUWwAA4HRcXV316quvav/+/apSpYo6deqkkSNH6vLly0ZHc1gWi0VBQUEqWLCg0VEAINtRbAEAgNN67LHHtGHDBk2fPl0LFixQ7dq1tWrVKqNjOZz4+Hjt3LmTZcgA8iyKLQAAcGouLi4aPXq0Dh48KH9/fwUHB2vIkCG6cOGC0dEcxrJly+Tm5qbg4GCjowBAjqDYAgCAPKFSpUoKDw/XrFmztGzZMgUEBMhqtRodyyFYrVYFBgaqePHiRkcBgBxBsQUAAHmGyWTSsGHDFBMToyZNmig0NFT9+/fXn3/+aXQ0w1y8eFGbNm1iGTKAPI1iCwAA8hwfHx8tW7ZM33//vdatWyd/f38tXLhQdrvd6Gi5buXKlUpNTVWvXr2MjgIAOYZiCwAA8iSTyaQBAwYoJiZGgYGBevrpp9W7d2+dPn3a6Gi5ymq1qmnTpvL19TU6CgDkGIotAADI08qWLauffvpJP/30k7Zt26aAgADNnTs3X8zeXr9+XatXr2YZMoA8j2ILAADyhb59+yomJkbdunXTkCFDFBwcrLi4OKNj5ah169YpKSlJISEhRkcBgBxFsQUAAPlGyZIlNX/+fIWFhWnv3r0KCAjQN998k2dnb61Wqx5//HE9/vjjRkcBgBxFsQUAAPlOjx49dPDgQT355JMaOXKkOnXqpBMnThgdK1ulpqYqLCyMZcgA8gWKLQAAyJeKFSumb7/9VmvWrFFsbKxq166tL7/8Uunp6UZHyxYRERE6f/48y5AB5AsUWwAAkK917txZBw4c0JAhQ/TKK6+oXbt2io2NNTrWI7NYLPL19VXjxo2NjgIAOY5iCwAA8j0vLy99/fXX2rRpkxISElS3bl199tlnSktLMzraQ7Hb7bJYLOrVq5dcXPhxD0Dex990AAAA/19gYKD27dun0aNH66233lLLli0VExNjdKwsi46O1qlTp/h8LYB8w83oAAAAAI6kcOHC+vzzz9WvXz8NHz5cDRo00Pvvv6+33npL7u7uj/Tu2NhYXb16NZuS3tv06dNVpEgReXt7a/fu3Tn+9R6Fl5eX/Pz8jI4BwMmZ7JnY3/7KlSsqWrSoLl++LG9v79zIBQAAYLgbN27ogw8+0D//+U/Vq1dPs2bNUv369R/qXbGxsapRo0b2Bswjjh49SrkFcIes9FBmbAEAAO7B09NTkyZNUp8+fTRs2DA1adJEb7/9tiZMmCAPD48svevWTO3AGQNVtkbZnIjrdM4cPaP5o+bnyiw2gLyNYgsAAPAAjRs3VlRUlD7++GP94x//kMVi0axZs9SkSZMsv6tsjbKqWK9iDqQEgPyLzaMAAAAywcPDQx988IF27dold3d3NW/eXH/7299048YNo6MBQL5HsQUAAMiCevXqaceOHfroo4/0+eefq379+tq2bZvRsQAgX6PYAgAAZJG7u7vefvtt7dmzR8WKFVPr1q312muv6dq1a0ZHA4B8iWILAADwkPz9/RUREaEpU6ZoxowZqlu3rjZv3mx0LADIdyi2AAAAj8DV1VVjxozRvn375Ovrq/bt2ys6OtroWACQr7ArMgAAQDbw8/PT5s2btXnzZgUEBBgdBwDyFYotAABANnFxcVGHDh2MjgEA+Q5LkQEAAAAATo1iCwAAAABwahRbAAAAAIBTo9gCAAAAAJwaxRYAAAAA4NQotgAAAAAAp0axBQAAAAA4NYotAAAAAMCpUWwBAAAAAE6NYgsAAAAAcGoUWwAAAACAU6PYAgAAAACcGsUWAAAAAODUKLYAAAAAAKdGsQUAAAAAODWKLQAAAADAqVFsAQAAAABOzc3oAAAAAPg/O37YoQUvLZAkvbLqFVVrXu22+3a7XR/U+UCXEi7Jv7O/Ri4cmel3X0q4JOs7Vh3edFj2dLv82vgp5OMQlapS6o6xkfMitfGrjbpw6oKK+RZT25Ft1XZk20d6JwDkFGZsAQAAHJC7p7uiFkfdcd0WYdOlhEtyK5C1+YmbiTc1rdc02bbZ1GlMJ3X9W1f9vu93fdX9K127cO22sRGzI7Tw1YUq/3h59fmkj6o0qaKlf1uq9f9e/9DvBICcRLEFAABwQLU61lL0smilpabddn334t2qWL+ivMp4Zel9W2dt1Z/H/tTIBSP1xCtPKPCFQD2/5HldOXNFm6ZtyhiXfD1Zqz5aJf/O/ho2Z5haDGmhgdMHqlG/Rlo7Za2SLiVl+Z0AkNMotgAAAA6oYZ+GSrqQpCObjmRcS01O1d6wvWrYp2GW37c3bK8qNaykSg0rZVwrW6Os/Nr6KdoanXHNttWmaxeuqfWzrW97vvWzrZV8LVkxa2Oy/E4AyGkUWwAAAAdUolIJVWlSRbuX7s64dmj9IV2/cl0Ne2et2KanpyvhYIIq1q94x73KDSvr3IlzunH1hiTp932/S9IdYyvWryiTiynjflbeCQA5jWILAADgoBr2baj9K/cr+XqyJCnqpyhVb1VdRcsXzdJ7ki4mKfVmqrzLet9xz7vcX9cu/3FZknTlzBW5uLrIq/TtS53dPNxUuEThjHFZeScA5DSKLQAAgINqENJAKTdSFLMmRjeu3tDBtQcfahlyyvUUSbrrhlO3rqXcSMkY6+rhetf3uBVwu21cZt8JADmN434AAAAcVJFSRVSjXQ1FLYlS8vVkpaelq16vell+j3tBd0lS6s3UO+7duubu6Z4xNi057Y5xt8b+97jMvhMAchoztgAAAA6sUd9GOrT+kCLMEarVsZYKFS2U5XcUKl5IbgXcdOXMlTvuXfnjr2tFy/21vNm7rLfS09J19c+rt41LTU7VtQvXMsZl5Z0AkNMotgAAAA6sbnBdmVxMOrnrpBr1afRQ73BxcVF5//KKi467497JqJMqWaWkPL08JUm+dXwl6Y6xcXviZE+3Z9zPyjsBIKdRbAEAABxYgSIF1G9KPwWNC1JAUMBDv6dez3o6tfuUTu05lXHtTOwZxf4Sq/q96mdc82vjp0LFCyliVsRtz0eYI+RRyEP+nf2z/E4AyGl8xhYAAMDBNX266SO/o/Xw1oqcG6mZ/Weqw4sd5OLuos1fb5ZXGS+1f7F9xjiPgh7qNr6bFr+1WOahZj3e4XEdjzyuXYt2KXhCsAoXL5zldwJATqPYAgAA5AOeXp56KewlWd6xaO1na2W321W9VXWFfByiIqWK3Da29bOt5ermqk1fb9KB8AMq7ltcIR+HqN3odg/9TgDISSa73W5/0KArV66oaNGiunz5sry97zyrDAAAAPe3e/duNWrUSG9sekMV61U0Oo5DiNsbp8/af6aoqCg1bJj1Y4wA5G1Z6aF8xhYAAAAA4NRYigwAAODErl28ds9zZyXJxdWFZcEA8jyKLQAAgBObNXiWjkUcu+f94hWL6/297+diIgDIfRRbAAAAJxbyYYiSLiXd8767p3supgEAY1BsAQAAnFjF+mxEBQBsHgUAAAAAcGoUWwAAAACAU6PYAgAAAACcGsUWAAAAAODUKLYAAAAAAKdGsQUAAAAAODWKLQAAAADAqVFsAQAAAABOjWILAAAAAHBqFFsAAAAAgFOj2AIAAAAAnBrFFgAAAADg1Ci2AAAAAACnRrEFAAAAADg1ii0AAAAAwKlRbAEAAAAATo1iCwAAAABwahRbAAAAAIBTo9gCAAAAAJwaxRYAAAAA4NQotgAAAAAAp0axBQAAAAA4NTejAwAAAOQnZ46eMTqCw+DfBYDsQrEFAADIBV5eXpKk+aPmG5zE8dz6dwMAD4tiCwAAkAv8/Px09OhRXb16VZJkt9vVs2dPtWjRQuPHjzc4Xe5KTU3Vzz//rHbt2ql48eLy8/MzOhIAJ0exBQAAyCX/XeD27t2rhIQEjRw5Ug0bNjQwVe6Li4vT+PHjNXToUM2cOdPoOADyADaPAgAAMIDFYlHRokUVGBhodJRcV7FiRX333Xf69ttv9fe//93oOADyAGZsAQAADGC1WhUcHCwPDw+joxhi8ODBSkhI0Ntvvy0fHx+NGjXK6EgAnBjFFgAAIJedOHFCe/fu1YQJE4yOYqhx48YpPj5eL7zwgsqVK6devXoZHQmAk2IpMgAAQC6zWq0qUKCAgoKCjI5iKJPJpKlTp6p3797q37+/IiIijI4EwElRbAEAAHKZxWJRp06dVKRIEaOjGM7V1VXz5s1Ts2bN1KNHDx06dMjoSACcEMUWAAAgF509e1Zbt25VSEiI0VEchqenp6xWq3x9fRUUFKT4+HijIwFwMhRbAACAXLR8+XKZTCb17NnT6CgOpVixYlq9erXsdru6du2qS5cuGR0JgBOh2AIAAOQii8Wi1q1bq3Tp0g/1fHJycjYnchwVKlRQeHi4fv/9d4WGhurmzZtGRwLgJCi2AAAAueTq1atat27dQy9DnjFjhurXr5+tmRyNv7+/wsLCFBkZqUGDBik9Pd3oSACcAMUWAAAgl4SHhys5OVmhoaFZftZut+vLL79UnTp1ciCZY2ndurUWLFigJUuW6PXXX5fdbjc6EgAHR7EFAADIJRaLRfXr11eVKlWy/OyuXbt08OBBDRs2LPuDOaCQkBBNmzZNX3zxhSZPnmx0HAAOzs3oAAAAAPlBcnKyVq5cqTFjxjzU82azWb6+vurUqVM2J3Nco0ePVnx8vMaNG6fy5ctr0KBBRkcC4KCYsQUAAMgFmzZt0pUrVx5qGfKNGze0YMECDR48WK6urg8cf+zYMZUsWVLr169/mKgOZeLEiRo+fLiGDx+uNWvWGB0HgIOi2AIAAOQCi8WiqlWrPtRnZK1Wqy5duqShQ4c+cKzdbteAAQN04cIFzZo16yGSOhaTyaQZM2aoS5cu6tOnj6KiooyOBMABUWwBAAByWHp6upYtW6bQ0FCZTKYsP282m9WqVSvVqFHjgWNnzJihnTt3SpI2bNiQJ3YVdnNz048//qiAgAB169ZNx44dMzoSAAdDsQUAAMhhO3bs0B9//PFQy5Dj4uK0bt26TG0aFRsbq9dffz3jf589e1aRkZFZ/pqOqHDhwlq5cqWKFSumLl266OzZs0ZHAuBAKLYAAAA5zGKxqHTp0mrRokWWn507d64KFiyoJ5988r7jUlNT9cwzzyglJSXjmpubmxYtWpTlr+moSpUqpfDwcF27dk3BwcFKTEw0OhIAB0GxBQAAyEF2u10Wi0W9evXK1MZP//vs7Nmz1a9fP3l5ed137MyZM/Xrr78qLS0t41pqaqoWLFiQJ5Yj31K1alWtWrVKR44cUb9+/W4r8gDyL4otAABADoqJiZHNZnuoZchbt26VzWbL1DLk2rVrq3v37qpevfpt18+ePatDhw5l+Ws7sgYNGmjp0qXasGGDRowYIbvdbnQkAAbjHFsAAIAcZLVaVaRIEXXo0CHLz5rNZlWrVk1t27Z94Ni2bduqbdu2unr1qry9vTV16lTVqVNH58+fl5+f38NEd2gdO3bUnDlzNGDAAPn6+uof//iH0ZEAGIhiCwAAkIMsFou6desmT0/PLD2XmJioRYsWady4cVnaSdlms0mSmjdvrmbNmmXpazqbp59+WgkJCXrzzTfl4+Ojl156yehIAAxCsQUAAMghp06dUlRUlN54440sP/vTTz8pKSlJQ4YMydJzt4ptXpylvZs33nhDCQkJeuWVV1SuXDn17dvX6EgADECxBQAAyCHLli2Tu7u7unXrluVnzWaznnjiCVWqVClLz9lsNhUvXlwlSpTI8td0VpMnT9bp06c1cOBAlSlTJlNLtwHkLWweBQAAkEMsFoueeOIJFS1aNEvP2Ww2/fLLL5naNOpuz/7vBlJ5nYuLi8xms1q1aqWePXtq//79RkcCkMsotgAAADng/Pnz2rJli0JCQrL87OzZs1W0aNGH2kk5PxZbSSpQoIAsFouqVKmirl27Ki4uzuhIAHIRxRYAACAHrFixQunp6erVq1eWnktLS9OcOXPUv39/FSxYMMtfN78WW0ny9vbW6tWr5e7urqCgIF24cMHoSAByCcUWAAAgB1gsFrVo0ULlypXL0nMbNmzQ77///lDLkK9du6aEhIR8W2wlqXz58goPD9eZM2fUq1cvXb9+3ehIAHIBxRYAACCbJSUlae3atQ+1DNlsNqtWrVpq2rRplp89fvy4JOXrYitJNWvW1IoVKxQVFaUBAwYoLS3N6EgAchjFFgAAIJutWbNG169fz3KxvXjxoiwWi4YNG5als2tviY2NlUSxlf46x3fRokVavny5Xn75ZdntdqMjAchBFFsAAIBsZrFYFBAQkOWzZBcuXKjU1FQNGjToob6uzWaTt7e3Spcu/VDP5zXdu3fXf/7zH02fPl3/+Mc/jI4DIAdxji0AAEA2SklJ0YoVK/Tiiy9m+Vmz2ayuXbtm+XO5t9zaOOphZnvzqhEjRuj06dOaMGGCypcvr+HDhxsdCUAOoNgCAABkoy1btujixYtZPqrn4MGD+vXXX7V06dKH/tr5eUfk+5kwYYLi4+M1cuRIlS1bVsHBwUZHApDNWIoMAACQjSwWiypVqqQGDRpk6Tmz2axSpUo9Uumi2N6dyWTStGnT1L17dz355JPasWOH0ZEAZDOKLQAAQDax2+2yWq0KCQnJ0nLglJQUzZs3TwMHDpSHh8dDfe3r168rLi6OYnsPrq6uWrBggerXr6/g4GAdPXrU6EgAshHFFgAAIJvs2rVL8fHxWV6GvHr1ap09e/ahzq695cSJE5LYEfl+ChYsqOXLl6tMmTLq0qWL/vjjD6MjAcgmFFsAAIBsYrVaVbJkSbVu3TpLz82aNUsNGzZU3bp1H/prc9RP5pQoUULh4eFKTk5Wt27ddOXKFaMjAcgGFFsAAIBsYrFY1KNHD7m5ZX5/zrNnz2rlypWPNFsr/fX52sKFCz/0jsr5SaVKlRQeHq7jx4+rd+/eSk5ONjoSgEdEsQUAAMgGR44c0aFDhxQSEpKl5+bPny8XFxcNGDDgkb4+R/1kTZ06dWS1WvXLL79o2LBhSk9PNzoSgEdAsQUAAMgGVqtVhQoVUufOnTP9jN1ul9lsVq9evVSiRIlH+vrsiJx1gYGBmj9/vhYsWKBx48YZHQfAI6DYAgAAZAOLxaKgoCAVLFgw089ERUXpwIEDj7wMWaLYPqx+/frp3//+t6ZMmaLPP//c6DgAHlLmPwACAACAu4qPj9eOHTs0d+7cLD1nNpvl4+OTpVneu7l586ZOnTpFsX1IL7/8suLj4zVmzBiVL19e/fv3NzoSgCyi2AIAADyisLAwubm5qXv37pl+5saNG/rhhx80evRoubq6PtLX/+2335Senk6xfQSTJk1SQkKCBg8erDJlyqhDhw5GRwKQBSxFBgAAeEQWi0WBgYEqXrx4pp9ZtmyZLl26lG3LkCWO+nkUJpNJ3333nTp06KCQkBBFR0cbHQlAFlBsAQAAHsGlS5e0adOmLO+GbDab1bJlS9WoUeORM8TGxsrT01M+Pj6P/K78zN3dXYsXL1aNGjXUtWtX/fbbb0ZHApBJFFsAAIBHsHLlSqWmpqpXr16Zfub333/X2rVrs2W2Vvq/jaNcXPjR7lEVKVJEK1euVOHChRUUFKRz584ZHQlAJvC3HwAAwCOwWCxq0qSJKlSokOln5s6dq4IFC+rJJ5/MlgzsiJy9ypYtq/DwcF24cEE9evRQUlKS0ZEAPADFFgAA4CFdv35d4eHhCg0NzfQzt86u7du3r7y9vbMlB8U2+1WvXl2rVq3S/v379dRTTyk1NdXoSADug2ILAADwkNavX69r165lqdhGRETIZrNl2zLklJQU/fbbbxTbHNC4cWMtXrxY4eHhev7552W3242OBOAeKLYAAAAPyWKxqGbNmnr88ccz/YzZbFbVqlXVtm3bbMlw8uRJpaWlUWxzSFBQkL777jt9++23+vvf/250HAD3wDm2AAAADyE1NVVhYWF67rnnMv1MYmKifvzxR40dOzbbNnriqJ+cN3jwYCUkJOjtt9+Wj4+PRo0aZXQkAP+DYptLYmNjdfXqVaNjOBQvLy/5+fkZHQMAgIcSERGh8+fPZ2kZ8uLFi5WUlKQhQ4ZkW47Y2Fh5eHhkafMqZN24ceMUHx+vF154QeXKlcvSLtgAch7FNhfExsZmyxl1edHRo0cptwAAp2S1WuXj46PGjRtn+hmz2awOHTqocuXK2ZbDZrOpWrVqcnV1zbZ34k4mk0lTp07VH3/8of79+2v9+vVq1aqV0bEA/H8U21xwa6b2pZdekq+vr8FpHEN8fLy++uorZrEBAE7JbrfLYrEoJCQk00uKjx07pi1btmj+/PnZmsVms/FL4lzi6uqqefPmKSgoSD169FBERIRq1apldCwAotjmKl9fX1WrVs3oGAAA4BFFR0fr5MmTCgkJyfQzs2fPlre3d5aWLmeGzWZTcHBwtr4T9+bp6Smr1ao2bdooKChI27ZtY+ICcADsigwAAJBFVqtVxYoVU2BgYKbGp6Wlac6cOerfv78KFSqUbTlSU1N14sQJNo7KZcWKFdPq1atlt9vVtWtXXbp0yehIQL5HsQUAAMgii8Wi7t27y93dPVPjN27cqLi4uGw7u/aWuLg4paSkUGwNUKFCBYWHh+v3339XaGiobt68aXQkIF+j2AIAAGTBsWPHtH///iwtQzabzXr88cfVrFmzbM3CUT/G8vf3V1hYmCIjIzVo0CClp6cbHQnItyi2AAAAWWC1WuXp6amgoKBMjb906ZIsFouGDRsmk8mUrVlsNpvc3NxUqVKlbH0vMq9169ZasGCBlixZotdff112u93oSEC+RLEFAADIAovFos6dO6tw4cKZGr9w4UKlpKRo0KBB2Z4lNjZWVatWlZsb+4EaKSQkRNOmTdMXX3yhyZMnGx0HyJf4WxAAACCTzpw5o23btum7777L9DNms1ldu3ZV+fLlsz2PzWZjGbKDGD16tOLj4zVu3DiVL18+R36RAeDeKLYAAACZFBYWJpPJpB49emRqfExMjHbu3KklS5bkSB6bzaZOnTrlyLuRdRMnTlRCQoKGDx+uMmXKqEuXLkZHAvINliIDAABkksViUZs2bVSqVKlMjTebzSpVqpS6d++e7VnS0tJ07NgxZmwdiMlk0owZM9SlSxf16dNHUVFRRkcC8g2KLQAAQCZcuXJFGzZsUGhoaKbGp6SkaN68eXrmmWfk4eGR7Xni4+OVnJxMsXUwbm5u+vHHHxUQEKBu3brp2LFjRkcC8gWKLQAAQCasXr1aycnJmT7mZ/Xq1Tpz5ky2n117C0f9OK7ChQtr5cqVKlasmLp06aKzZ88aHQnI8yi2AAAAmWCxWNSgQQNVrlw5U+PNZrMaNGigevXq5Ugem80mV1fXTOdB7ipVqpTCw8N17do1BQcHKzEx0ehIQJ5GsQUAAHiAmzdvatWqVZlehnz27FmtWLEix2Zrpb+KbeXKlXNkmTOyR9WqVbVq1SodOXJE/fr1U0pKitGRgDyLYgsAAPAAGzdu1NWrVzNdbL///nu5uLhowIABOZYpNjaWZchOoEGDBlq6dKk2bNigESNGyG63Gx0JyJMotgAAAA9gtVr12GOPKSAg4IFj7Xa7zGazevbsqZIlS+ZYJpvNJj8/vxx7P7JPx44dNWfOHM2dO1fvvPOO0XGAPIliCwAAcB9paWlatmyZQkNDZTKZHjh+9+7d2r9/f44uQ05PT+eoHyfz9NNPa8qUKZo0aZK++uoro+MAeY6b0QEAAAAcWWRkpM6cOZPp3ZDNZrPKly+vzp0751im06dP6/r16xRbJ/PGG28oISFBr7zyisqVK6e+ffsaHQnIMyi2AAAA92G1WlW2bFm1aNHigWNv3LihH374QSNHjpSbW879mMVRP85r8uTJOn36tAYOHKgyZcqobdu2RkcC8gSWIgMAANyD3W6XxWJRr1695OLy4B+bwsLCdPHixRxdhiz9VWxNJpOqVq2ao18H2c/FxUVms1mtWrVSz549tX//fqMjAXkCxRYAAOAeDhw4oGPHjmVpGXKLFi1Us2bNHM1ls9lUqVIlFShQIEe/DnJGgQIFZLFYVKVKFXXt2lVxcXFGRwKcHsUWAADgHqxWq7y8vNShQ4cHjo2Pj9fatWs1fPjwHM/FUT/Oz9vbW6tXr5a7u7uCgoJ04cIFoyMBTo1iCwAAcA8Wi0XBwcGZmhmdO3euChQooCeffDLHc9lsNoptHlC+fHmFh4frzJkz6tWrl65fv250JMBpUWwBAADu4uTJk9qzZ0+mliHfOru2b9++8vb2ztFcdrudM2zzkJo1a2rFihWKiorSgAEDlJaWZnQkwClRbAEAAO7CarXKw8NDXbt2feDYbdu2KTY2Nsc3jZKkM2fO6Nq1a8zY5iHNmzfXokWLtHz5cr388suy2+1GRwKcDsf9OJDNmzdr+vTpkqQPPvhAjz/++G337Xa7XnzxRZ0/f14NGzbUuHHjMvXehIQErVu3TjabTSdOnFBKSoq+/PJLlSlT5o6x27ZtU1RUlGw2m/744w/5+/vr/fffv+t7U1JStGjRIv3yyy9KTExU5cqV9dRTT6lu3bpZ/JMDAOB4LBaLnnjiiUzNwM6aNUtVqlRRu3btcjwXR/3kTd27d9d//vMfPffcc/L19dU777xjdCTAqTBj64Dc3d21devWO67HxMTo/Pnzcnd3z9L7jh49qtWrV+v69evy9fW979h169Zp165dKlmypAoXLnzfsV9//bVWrlyp1q1ba+jQoXJxcdEnn3yiw4cPZykfAACO5ty5c/rll18UGhr6wLHXrl3TokWLMr4X5rRbxbZatWo5/rWQu0aMGKGJEydqwoQJmjVrltFxAKfCjK0DatCggSIjIzVs2DC5urpmXI+IiFC1atV09erVLL2vcePGMpvNKliwoJYvX67ffvvtnmNffPFFlShRQi4uLnrjjTfuOc5ms2nbtm0aOHCgevToIUlq27at3nzzTX3//ff68MMPs5QRAABHsnz5ctntdvXs2fOBYxcvXqzExEQNGTIkF5L99T24QoUKKliwYK58PeSuCRMmKD4+XiNHjlTZsmUVHBxsdCTAKTBj64BatWqlxMRE7du3L+NaamqqIiMj1apVqyy/r0iRIpn+5leqVKlM/bY5MjJSLi4ueuKJJzKueXh4qH379jp69KjOnTuX5ZwAADgKi8Wili1bqmzZsg8cazab1aFDB1WpUiXng4kdkfM6k8mkadOmqXv37nryySe1Y8cOoyMBToFi64BKly4tPz8/RUREZFzbs2ePkpKS1LJlSwOT/Z/ffvtN5cuXV6FChW67fusb7cmTJ42IBQDAI0tMTNTatWsztQz5+PHj+vnnn3Nl06hbOMM273N1ddWCBQtUv359BQcH6+jRo0ZHAhwexdZBtW7dWrt27VJycrIkaevWrfL391eJEiUMTvaXixcvqnjx4ndcv3WNQ8YBAM5qzZo1unnzZqaO+Zk9e7a8vb3Vu3fvnA8mjvrJT259hKxMmTLq0qWL/vjjD6MjAQ6NYuugWrRooeTkZEVFRen69evavXv3Qy1DzikpKSlyc7vzI9q3Nra6VcgBAHA2VqtVderU0WOPPXbfcenp6ZozZ46eeuqpO1Yw5ZRz587pypUrzNjmEyVKlFB4eLiSk5PVtWtXXblyxehIgMOi2Doob29v1alTRxEREdq5c6fS09PVvHlzo2NlcHd3V2pq6h3XU1JSJP31eVsAAJxNSkqKVqxYkallyBs3btSpU6dydRkyR/3kP5UqVVJ4eLhOnDih3r17M3kA3APF1oG1atVK0dHRWrdunerXr//A43dyU/HixXXx4sU7rt+65ihLpgEAyIrNmzfr0qVLmVqGbDabVbNmzVz9xfOtYvug2WTkLXXq1JHVatUvv/yiYcOGKT093ehIgMOh2Dqwpk2bymQyKTY2Vq1btzY6zm2qVKmi06dPKykp6bbrt77hVq5c2YhYAAA8EqvVqsqVK6t+/fr3HXfp0iUtXbpUw4YNk8lkyp1w+uv7bPny5R3ql93IHYGBgZo/f74WLFigcePGGR0HcDgUWwfm6empESNGqG/fvmrUqJHRcW7TrFkzpaena8OGDRnXUlJStHnzZlWvXl2lSpUyMB0AAFmXnp4uq9Wq0NDQB5bVH3/8USkpKRo8eHAupfsLR/3kb/369dO///1vTZkyRZ9//rnRcQCHcufuP3Ao7dq1e+R3JCUlafXq1ZKUsV38mjVrVKhQIRUuXFhBQUEZY2NiYnTo0CFJ0tWrV3Xz5k0tWbJEklSrVi35+/tLkvz8/NS8eXMtWLBAly9fVrly5fTzzz/rzz//1KhRox45MwAAue3XX39VQkJCppchBwUFqXz58jkf7L/YbDYFBATk6teEY3n55ZcVHx+vMWPGqHz58urfv7/RkQCHQLHNBxITE7Vo0aLbrq1YsULSX2fm/nexPXjwoBYvXnzb2FvP9u3bN6PYStKLL76oRYsW6ZdfftG1a9dUqVIljR079rYxAAA4C6vVqlKlSj3w4z+HDh3Sjh077vh+mRtiY2PVq1evXP+6cCyTJk1SQkKCBg8erDJlyqhDhw5GRwIMR7F1IIGBgQoMDHzguK+++ipL7y1Tpox+/PHHTI3t16+f+vXrl6mxHh4eGjhwoAYOHJilPAAAOCKLxaKePXvK1dX1vuPMZrNKliypHj165FKyv1y4cEEXL17kDFvIZDLpu+++09mzZxUSEqItW7Y88HPhQF7HZ2wBAEC+d/jwYR05cuSBy5BTUlI0d+5cPfPMM7l+tB1H/eC/ubu7a/HixapRo4a6du2q3377zehIgKEotk4sMTFRly5duuc/HOINAEDmWCwWFS5cWB07drzvuPDwcJ05cyZXz669haN+8L+KFCmilStXZuyZcu7cOaMjAYZhKbIT++yzzxQTE3PP+6VLl87ysmUAAPIji8WioKAgFSxY8L7jzGaz6tevb8iyT5vNpjJlysjb2zvXvzYcV9myZRUeHq6WLVuqR48e2rBhgwoVKmR0LCDXUWyd2KBBg5SYmHjP+7m9RAoAAGf0+++/69dff9Wrr75633F//vmnli9frs8++yyXkt2Oo35wL9WrV9eqVasUGBiop556ShaLRW5u/JiP/IX/4p1YtWrVjI4AAIDTW7Zsmdzc3BQcHHzfcd9//71MJpMGDBiQS8luZ7PZ2DgK99S4cWMtXrxYPXr00PPPP6+ZM2c+8DxmIC/hM7YAACBfs1gsat++vYoVK3bPMXa7XWazWT179lSpUqVyL9x/iY2NZcYW9xUUFKTvvvtO3377rf7+978bHQfIVczYAgCAfOvixYvavHmzvvzyy/uO27Nnj/bt26d//OMfuZTsdpcuXdK5c+cotnigwYMHKyEhQW+//bZ8fHw0atQooyMBuYJiCwAA8q0VK1YoLS1NvXr1uu84s9ms8uXLq0uXLrmU7HbHjh2TJJYiI1PGjRun+Ph4vfDCCypXrtwD//sG8gKWIgMAgHzLarWqWbNm8vHxueeYmzdv6ocfftCgQYMM25CHo36QFSaTSVOnTlXv3r3Vv39/RUREGB0JyHEUWwAAkC9dv35d4eHhCg0Nve+4sLAwXbhwwZCza2+x2WwqWbKkihcvblgGOBdXV1fNmzdPzZo1U48ePXTo0CGjIwE5imILAADypbVr1yopKUkhISH3HWc2m9WiRQs9/vjjuRPsLjjqBw/D09NTVqtVvr6+CgoKUnx8vNGRgBxDsQUAAPmS1WpVrVq1VLNmzXuOiY+P15o1awydrZUotnh4xYoV0+rVq2W329W1a1ddunTJ6EhAjmDzKDiNM2fO6PTp0zp//rzOnTuX8c+VK1f0wgsv8LkjAECmpaamavny5Q/cMXbevHkqUKCAnnrqqVxKdnc2m01PPPGEoRngvCpUqKDw8HC1bt1aoaGhCg8PV4ECBYyOBWQrii2cwo0bN1SuXLnbrplMJplMJqWnp6tZs2YUWwBApv3yyy86f/78fZch3zq7tk+fPvL29s69cP/j6tWr+uOPP5ixxSPx9/dXWFiYOnXqpEGDBmnhwoVycWHxJvIO/muGU/D09FS/fv1uu2a325Weni5vb2/16NHDoGQAAGdktVpVoUIFNW7c+J5jtm3bpqNHjxq+DJmjfpBdWrdurQULFmjJkiV6/fXXZbfbjY4EZBuKLZzGwoUL1a9fvzt+u1ikSBFZLBbdvHnToGQAAGdit9tltVoVEhIik8l0z3Fms1mVK1dWYGBg7oW7i1tH/TBji+wQEhKiadOm6YsvvtDkyZONjgNkG4otnIaLi4vmzp2rFi1ayNXVNeN6xYoV9cwzz6hChQoaN25cxm+2AQC4mz179ujUqVP3XYZ87do1/fjjjxo6dKjhyzVtNpuKFSumEiVKGJoDecfo0aM1YcIEjRs3TvPmzTM6DpAtKLZwKp6engoLC1PVqlUlSe3atVNkZKQOHTqkQYMG6ZtvvlH16tXVpUsXWa1WpaamGpwYAOBoLBaLihcvrrZt295zzJIlS5SYmKghQ4bkYrK7u7Uj8v1ml4GsmjhxooYPH67hw4drzZo1RscBHhnFFk6nRIkSWrdunerXr68JEyZIkh5//HH961//Unx8vGbPnq0rV64oNDRUlStX1t///nf9/vvvBqcGADgKi8Wi7t27y93d/Z5jzGaz2rdvn/GLVCNx1A9ygslk0owZM9SlSxf16dNHUVFRRkcCHgnFFk6pSpUq2rNnjzp27Hjb9YIFC2rIkCHavn27du/erR49emjKlCmqUqWKQkNDtWbNGqWnpxuUGgBgtNjYWB08eFChoaH3HHP8+HFt3rzZ8E2jbqHYIqe4ubnpxx9/VEBAgLp168bHueDUKLbIsxo0aKD//Oc/SkhI0FdffaXjx48rKChIfn5++uc//6k///zT6IgAgFxmtVpVsGBBdenS5Z5j5syZIy8vL/Xp0ycXk91dUlKS4uPjKbbIMYULF9bKlStVrFgxdenSRWfPnjU6EvBQKLbI87y9vTV69GhFR0dr27Ztat26td577z1VqFBBAwYM0JYtW9juHgDyCYvFos6dO6tQoUJ3vZ+enq45c+boqaeeuueY3HRrBo1ii5xUqlQphYeH69q1awoODlZiYqLRkYAso9gi3zCZTGrRooXmzJmj+Ph4TZo0Sbt27VK7du1Uu3Ztffnll7p06ZLRMQEAOeT06dOKjIy87zLkTZs26eTJkw61DFniDFvkvKpVq2rVqlU6cuSI+vXrp5SUFKMjAVlCsUW+VLJkSY0ZM0ZHjhzRhg0b5O/vrzFjxsjX11cjRozQrl27jI4IAMhmYWFhcnFxUffu3e85xmw2q2bNmmrRokUuJrs3m80mLy8vlS5d2ugoyAcaNGigpUuXasOGDRoxYgQr2uBUKLbI10wmkzp06KCffvpJp06d0vjx47Vu3To1adJEjRs31nfffadr164ZHRMAkA2sVqvatm2rkiVL3vX+5cuXtWTJEg0dOtRhjtbhqB/kto4dO2rOnDmaO3eu3nnnHaPjAJlGsQX+v/Lly+udd97R8ePHtXz5cpUrV07PPfecfHx89PLLL+vgwYNGRwQAPKTLly9rw4YN912G/OOPPyo5OVmDBw/OxWT3x47IMMLTTz+tKVOmaNKkSfrqq6+MjgNkCsUW+B+urq7q3r27VqxYoRMnTuill17STz/9pNq1a6tt27b64YcfdPPmTaNjAgCyYNWqVUpJSVGvXr3uOcZsNisoKEg+Pj65mOz+KLYwyhtvvKExY8bolVde0eLFi42OAzwQxRa4j8qVK+vjjz/WqVOntGjRIrm5uemZZ55RhQoVNHbsWM57AwAnYbVa1ahRI1WqVOmu9w8dOqTIyEiH2TRKkm7cuKG4uDiKLQwzefJk9e/fXwMHDtSWLVuMjgPcl5vRAfKT+Ph4oyM4DGf7d+Hh4aF+/fqpX79+Onz4sGbOnKlvv/1WkydPVufOnTV69Gj16NFDbm78XwoAHM2NGze0atUq/e1vf7vnGLPZrBIlSqhHjx65mOz+jh8/LrvdTrGFYVxcXGQ2m3XmzBn17NlTv/zyi+rUqWN0LOCuTPZMbHd25coVFS1aVJcvX5a3t3du5MpTYmNjVaNGDaNjOKSjR4867REG169f16JFi/Sf//xHkZGR8vHx0XPPPacRI0aoQoUKRscDAPx/K1euVPfu3XXgwAEFBATccT81NVUVK1ZUv3799MUXXxiQ8O7CwsLUq1cvxcfHO9TyaOQ/V65cUdu2bXXu3Dlt375dFStWNDoS8oms9FCKbS6JjY3V1atXjY7hULy8vJy21P6v6OhozZgxQ/Pnz1dSUpJ69Oih559/Xp06dZKLCyv+AcBIzz33nH7++WcdOXLkrrsLr1ixQj169NDu3bvVoEEDAxLe3b/+9S+9++67SkxMZFdkGO706dNq2bKlChUqpF9++UUlSpQwOhLyAYotYJCrV6/q+++/1/Tp07Vv3z5VrVpVo0aN0rBhw1SmTBmj4wFAvpOWlqby5ctr2LBh+vTTT+86pk+fPjp27Jiio6NzN9wDvPDCC4qIiNDevXuNjgJIko4cOaJWrVqpVq1aWrt2rQoWLGh0JORxWemhTCUB2cjLy0ujR49WdHS0tm3bpjZt2uj9999XhQoVNGDAAG3ZsoXDzgEgF23btk1//vmnQkJC7nr/3LlzWr58uUNtGnULOyLD0dSsWVMrVqxQVFSUBgwYoLS0NKMjARkotkAOMJlMatGihebMmaOEhAR9+umnioqKUrt27RQQEKAvvvhCly5dMjomAOR5VqtV5cqVU7Nmze56//vvv5ckPfPMM7kZK1MotnBEzZs316JFi7R8+XK9/PLL/MIeDoNiC+SwEiVK6PXXX9fhw4e1YcMG1a5dW2+88YZ8fHz07LPP6tdffzU6IgDkSXa7XRaLRb169brnfgdms1k9evRQqVKlcjnd/SUnJ+vkyZMUWzik7t276z//+Y+mT5+uf/zjH0bHASRRbIFcYzKZ1KFDBy1atEhxcXF65513tH79ejVt2lSNGzfWt99+q2vXrhkdEwDyjP379+vEiRMKDQ296/09e/Zo7969DrkM+bffflN6ejrFFg5rxIgRmjhxoiZMmCCz2Wx0HIBiCxihXLlyeuedd3T8+HEtX75c5cqV08iRI+Xj46OXXnpJBw4cMDoiADg9i8Uib29vtW/f/q73zWazypUrp6CgoFxO9mCxsbGSRLGFQ5swYYJGjRql5557TitXrjQ6DvI5ii1gIFdXV3Xv3l0rVqzQiRMn9PLLL2vx4sWqU6eO2rRpo++//143b940OiYAOCWLxaLg4GB5eHjcce/mzZv6/vvvNWjQILm5uRmQ7v5sNps8PT3l6+trdBTgnkwmk6ZNm6bu3bvrySef1M6dO42OhHyMYgs4iMqVK+ujjz7SqVOntGjRInl4eGjgwIGqUKGCxo4dK5vNZnREAHAaJ06c0N69e++5DHn58uW6cOGCQy5Dlv4qto899hhnocPhubq6asGCBapfv76Cg4N19OhRoyMhn+JvS8DBeHh4qF+/ftqwYYMOHz6sQYMG6dtvv5Wfn5+6dOkii8Wi1NRUo2MCgEOzWq0qUKDAPZcZm81mNWvWTLVq1crlZJnDjshwJgULFtTy5ctVunRpdenSRX/88YfRkZAPUWwBB1azZk3961//Unx8vObMmaMrV66od+/eqly5st5//339/vvvRkcEAIdksVjUsWNHeXl53XEvISFB4eHhGj58uAHJModiC2dTokQJhYeHKzk5Wd26ddOVK1eMjoR8hmILOIGCBQtq8ODB2r59u/bs2aOePXvqX//6lypXrqyQkBCFh4crPT3d6JgA4BDOnj2riIiIey5Dnjt3rgoUKKCnnnoql5NlTkpKin777TeKLZxOpUqVFB4ermPHjqlPnz5KTk42OhLyEYot4GTq16+v6dOnKyEhQdOmTdOJEyfUtWtXVa9eXZ9++qnOnj1rdEQAMNTy5cslST169Ljjnt1ul9lsVu/evVW0aNHcjpYpp06dUmpqKsUWTqlOnTpatmyZtmzZomHDhvGLd+Qaii3gpLy8vDR69GhFR0dr+/btatu2rf7+97+rQoUKevrpp7VlyxbZ7XajYwJArrNarWrVqpXKlClzx73t27fr6NGjDrtplMRRP3B+gYGBmj9/vhYsWKBx48YZHQf5BMUWcHImk0nNmzfX7NmzFR8fr08//VS7d+9Wu3btFBAQoC+++EKXLl0yOiYA5IqrV69q3bp191yGbDabVbly5XuebesIbDabPDw8VLFiRaOjAA+tX79+mjp1qqZMmaLPP//c6DjIByi2QB5SokQJvf766zp8+LA2bNig2rVr64033pCPj4+effZZ/frrr8ziAsjTwsPDdfPmTYWEhNxx79q1a/rxxx81ZMgQhz5Gx2azqVq1anJ1dTU6CvBIXnnlFY0bN05jxozRwoULjY6DPM5x/1YH8NBMJpM6dOigRYsWKS4uThMmTND69evVtGlTNW7cWN98842uXbtmdEwAyHZWq1X16tVT1apV77i3dOlSXb16VUOHDs39YFnAjsjISyZNmqRBgwZp8ODB2rhxo9FxkIdRbIE8rly5cho/fryOHz+uFStWyMfHR6NGjZKPj49eeuklHThwwOiIAJAtkpOTtXLlyvsuQw4MDLxr6XUkFFvkJSaTSd99953at2+vkJAQRUdHGx0JeRTFFsgnXF1dFRwcrOXLl+vEiRN6+eWXtXjxYtWpU0etW7fW999/rxs3bhgdEwAe2qZNm3T58uW7LkM+ceKENm3a5NCbRklSWlqajh8/TrFFnuLu7q7FixerRo0a6tq1q3777TejIyEPotgC+VDlypX10UcfKS4uTj/99JMKFCiggQMHqkKFCnrrrbdks9mMjggAWWa1WlW1alXVrVv3jntz5syRl5eX+vTpY0CyzIuLi1NKSgrFFnmOl5eXVq5cqcKFCysoKEjnz583OhLyGIotkI+5u7urb9++2rBhgw4fPqwhQ4bou+++k5+fnzp37qylS5cqJSXF6JgA8EDp6elatmyZQkJCZDKZ7rg3e/ZsPfnkkypcuLBBCTPn1i8WKbbIi8qWLavw8HBduHBB3bt3V1JSktGRkIdQbAFIkmrWrKnPPvtM8fHxmjNnjhITE9WnTx9VqVJF77//vuLi4oyOCAD3tHPnTp0+ffqun6/dvHmzTp486fDLkKW/zrB1c3NT5cqVjY4C5Ijq1atr5cqV2r9/v5566imlpqYaHQl5BMUWwG0KFiyowYMHa9u2bYqOjlbPnj31r3/9S1WqVFGvXr0UHh6u9PR0o2MCwG0sFotKly6tli1b3nHPbDarRo0ad73naGw2m6pWrSo3NzejowA5pkmTJlq8eLHCw8P1/PPPcxQhsgXFFsA91atXT9OnT1dCQoK+/vprnTx5Ul27dlX16tX1ySef6OzZs0ZHBADZ7XZZLBb17NnzjrNfL1++rCVLlmjo0KF3LFF2ROyIjPwiKChI3377rb799lt98MEHRsdBHkCxBfBAXl5eGjVqlPbs2aPt27erbdu2+uCDD1ShQgU9/fTT+vnnn/ltKwDDHDp0SLGxsXddhvzjjz/q5s2bGjx4sAHJso5ii/xkyJAhmjRpkj744APNmDHD6DhwchRbAJlmMpnUvHlzzZ49W/Hx8fr000+1e/duBQYGKiAgQF988YUuXbpkdEwA+YzFYlGRIkX0xBNP3HHPbDarS5cu8vX1NSBZ1qSnp+vYsWMUW+Qr48aN00svvaQXXnhBy5YtMzoOnBjFFsBDKVGihF5//XUdPnxYGzduVO3atfXGG2/Ix8dHw4cP186dO5nFBZArLBaLunbtKk9Pz9uuHzp0SJGRkU6xaZQkxcfH6+bNmxRb5Csmk0lTp05V79691b9/f23bts3oSHBSFFsAj8RkMql9+/ZatGiR4uLiNGHCBG3cuFHNmjVT48aN9c033ygxMdHomADyqLi4OEVFRd11GfLs2bNVokQJ9ezZ04BkWcdRP8ivXF1dNW/ePDVt2lTdu3fXoUOHjI4EJ0SxBZBtypUrp/Hjx+vYsWNasWKFfHx8NGrUKPn6+uqll17S/v37jY4III+xWq1yd3dXt27dbruempqquXPnasCAASpQoIBB6bLGZrPJxcVFVapUMToKkOs8PT21bNky+fr6KigoSAkJCUZHgpOh2ALIdq6urgoODtby5ct14sQJvfLKK1qyZInq1q2r1q1ba/78+bpx44bRMQHkAVarVR06dFDRokVvu75mzRr98ccfTrMMWfrrDNvKlSvLw8PD6CiAIYoVK6bVq1crPT1dQUFB7NuBLKHYAshRlStX1ocffqhTp07pp59+kqenpwYNGqQKFSrorbfeUmxsrNERATip8+fP6+eff77rMmSz2ay6deuqQYMGBiR7ODabTX5+fkbHAAxVoUIFrVmzRr///rtCQ0N18+ZNoyPBSVBsAeQKd3d39e3bV+vXr9fhw4c1ZMgQfffdd6pRo4Y6deqkpUuXKiUlxeiYAJzIihUrlJ6efsdnaM+dO6ewsDANGzbMKc6uvYWjfoC/+Pv7KywsTJGRkRo8eLDS09ONjgQnQLEFkOtq1qypzz77TPHx8Zo7d66uXbumPn36qHLlynrvvfcUFxdndEQATsBqtap58+YqX778bdd/+OEH2e12PfPMMwYlyzq73U6xBf5L69at9cMPP2jx4sV6/fXXOWkBD0SxBWCYggULatCgQdq2bZuio6MVEhKizz//XFWqVFGvXr0yPmcDAP8rKSlJa9asuecy5B49eqh06dIGJHs4p0+f1vXr1ym2wH8JDQ3VtGnT9MUXX2jy5MlGx4GDo9gCcAj16tXT119/rYSEBH399dc6efKkunXrpscee0yffPKJzpw5Y3REAA5kzZo1un79ukJCQm67Hh0drejoaKfaNEriqB/gXkaPHq0JEyZo3LhxmjdvntFx4MAotgAcipeXl0aNGqU9e/YoMjJS7dq10wcffKCKFSuqf//++vnnn1mOBEBWq1UBAQF3bLZkNptVtmxZde3a1aBkD8dms8lkMqlq1apGRwEczsSJEzV8+HANHz5ca9euNToOHBTFFoBDMplMatasmWbPnq34+Hj985//VHR0tAIDA+Xv769///vfunjxotExARggJSVFy5cvv2O29ubNm/r+++81aNAgubm5GRPuIcXGxqpixYry9PQ0OgrgcEwmk2bMmKEuXbqod+/eioqKMjoSHBDFFoDDK1GihF577TUdOnRIGzduVN26dfXmm2/K19dXw4cP186dO5nFBfKRX375RRcvXrzj87XLly/X+fPnnW4ZssSOyMCDuLm56ccff1RAQIC6deumY8eOGR0JDoZiC8BpmEwmtW/fXj/++KPi4uI0YcIEbdy4Uc2aNVOjRo30zTffKDEx0eiYAHKYxWJRxYoV1bBhw9uum81mNW3aVP7+/gYle3icYQs8WOHChbVixQoVLVpUQUFBOnv2rNGR4EAotgCcUrly5TR+/HgdO3ZMK1eulK+vr0aNGiUfHx+9+OKL2r9/v9ERAeQAu90uq9WqkJCQ286oTUhIUHh4uFPO1nLUD5B5pUuX1po1a5SYmKjg4GB+oY0MFFsATs3V1VXdunXT8uXLdeLECb366qtaunSp6tatq9atW2v+/Pm6ceOG0TEBZJOoqCj9/vvvdyxDnjdvnjw8PNS/f3+Dkj28s2fPKjExkWILZFLVqlW1atUqHTlyRP369VNKSorRkeAAKLYA8ozKlSvrww8/1KlTp/TTTz/J09NTgwYNUoUKFfTWW28pNjbW6IgAHpHFYlGJEiXUpk2bjGt2u11ms1m9e/dWsWLFjAv3kDjqB8i6Bg0aaOnSpdqwYYOee+452e12paSk6L333tOmTZuMjgcDUGwB5Dnu7u7q27ev1q9fryNHjmjo0KGaNWuWatSooU6dOmnJkiX8dhdwUhaLRT169Lht1+PIyEgdOXLEKZchS/9XbKtVq2ZwEsC5dOzYUbNnz9acOXP01ltvKTg4WB9++KH+8Y9/GB0NBqDYAsjTatSooSlTpuj333/X3LlzlZSUpL59+6py5cp67733FBcXZ3REAJl05MgRHTp06I5lyGazWZUqVVKHDh0MSvZobDabfH19VahQIaOjAE5nwIABev/99/XZZ59p/fr1kqQtW7bwMaR8iGILIF8oWLCgBg0apIiICEVHRyskJESff/65qlSpop49e2r16tVKS0szOiaA+7BarSpYsKA6deqUcS0pKUkLFy7UkCFD5OLinD/WxMbGsgwZeEjHjh3T7NmzZTKZMo7+S05O1tatWw1OhtzmnN8BAOAR1KtXT19//bUSEhI0ffp0xcXFqVu3bqpevbomTZqkM2fOGB0RwF1YrVYFBQXdNrO5dOlSXb16VUOHDjUu2CPiqB/g4fXs2VMnT5687Tx7V1dXrV271sBUMALFFkC+5eXlpZEjR2r37t2KjIxUYGCgJk6cqIoVK6p///7avHnzbd8oARgnISFBkZGRd12G3K5dO6f9fCpH/QCPZvLkyWrdurWkvwqtJKWlpWnp0qVGxoIBKLYA8j2TyaRmzZrJbDYrPj5e//znPxUdHa327dvL399f//73v3Xx4kWjYwL52rJly+Tq6qrg4OCMa7/99ps2btzotJtGSdL58+d1+fJlii3wkLp166ZffvlFR44c0ZgxYzJ2Rj927JhOnTplbDjkKootAPyXEiVK6LXXXtOhQ4e0ceNG1a1bV2+++aZ8fHw0bNgw7dy5k1lcwABWq1WBgYEqUaJExrU5c+aoSJEi6tu3r4HJHg1H/QDZo0aNGvrnP/+pM2fOaMaMGWrUqJGKFi1qdCzkIootANyFyWRS+/bt9eOPPyouLi7jXLxmzZqpUaNGmjlzphITE42OCeQLly5d0saNG29bhpyenq7Zs2frySefVOHChQ1M92huFdvHHnvM4CRA3uDh4aGRI0dq165dFNt8xu3BQwAgfytXrpzefvttjR07VmvWrNF//vMfPf/883rzzTc1aNAgjR49WnXq1DE6JpBnrVy5UqmpqerVq1fGtc2bN+u3335z6mXI0l/Ftly5cipSpIjRUYA8JTY2VlevXjU6hkPx8vLK0xvVUWwBIJNcXV3VrVs3devWTadOndI333yjb7/9Vl9//bVatmyp559/Xn379pWnp6fRUYE8xWq1qkmTJqpQoULGNbPZLD8/P7Vq1crAZI+OjaOA7BcbG6saNWoYHcMhHT16NM+WW4otADyESpUq6cMPP9R7772nsLAwTZ8+XYMGDdKrr76qYcOGadSoUXn2GweQm65fv67Vq1dr/PjxGdcuX76sJUuWaMKECTKZTAame3SxsbHy9/c3OgaQp9yaqX3ppZfk6+trcBrHEB8fr6+++ipPz2JTbAHgEbi7u6tPnz7q06ePjh49qpkzZ8psNuuzzz5Tx44dNXr0aPXs2VPu7u5GRwWc0oYNG3Tt2rXbPl+7aNEi3bx5U4MHDzYwWfaw2Wy3LbEGkH18fX2d9igwZB2bRwFANqlRo4amTJmi+Ph4zZ07V0lJSerbt68qV66s9957T3FxcUZHBJyOxWJRzZo1VatWrYxrZrNZnTp1um1psjO6cOGCLly4wFJkAMgGFFsAyGaenp4aNGiQIiIitHfvXoWEhOjzzz9XlSpV1LNnT61evVppaWlGxwQcXmpqqsLCwhQSEpJx7fDhw9q+fbvTbxol/XXOpsRRPwCQHSi2AJCD6tatq6+//loJCQmaPn264uLi1K1bN1WvXl2TJk3SmTNnjI4IOKxt27bp3Llzty1Dnj17tooXL54nlu9y1A8AZB+KLQDkAi8vL40cOVK7d+9WZGSkAgMDNXHiRFWsWFH9+/fX5s2bZbfbjY4JOBSLxSIfHx81adJE0l8zuHPnztWAAQPyxO7jNptNpUuX5qxNAMgGFFsAyEUmk0nNmjWT2WxWQkKC/vnPfyo6Olrt27dXrVq1NHXqVF28eNHomIDh7Ha7LBaLevXqJReXv35cWbt2rU6fPp0nliFLHPUDANmJYgsABilevLhee+01HTp0SJs2bVL9+vU1duxY+fj4aNiwYdq5cyezuMi39u7dq5MnT962DNlsNqtOnTpq2LChgcmyT2xsLMUWALIJxRYADGYymRQYGKiFCxcqLi5O7733njZt2qRmzZqpUaNGmjlzphITE42OCeQqi8WiokWLql27dpKk8+fPKywsTMOGDXP6s2tvYcYWALIPxRYAHEjZsmX19ttv69ixY1q5cqUqVKig559/Xj4+PnrxxRe1f/9+oyMCucJqtap79+7y8PCQJP3www9KT0/XwIEDDU6WPS5fvqw///xTfn5+RkcBgDyBYgsADsjV1VXdunVTWFiYTpw4oVdffVVLly5V3bp11apVK82bN083btwwOiaQI44fP659+/bdsQy5e/fuKl26tIHJsg9H/QBA9qLYAoCDq1Spkj788EOdOnVKixcvVqFChTR48GD5+vrqzTffVGxsrNERgWxlsVhUoEABdenSRZIUHR2tPXv25JlNo6T/O+qHYgsA2YNiCwBOwt3dXX369NG6det05MgRDRs2TGazWTVq1FCnTp20ZMkSpaSkGB0TeGRWq1WdO3dWkSJFJP01W1umTBl17drV4GTZx2azqUSJEipevLjRUQAgT6DYAoATqlGjhqZMmaL4+HjNmzdPSUlJ6tu3rypVqqR3331Xp06dMjoi8FDOnDmjiIiIjGXIycnJ+v777zVo0CC5u7sbnC77sHEUAGQvii0AODFPT08NHDhQERER2rt3r3r37q1///vfqlq1qnr27KlVq1YpLS3N6JhApoWFhclkMql79+6SpOXLl+v8+fN5ahmyRLEFgOxGsQWAPKJu3bqaNm2a4uPjNX36dMXFxSk4OFjVq1fXpEmTdObMGaMjAg9ktVrVpk2bjE2izGazmjRpooCAAIOTZS/OsAWA7EWxBYA8xsvLSyNHjtTu3bsVGRmpwMBATZw4URUrVtRTTz2lzZs3y263Gx0TuMOVK1e0fv16hYSESJJOnz6t1atX57nZ2sTERP3xxx8c9QMA2YhiCwB5lMlkUrNmzWQ2m5WQkKDJkydr3759at++vWrVqqWpU6fq4sWLRscEMoSHhys5OTmj2M6bN0/u7u7q37+/scGyGUf9AED2o9gCQD5QvHhxvfrqq4qJidGmTZtUv359jR07Vj4+Pho2bJh27NjBLC4MZ7FY1KBBA1WpUkV2u11ms1mhoaF5budgjvoBgOxHsQWAfMRkMikwMFALFy5UXFyc3nvvPW3atEnNmzdXo0aNNHPmTCUmJhodE/nQzZs3tXLlyozZ2h07dujw4cMaPny4scFygM1mU9GiRVWyZEmjowBAnkGxBYB8qmzZsnr77bd17NgxrVq1ShUrVtTzzz8vHx8fvfDCC9q3b5/REZGPbNq0SVevXs045sdsNqtixYrq0KGDwcmy360dkU0mk9FRACDPoNgCQD7n6uqqrl27atmyZTpx4oRee+01Wa1W1atXT61atdK8efN048YNo2Mij7NYLHrsscdUu3ZtJSUlaeHChRoyZIhcXV2NjpbtOOoHALIfxRYAkKFSpUqaOHGiTp48qcWLF6tQoUIaPHiwfH199eabbyo2NtboiMiD0tLStGzZMoWEhMhkMslisejKlSsaOnSo0dFyBEf9AED2o9gCAO7g7u6uPn36aN26dTp69KiGDRsms9msGjVqqGPHjlqyZIlSUlKMjok8YseOHTpz5kzG52vNZrPatm2rxx57zNhgOSApKUnx8fEUWwDIZhRbAMB9+fn5acqUKYqPj9e8efN0/fp19e3bV5UqVdK7776rU6dOGR0RTm7JkiUymUwaPHiwxo4dqw0bNuS5s2tvOX78uCRxhi0AZDOKLQAgUzw9PTVw4EBFRERo79696t27t/7973+ratWq6tmzp1atWqW0tDSjY8LJ2O12LVu2TJJ04sQJTZkyRdJfZ9guWrRIqampRsbLdhz1AwA5w83oAAAA51O3bl1NmzZNn376qX744QdNnz5dwcHBqlKlikaOHKnhw4erbNmyRseEEzh48KCOHTumkiVL6vz58xnnKW/evFkbN27Ut99+q2effdbglNnHZrOpSJEiKlOmjNFRgHxv8+bNmj59uiTpgw8+0OOPP37bfbvdrhdffFHnz59Xw4YNNW7cuEy/+8KFC5ozZ4727dsnu92ugIAADR48+I7vjWvXrtWBAwdks9l0/vx5tWvXTi+88MJd33nt2jV9//332rlzp5KTk/XYY49p0KBBqlatWhb/5HkTM7YAgIdWpEgRjRw5Urt379aOHTvUvn17TZw4URUrVtRTTz2lzZs3ZxQV4G4sFou8vLzu+oNZq1at1LdvXwNS5RyO+gEcj7u7u7Zu3XrH9ZiYGJ0/f17u7u5Zet+NGzc0ceJEHTp0SCEhIerXr59OnDihDz74QFevXr1tbFhYmA4ePKiKFSvedxf49PR0ffLJJ9q6dau6dOmiZ555RleuXNHEiRN1+vTpLOXLqyi2AIBHZjKZ1LRpU82aNUsJCQmaPHmy9u3bp/bt26tWrVqaOnWqLl68aHRMOCCr1apu3bqpSpUqGddMJpO6deumdevWqWjRosaFywEc9QM4ngYNGigyMvKOj9NERESoWrVqKlasWJbet2bNGp0+fVpjx45Vr169FBwcrHfeeUcXL17UihUrbhv7/vvv69tvv9Xbb78tN7d7L6bdsWOHjh49qhdeeEH9+vVTly5d9P7778vFxUU//fRTlvLlVRRbAEC2Kl68uF599VXFxMRo06ZNql+/vsaOHSsfHx8NGzZMO3bsYBYXkqSTJ09q9+7dCg0NValSpTKuDxo0SBaLRQULFjQwXc6g2AKOp1WrVkpMTNS+ffsyrqWmpioyMlKtWrXK8vt27Nihxx577Lb/r/v6+qp27dravn37bWNLly6dqRUckZGRKlq0qJo2bZpxzdvbW82bN9euXbs4qUAUWwBADjGZTAoMDNTChQsVFxen999/X5s3b1bz5s3VsGFDzZgxQ4mJiUbHhIGsVqs8PDzUtWtXJSUlSZJGjBghs9l835kLZ3Xjxg2dOnWKYgs4mNKlS8vPz08REREZ1/bs2aOkpCS1bNkyS+9KT0/XqVOn7vrxiurVq+vMmTO6fv16ljP+9ttvqlq1qlxcbq9v1atX182bN1mOLIotACAXlC1bVn/7299ks9m0atUqVapUSS+88IJ8fHz0wgsv3PZbcuQf6enpGjJkiLy9vfX3v/9dn376qWbOnHnHD255xYkTJ2S32znqB3BArVu31q5du5ScnCxJ2rp1q/z9/VWiRIksvScxMVEpKSkqXrz4HfduLWl+mI/mXLx48a7vvHXtwoULWX5nXpM3v3MAABySq6urunbtqmXLlunEiRN67bXXZLVaVa9ePbVq1Urz5s3TjRs3jI6JXPL6669r5syZkqQqVapo7NixeXpTJY76ARxXixYtlJycrKioKF2/fl27d+9+qGXIt4rx3VadeHh43DYmq++92ztvbWzFUmSKLQDAIJUqVdLEiRN18uRJLVmyRIUKFdLgwYPl6+urN998U7GxsUZHBLKVzWZTwYIFVb58eaOjAPgf3t7eqlOnjiIiIrRz506lp6erefPmWX7PrfJ6tzO4bxXaW2Oy+t67vfNWoc3qzs15EcUWAGAod3d39e7dW+vWrdPRo0c1fPhwzZ49WzVq1FDHjh21ePFifhONPIGjfgDH1qpVK0VHR2vdunWqX7++ChcunOV3FClSRO7u7nddbnzp0iVJuuuS4gcpXrz4Xd9561pWl0znRRRbAIDD8PPz0+TJk/X7779nLEvu16+fKlWqpHfffVenTp0yOiLw0NgRGXBsTZs2lclkUmxsrFq3bv1Q73BxcVHFihV1/PjxO+7ZbDaVLVv2oXZ8r1y58v9r786jo6rvPo5/JiEhIQuEJSxhDQQUZY1gIMGwJ5nB9gBijhWotvoUKW2ttoiPtj7YWouodUkF21pOK32UxdaemrBJCZJI2NdSzdxAWMKmCWQhgYTMPH/YzOPIIiHLnZt5v87xYO7c3PkktpAPv3t/Xx05ckQul+uKa7Zu3Zo7QUSxBQD4oJCQEM2cOVM5OTnat2+fpk2bpldffVV9+vTRN77xDWVlZV0xbxDwdRRbwLeFhITooYce0j333KP4+Pibvk5CQoIKCgpUUFDgOXby5EkdPHjwpm5vrrtmaWmptm/f7jlWVlamvLw8DR8+nFuRJbW8vfQBAC3K4MGD9dvf/laLFi3SO++8oyVLlsjhcKh37976r//6L33nO99R586dzY4JXFd1dbUKCwsptoCPS05ObvA1Jk+erI0bN2rRokWaMmWKAgMDlZmZqbZt22rKlCle5+7atUuFhYWSpNraWs++E5J0xx13qFevXpK+KLZZWVlasmSJTpw4oYiICK1fv14ul0v33ntvgzO3BBRbAIAlhIeH6+GHH9ZDDz2kHTt2aOnSpXr22Wf185//XNOmTdOcOXM0duxYnl+ETyosLJTL5aLYAn4gNDRUzzzzjP70pz/pr3/9q9xutwYOHOgZb/Zl27Zt0+bNmz0fFxYWeopuhw4dPMU2ICBACxYs0PLly7V27VpVV1erb9++ntF5kGxut9v9dSeVlZWpbdu2Ki0tveI/BgAAZjl37pz+/Oc/a+nSpfrkk080YMAAzZkzR7Nnz2YjDfiUrKwsORwOHTt2TD169DA7DtCi7d69W/Hx8Xr++ecVGxtrdhyfcPjwYT355JPatWuXhg8fbnacG1afHsoztgAAy4qKitKPfvQjHTp0SNnZ2Ro6dKjmz5+vmJgYPfDAA9q2bZtu4O9vgSZXt8FLTEyM2VEAoEWi2AIALM9msyk5OVnvvvuujh8/rmeeeUabN29WQkKChg8frjfffFMVFRVmx4QfMwxDffv2VUAAP3oBVlVRUaHz589f85+ysjKzI/o1nrEFALQonTt31oIFCzR//nytW7dOS5cu1dy5c/XTn/5UM2fO1Jw5czR48GCzYzYKp9Op8vJys2P4lIiICMXFxZkd4wrsiAxY30svvaRDhw5d8/VOnTopIyOjGRPhyyi2AIAWKSAgQGlpaUpLS9Px48f1+9//Xn/4wx+0ZMkSjRo1So888ohmzJihkJAQs6PeFKfTqf79+5sdwyfl5+f7XLk1DEN333232TEANMCsWbOue/dPcHBwM6bBV1FsAQAtXo8ePfTss8/qZz/7mf7xj39o6dKlmj17th599FE98MAD+t73vme5kli3Ujtv3jye2/yPoqIiZWRk+Nwq9uXLl3XkyBFWbAGLYyMq30axBQD4jaCgIE2bNk3Tpk2T0+nU7373Oy1btkwvv/yyJkyYoDlz5uib3/ympQbdx8TE8MOWjzt69KguX75MsQWAJsQOBgAAvxQXF6fFixfrxIkTevvtt3Xx4kXNmDFDPXv21M9+9jMdO3bM7IhoIQzDkCSKLQA0IYotAMCvhYSEaObMmcrJydH+/fs1ffp0vfrqq+rTp4++8Y1vKCsrS7W1tWbHhIUZhqGgoCD17NnT7CgA0GJRbAEA+I9BgwYpIyNDJ0+e1NKlS3XixAk5HA717dtXv/rVr3TmzBmzI8KCDMNQbGysAgMDzY4CAC0WxRYAgK8IDw/Xww8/rF27dmn79u0aP368fvnLX6p79+5KT0/Xpk2b5Ha7zY4Ji2DUDwA0PYotAADXYLPZNGLECP3xj39UUVGRXnzxRe3fv1/jx4/XrbfeqldeeUUlJSVmx4SPo9gCQNOj2AIAcAOioqL0ox/9SIcOHVJ2draGDRum+fPnKyYmRg888IDy8vJYxcUVamtrdfjwYYotADQxii0AAPVgs9mUnJysd955R8ePH9czzzyjzZs3a9SoURo+fLjefPNNn5ujCvOcOHFC1dXVFFsAaGIUWwAAblLnzp21YMECFRQUaM2aNerZs6fmzp2rmJgYzZ07V/v37zc7IkzmdDolMeoHAJoaxRYAgAYKCAhQamqq/v73v6uwsFA//vGP9f7772vIkCEaPXq03n77bVVVVZkdEyYwDEOtWrVS7969zY4CAC0axRYAgEbUo0cPLVy4UEePHtV7772n8PBwzZ49W927d9fjjz+u/Px8syOiGRmGod69e6tVq1ZmRwGAFo1iCwBAEwgKCtK0adO0fv16OZ1Ofec739Gf/vQnDRgwQBMnTtTq1atVU1Njdkw0MXZEBoDmQbEFAKCJ9evXT4sXL9aJEye0fPlyXbx4UTNmzFDPnj319NNP69ixY2ZHRBOh2AJA86DYAgDQTEJCQnT//fcrJydH+/fv1/Tp0/Xaa6+pT58+uvvuu5WZmSmXy2V2TDQSl8ulgoICii0ANAOKLQAAJhg0aJAyMjJ08uRJLV26VEVFRZoyZYqWL19udjQ0kpMnT+rixYsUWwBoBuxkAACAicLDw/Xwww/roYce0qeffqoePXqYHQmNxDAMSYz6AYDmQLEFAMAH2Gw23XLLLWbHQCNyOp0KCAhQnz59zI4CAC0etyIDAAA0AcMw1KtXLwUHB5sdBQBaPIotAABAE2BHZABoPhRbAACAJkCxBYDmQ7EFAABoZG63m2ILAM2IYgsAANDITp8+rcrKSootADQTdkUGAABoZIz6AcxXVFRkdgSf4Q/fC4otAABAIzMMQzabTbGxsWZHAfxORESEJCkjI8PkJL6n7nvTElFsAQAAGpnT6VT37t0VEhJidhTA78TFxSk/P1/l5eVmR/EpERERiouLMztGk6HYAgDQgmVnZ2vJkiWSpIULF+qWW27xet3tduv73/++iouLNXz4cD3xxBM3dN2TJ09qw4YNMgxDR44cUU1NjV5//XVFR0df9fydO3dq1apVKioqUmRkpMaOHavp06crMDDQ67wLFy7oL3/5i7Zv367q6mr17dtXs2bNstzKp2EYLfoHSMDX8f8//8PmUQAA+IGgoCDl5ORccfzQoUMqLi5WUFBQva6Xn5+vNWvWqKqqSjExMdc9d8+ePXrxxRcVFhamBx98UCNGjNBf//pXLVu2zOs8l8ulX//618rJyVFKSoruv/9+lZWV6dlnn9WpU6fqlc9s7IgMAM2LFVsAAPzAsGHDlJeXpwcffNBrlTQ3N1exsbH1vmXvjjvu0LJlyxQaGqp//OMfKiwsvOa5y5cvV8+ePfXUU0953js0NFTvv/++0tLSPMV427Ztys/P149//GMlJCRIkkaNGqVHH31Uq1at0g9/+MN6ftXmqBv1c99995kdBQD8Biu2AAD4gcTERFVUVGj//v2eY5cvX1ZeXp4SExPrfb3w8HCFhoZ+7XknTpzQiRMnNGHCBK9CPXnyZLndbuXl5XmO5eXlqW3btho5cqTnWGRkpBISErRz507V1NTUO6cZPvvsM5WXl7NiCwDNiGILAIAf6NSpk+Li4pSbm+s5tmfPHlVWVmr06NFN9r5HjhyRJPXt29frePv27dWhQwevld7CwkL16dNHAQHeP57069dPly5dssztyIz6AYDmR7EFAMBPJCUlaefOnaqurpYk5eTkaODAgWrfvn2Tvef58+clSe3atbvitXbt2uncuXOej8+dO6eoqKgrzqs7VlJS0iQZG1tdsbXahlcAYGUUWwAA/MSoUaNUXV2tXbt2qaqqSrt3776p25Dro65EX21zqqCgIM/rdee2anXl9h91n2uVW5GdTqe6deumsLAws6MAgN9g8ygAAPxEZGSkBg0apNzcXFVXV8vlcnk2aWoqwcHBkq5eSmtqajyv1517+fLlq54nXb0c+yJ2RAaA5seKLQAAfiQxMVF79+7Vhg0bNHTo0CZfVay7BbnuluQvO3/+vNetx1FRUV63JtepO9aUt0w3JmbYAkDzo9gCAOBHRo4cKZvNJqfTqaSkpCZ/v969e0uSCgoKvI6XlJSouLjY87ok9erVS0eOHJHL5fI61zAMtW7dWl27dm3quA3mdrvldDpZsQWAZkaxBQDAj4SEhOihhx7SPffco/j4+CZ/vx49eqhbt27auHGjV2HdsGGDbDab7rzzTs+xhIQElZaWavv27Z5jZWVlysvL0/Dhwy1xK3JJSYlKS0sptgDQzHjGFgAAP5OcnNzga1RWVmrNmjWSpPz8fEnSunXr1KZNG4WFhSk1NdVz7syZM7V48WI999xzGj16tI4fP661a9dq/Pjx6t69u+e8hIQEZWVlacmSJTpx4oQiIiK0fv16uVwu3XvvvQ3O3BwY9QMA5qDYAgCAequoqNDKlSu9jn3wwQeSvpiZ++ViGx8fr8cff1yrV6/WsmXLFBkZqalTp2r69Olenx8QEKAFCxZo+fLlWrt2raqrq9W3b1/NnTtX3bp1a/ovqhHUFduvzu0FADQtii0AAC3Y2LFjNXbs2K89LyMjo17XjY6O1ooVK274/BEjRmjEiBFfe154eLjmzJlTryy+xDAMde7cWREREWZHAQC/wjO2AAAAjYSNowDAHKzYAgAAj4qKiqvOkq0TEBCgyMjIZkxkLYZh6JZbbjE7BgD4HYotAADweOmll3To0KFrvt6pU6d637bsTwzD0N133212DADwOxRbAADgMWvWLFVUVFzz9eDg4GZMYy3nzp1TcXExtyIDgAkotgAAwCM2NtbsCJZVUFAgiVE/AGAGNo8CAABoBIz6AQDzUGwBAAAagWEY6tixo9q1a2d2FADwOxRbAABMcurUKb311luaPn26nnrqKbPjoIEMw+A2ZAAwCc/YAgDQTGpra7Vjxw5lZmYqMzNTe/bskc1mU0JCgtLT082OhwZihi0AmIdiCwBAEyopKdH69euVmZmptWvX6vPPP1dUVJRSU1P1+OOPKyUlRR07djQ7JhqBYRhKSUkxOwYA+CWKLQAAjcjtduvAgQPKyspSZmamPv74Y7lcLg0ePFgPP/ywHA6H7rzzTrVqxR/BLUlZWZnOnj3Lii0AmIQ/VQEAaKALFy5o48aNysrKUlZWlo4fP642bdpo4sSJWrJkiex2u7p37252TDQhRv0AgLkotgAA3ISCggLPs7LZ2dmqrq5Wv379NG3aNNntdiUnJ6t169Zmx0QzqRv1Q7EFAHNQbAEAuAHV1dXasmWLp8zm5+crKChIycnJWrRokex2u/r37292TJjEMAxFRUWpffv2ZkcBAL9EsQUA4BpOnjzpub14w4YNqqioULdu3WS327Vo0SJNmDBBERERZseED2DUDwCYi2ILAMB/1NbWavv27crMzFRWVpb27NmjgIAAJSQkaMGCBXI4HBoyZIhsNpvZUeFjKLYAYC6KLQDAr5WUlGjdunWecTzFxcVq3769ZxxPamqqOnToYHZM+Din06nk5GSzYwCA36LYAgD8itvt1v79+z3jeLZu3SqXy6UhQ4boe9/7nmccT2BgoNlRYREXLlzQqVOnFBcXZ3YUAPBbFFsAQItXUVHhNY7nxIkTCgsL08SJE7V06VLZ7XbFxMSYHRMWxagfADAfxRYA0CIZhuF5VrZuHE9cXJzuuece2e123XXXXYzjQaNg1A8AmI9iCwBoES5duuQZx5OVlaX8/HwFBwcrOTlZL7zwgux2O7eKokkYhqHIyEh17NjR7CgA4LcotgAAyyoqKtKaNWuUmZmpDz/8UBUVFYqJiZHdbtcLL7ygCRMmKDw83OyYaOHqdkRmt2wAMA/FFgBgGbW1tdq2bZtnVXbv3r0KCAjQqFGj9OSTT8rhcGjw4MEUDDQrRv0AgPkotgAAn1ZcXOw1jqekpETt27dXWlqafvrTnyolJYVxPDCVYRgaNWqU2TEAwK9RbAEAPqVuHE9mZqYyMzOVl5cnl8uloUOH6pFHHpHD4dDIkSMZxwOfUFVVpePHj7NiCwAmo9gCAExXUVGhDz/80DOOp6ioSOHh4Zo0aZLefPNNpaWlMY4HPunw4cOSxMZkAGAyii0AwBROp9PzrOzmzZtVXV2t/v37695775XdbteYMWMYxwOfx6gfAPANFFsAQLO4dOmSPvroI0+ZdTqdCg4O1tixY7V48WLZ7XbKASzHMAyFhYWpc+fOZkcBAL9GsQUANJkTJ054jeO5cOGCunfvLrvdrhdffFHjx49nHE8DFRUVmR3BZ5jxvWDUDwD4BootAKDR1NbWKi8vT1lZWcrMzNS+ffsUEBCg0aNH66mnnpLD4dCgQYMoAY0gIiJCkpSRkWFyEt9T971pDoz6AQDfQLEFADRIcXGx1q5dq8zMTK1bt04lJSXq0KGD0tLStGDBAk2ePFnt27c3O2aLExcXp/z8fJWXl5sdxadEREQ060ZOhmEoPT292d4PAHB1FFsAQL243W7t27fPM45n27ZtcrlcGjZsmObOnSuHw6ERI0YwjqcZsBOvuS5duqRjx46xYgsAPoBiCwD4WuXl5dq4caNn46eTJ096xvH87ne/U1pamrp162Z2TKBZHTlyRC6Xi2ILAD6AYgsAuKr8/HzPs7KbN29WTU2NBgwYoPT0dDkcDo0ZM0bBwcFmxwRMUzfqh5VzADAfxRYAIOmL2yo3b97sWZU1DEOtW7fW2LFj9dJLL8lut6tv375mxwR8hmEYCg0NVdeuXc2OAgB+j2ILAH7sxIkTnlXZjRs3esbxOBwOvfzyyxo/frzCwsLMjgn4JMMw1LdvXwUEBJgdBQD8HsUWAPzI5cuXvcbx7N+/X4GBgRo9erSefvppORwO3X777YzjAW4Ao34AwHdQbAGghfv888+1du1aZWVlae3atTp37pw6duyotLQ0Pfnkk0pJSVFUVJTZMQHLMQxDU6dONTsGAEAUWwBocdxut/bu3es1jsftdmv48OGaN2+e7HY743iABqqpqVFhYSErtgDgIyi2ANAClJeX68MPP/Rs/HTq1ClFRERo0qRJ+sMf/qC0tDQ2uAEa0dGjR1VbW0uxBQAfQbEFAAtyu91e43g++ugj1dTU6JZbbtG3vvUt2e12JSUlMY4HaCJOp1OSKLYA4CMotgBgERcvXtTmzZs9ZbagoECtW7fWuHHj9PLLL8tutys2NtbsmIBfqBuH1aNHD7OjAABEsQUAn3b8+HGvcTyVlZXq0aOHHA6HXnnlFY0bN45xPIAJDMNQbGwso34AwEdQbAHAh1y+fFlbt271lNkDBw4oMDBQiYmJ+vnPfy6Hw6HbbruNcTyAyRj1AwC+hWILACb77LPPPON41q1bp3PnzqlTp05KS0vTU089pcmTJzOOB/AxhmHI4XCYHQMA8B8UWwBoZm63W3v27PHsYFw3jic+Pl4/+MEPPON4uMUR8E2XL1/WkSNHWLEFAB9CsQWAZlBWVuYZx7NmzRrPOJ7JkyfrrbfeUlpamrp06WJ2TAA34Pjx46qpqaHYAoAPodgCQBNwu9369NNPPc/KbtmyRTU1Nbr11lt1//33y263KzExkXE8gAUx6gcAfA/FFgAaycWLF5Wdne0ps4cPH1ZISIjGjRun3/zmN7Lb7erTp4/ZMQE0kGEYCgoKUs+ePc2OAgD4D4otADTAsWPHlJWVpaysLM84np49e8rhcMjhcGjcuHFq06aN2TEBNCLDMNSnTx+1asWPUQDgK/gdGQDqoW4cT2ZmpjIzM3Xw4EEFBgYqKSlJzzzzjBwOhwYOHMg4HqAFY9QPAPgeii0AfI3PPvtMa9as8YzjOX/+vKKjo5WWlqaf/exnmjx5stq1a2d2TADNxDAMTZo0yewYAIAvodgCwFe4XC6vcTzbt2+X2+3WHXfcoR/96EdyOByKj49nHA/gh2pra1VQUKBHHnnE7CgAgC+h2AKAvhjHs2HDBs84ntOnTysyMlKTJ0/WnDlzlJaWps6dO5sdE4DJioqKVF1dza3IAOBjKLYA/FLdOJ66Z2W3bNmiy5cva+DAgZo5c6YcDocSExMVFBRkdlQAPsQwDEmM+gEAX0OxBeA3qqqqvMbxHDlyRCEhIRo/frxeffVVpaWlMY4HwHU5nU4FBgaqd+/eZkcBAHwJxRZAi3bs2DHPs7IbN25UVVWVevXq5RnHM3bsWMbxALhhhmGod+/e3M0BAD6GYgugRampqfEax/Ovf/1LrVq1UlJSkhYuXCiHw6Fbb72VcTwAbgqjfgDAN1FsAVje2bNntXbtWmVmZmrdunUqLS1VdHS07Ha7nnnmGU2ePFlt27Y1OyaAFsAwDCUnJ5sdAwDwFRRbAJbjcrm0e/duz7OyO3bskNvt1ogRI/TjH/9YdrudcTwAGp3L5VJBQYG++93vmh0FAPAVFFsAllBaWuo1jufMmTOKjIxUSkqK5s6dq9TUVMbxAGhSp06dUlVVFbciA4APotgC8Elut1v//ve/PauyOTk5unz5sm677TbNnj1bDodDo0ePZgMXAM2GUT8A4LsotgB8RlVVlTZt2uQps4WFhQoNDdX48eP12muvKS0tjREbAExjGIZsNhtjwQDAB1FsAZjq6NGjnnE8//znP1VVVaXevXt7jeMJDQ01OyYAyOl0qmfPnmrdurXZUQAAX0GxBdCsampq9PHHH3vG8Rw6dMgzjufZZ5+Vw+HQLbfcwjgeAD7HMAzFxcWZHQMAcBUUWwBN7syZM55xPOvXr1dpaak6d+4su92uhQsXatKkSYzjAeDzDMPQqFGjzI4BALgKii2ARudyubRr1y7PLcY7duyQzWbTiBEj9Nhjj8lut2v48OGM4wFgGW63W4ZhaNasWWZHAQBcBcUWQKMoLS3V+vXrPeN4zp49q7Zt2yolJUXz5s1TamqqoqOjzY4JADflzJkzunDhAjsiA4CPotgCuClut1uHDh3y7GCcm5ury5cv6/bbb9cDDzzgGcfTqhW/zQCwPkb9AIBv4ydOADessrLSaxzP0aNHFRoaqgkTJuj1119XWlqaevXqZXZMAGh0dcU2NjbW5CQAgKuh2AK4rsLCQs8Oxps2bdLFixfVp08f3X333XI4HEpOTmYcD4AWzzAMde/end/vAMBHUWwBeKmpqVFubq6nzP773/9Wq1atNGbMGP3yl7+Uw+HQgAEDGMcDwK84nU5uQwYAH0axBaDTp097jeMpKyvzjOP5xS9+oUmTJikyMtLsmABgGsMwFB8fb3YMAMA1UGwBP+RyubRz507POJ6dO3fKZrNp5MiR+slPfiK73a5hw4YxjgcA9P+jftLT082OAgC4Boot4CfOnz/vNY7ns88+U7t27ZSSkqIf/vCHSk1NVadOncyOCQA+5/PPP1dZWRm3IgOAD6PYAi2U2+3Wv/71L69xPLW1tRo0aJC+853vyOFwaNSoUYzjAYCvwagfAPB9/EQLtCCVlZX65z//6Smzx44dU5s2bTRhwgRlZGTIbrerZ8+eZscEAEupK7Z9+/Y1OQkA4FootoDFHTlyxPOsbN04ntjYWH3zm9+U3W7X2LFjFRISYnZMALAswzDUtWtXhYWFmR0FAHANFFvAYqqrq73G8XzyySdq1aqV7rrrLj333HNyOBzq378/43gAoJEYhsFtyADg4yi2gAWcPn1aWVlZysrK0vr161VeXq6uXbvKbrfrueee08SJExnHAwBNxOl06vbbbzc7BgDgOii2gA9yuVzasWOH5xbjXbt2yWaz6c4779T8+fNlt9s1dOhQxvEAQDMwDENTp041OwYA4DootoCPOHfunGccz9q1az3jeFJTU/Xoo48qJSWFcTwA0MxKSkp07tw5bkUGAB9HsQVM4na7dfDgQc8Oxh9//LFqa2s1ePBgffe735XD4VBCQgLjeADARIz6AQBr4CdmoBlduHBB//znPz23GB8/flxt2rTRxIkT9dvf/lZ2u109evQwOyYA4D8Y9QMA1kCxBZrY4cOHPTsYZ2dn69KlS+rbt6+mTp0qu92u5ORkxvEAgI8yDEPR0dFs0AcAPo5iCzSy6upq5eTkeMrsp59+qqCgIN111116/vnnZbfbGccDABbBqB8AsAaKLdAITp06pTVr1igzM1MbNmzwGsfz/PPPa+LEiYqIiDA7JgCgngzDUFxcnNkxAABfo8UXW6fTqfLycrNj+JSIiAj+kG6g2tpar3E8u3fvls1mU0JCgp544gnPOB5WZQHA2pxOp9LS0syOAQD4Gi262DqdTvXv39/sGD4pPz+fcltPJSUlXuN4Pv/8c0VFRSk1NVWPPfaYUlJS1LFjR7NjAgAayfnz5/X555/z5yUAWECLLrZ1K7Xz5s1TTEyMyWl8Q1FRkTIyMljFvgFut1sHDhzwGsfjcrk0ePBgPfzww3I4HLrzzjsZxwMALVRBQYEkRv0AgBX4xU/kMTExio2NNTsGLODChQvauHGjsrKyrhjHs2TJEtntdnXv3t3smACAZsCoHwCwDr8otsD1FBQUeI3jqa6uVr9+/TRt2jTPOJ7WrVubHRMA0MwMw1CHDh0UFRVldhQAwNeg2MLvVFdX66OPPvLcYpyfn6+goCAlJydr0aJFcjgcPE8FAGDUDwBYCMUWfuHkyZOe24s3bNigiooKdevWTXa7XYsWLdKECRMYxwMA8EKxBQDroNiiRaqtrdX27ds943j27NmjgIAAJSQkaMGCBXI4HBoyZAjjeAAA12QYhiZMmGB2DADADaDYosUoKSnRunXrPON4iouL1b59e6Wmpurxxx9XamqqOnToYHZMAIAFlJeX6/Tp0zyaAgAWQbGFZbndbu3fv9+zKrt161a5XC4NGTJE3/ve9zzjeAIDA82OCgCwGEb9AIC1UGxhKRUVFdq4caOnzBYVFSksLEyTJk3S0qVLZbfbmVkMAGiwulE/FFsAsAaKLXyeYRiecTybN29WdXW14uLiNGPGDNntdt11112M4wEANCrDMNSuXTu1b9/e7CgAgBtAsYXPuXTpktc4HqfTqeDgYCUnJ+uFF16Q3W7nmScAQJOq2xGZTQYBwBootvAJRUVFXuN4Lly4oJiYGNntdi1evFgTJkxQeHi42TEBAH6CUT8AYC0UW5iitrZW27Zt89xivG/fPgUEBGjUqFH67//+bzkcDg0ePJi/KQcAmMIwDI0ZM8bsGACAG0SxRbMpLi72GsdTUlKi9u3bKy0tTfPnz1dKSgrjeAAApqusrFRRURErtgBgIRRb3LT3339f/fr10+23337V191ut/bt2+d5VjYvL08ul0tDhw7VI488IofDoZEjRzKOBwDgU+pG/bCfAwBYB8UW9eZ2u/XMM8/oF7/4hSZNmqT169d7XquoqNCHH37oGcdz8uRJhYeHa9KkSXrzzTeVlpbGOB4AgE9j1A8AWA/FFvXicrn0wx/+UL/97W8lSdnZ2dq3b582bdqkzMxMffTRR6qurlb//v2Vnp4uu92uMWPGMI4HAGAZhmEoIiJCnTp1MjsKAOAGUWxxw2pqajR79my9++67XseGDh2q4OBgjR07VosXL5bdbudvuQEAlsWoHwCwHootbsiFCxeUkJCggwcPeh232WxKSUnRqlWrGMcDAGgRGPUDANYTYHYAWMPq1as9pdZmsykg4Iv/6dRtEBUWFmZmPAAAGg3FFgCshxVb3JBvf/vbGjt2rA4cOKB9+/Zp37592rVrlwoLC3Xq1ClVVFQoIiLC7JgAADTIxYsXdfz4cYotAFgMxRY3rFevXurVq5emTJniOVZZWamysjJKLQCgRTh8+LDcbjfFFgAshmKLBmnTpo3atGljdgwAABpF3agfZtgCgLXwjC0AAMB/GIahNm3aqEuXLmZHAQDUA8UWAADgPxj1AwDWRLEFAAD4D3ZEBgBr4hlbSdnZ2VqyZIkkaeHChbrlllu8Xne73fr+97+v4uJiDR8+XE888cQNXffkyZPasGGDDMPQkSNHVFNTo9dff13R0dFXPX/nzp1atWqVioqKFBkZqbFjx2r69OkKDAz0nHPu3DmtWbNGTqdThw8f1sWLF/Xzn/9ct912201+9QAAoI5hGJoxY4bZMQAA9cSK7ZcEBQUpJyfniuOHDh1ScXGxgoKC6nW9/Px8rVmzRlVVVYqJibnuuXv27NGLL76osLAwPfjggxoxYoT++te/atmyZV7nnTx5Un//+9917tw59ezZs155AADAtVVXV+vo0aOs2AKABbFi+yXDhg1TXl6eHnzwQa9V0tzcXMXGxqq8vLxe17vjjju0bNkyhYaG6h//+IcKCwuvee7y5cvVs2dPPfXUU573Dg0N1fvvv6+0tDRPMY6NjdVbb72l8PBw5eXlKT8/v/5fKAAAuEJhYaFcLhfFFgAsiBXbL0lMTFRFRYX279/vOXb58mXl5eUpMTGx3tcLDw9XaGjo15534sQJnThxQhMmTPAq1JMnT5bb7VZeXp7nWGhoqMLDw+udBQAAXJ/T6ZQkii0AWBDF9ks6deqkuLg45ebmeo7t2bNHlZWVGj16dJO975EjRyRJffv29Trevn17dejQ4borvQAAoHEYhqGQkJCvfXwIAOB7KLZfkZSUpJ07d6q6ulqSlJOTo4EDB6p9+/ZN9p7nz5+XJLVr1+6K19q1a6dz58412XsDAIAvGIahvn37KiCAH48AwGr4nfsrRo0aperqau3atUtVVVXavXv3Td2GXB91Jfpqm1MFBQV5XgcAAE2HUT8AYF1sHvUVkZGRGjRokHJzc1VdXS2Xy6WEhIQmfc/g4GBJUk1NzRWv1dTUeF4HAABNxzAMffOb3zQ7BgDgJrBiexWJiYnau3evNmzYoKFDhyosLKxJ36/uFuS6W5K/7Pz584qKimrS9wcAwN/V1NSosLCQFVsAsCiK7VWMHDlSNptNTqdTSUlJTf5+vXv3liQVFBR4HS8pKVFxcbHndQAA0DSOHTumy5cvU2wBwKIotlcREhKihx56SPfcc4/i4+Ob/P169Oihbt26aePGjXK5XJ7jGzZskM1m05133tnkGQAA8GeGYUhi1A8AWBXP2F5DcnJyg69RWVmpNWvWSJLy8/MlSevWrVObNm0UFham1NRUz7kzZ87U4sWL9dxzz2n06NE6fvy41q5dq/Hjx6t79+5e133vvfckfTH/VpK2bNmiTz75RJI0ffr0BucGAMDfOJ1OBQcHq0ePHmZHAQDcBIptE6qoqNDKlSu9jn3wwQeSvpiZ++ViGx8fr8cff1yrV6/WsmXLFBkZqalTp161qH71mps2bfL8O8UWAID6MwxDsbGxCgwMNDsKAOAmUGwljR07VmPHjv3a8zIyMup13ejoaK1YseKGzx8xYoRGjBjxtefV55oAAODrMeoHAKyNZ2wBAIDfo9gCgLWxYnsTKioqdPny5Wu+HhAQoMjIyGZMBAAAblZtba0OHz5MsQUAC6PY3oSXXnpJhw4duubrnTp1qvdtywAAwBzHjx9XTU0NxRYALIxiexNmzZqlioqKa74eHBzcjGkAAEBDMOoHAKyPYnsTYmNjzY4AAAAaiWEYatWqlXr16mV2FADATWLzKAAA4NecTqf69OmjVq34+34AsCqKLQAA8GvsiAwA1kexBQAAfo1iCwDWR7EFAAB+y+VyqaCggGILABZHsQUAAH6rqKhIly5dotgCgMVRbAEAgN9i1A8AtAwUWwAA4LcMw1BAQIB69+5tdhQAQANQbAEAgN8yDEO9evVScHCw2VEAAA1AsQUAAH7L6XQqLi7O7BgAgAai2AIAAL/FqB8AaBkotgAAwC+53W6KLQC0EBRbAADgl06dOqWqqiqKLQC0ABRbAADglxj1AwAtB8UWAAD4JcMwZLPZ1KdPH7OjAAAaiGILAAD8kmEY6tGjh0JCQsyOAgBoIIotAADwS06nk9uQAaCFoNgCAAC/ZBgGM2wBoIWg2AIAAL/DqB8AaFkotgAAwO+cPXtWFRUVFFsAaCEotgAAwO8w6gcAWhaKLQAA8Dt1xTY2NtbkJACAxkCxBQAAfscwDMXExKhNmzZmRwEANIJWZgdoDkVFRWZH8Bl8LwAAEBtHAUAL06KLbUREhCQpIyPD5CS+p+57AwCAP3I6nRo6dKjZMQAAjaRFF9u4uDjl5+ervLzc7Cg+JSIigrl9AAC/VTfqZ8aMGWZHAQA0khZdbCVR4AAAgJfi4mKVlpZyKzIAtCBsHgUAAPwKo34AoOWh2AIAAL9SV2z79u1rchIAQGOh2AIAAL9iGIa6dOmi8PBws6MAABoJxRYAAPgVRv0AQMtDsQUAAH6FYgsALQ/FFgAA+BWn00mxBYAWhmILAAD8RklJiUpKShgHCAAtDMUWAAD4jYKCAkmM+gGAloZiCwAA/AajfgCgZaLYAgAAv2EYhjp16qS2bduaHQUA0IgotgAAwG+wIzIAtEwUWwAA4DcotgDQMlFsAQCA36DYAkDLRLEFAAB+oaysTGfPnmXUDwC0QBRbAADgF+p2RGbFFgBaHootAADwCxRbAGi5KLYAAMAvGIah9u3bKyoqyuwoAIBGRrEFAAB+gY2jAKDlotgCAAC/QLEFgJaLYgsAAPwCxRYAWi6KLQAAaPEuXLigU6dOUWwBoIWi2AIAgBavbkdkZtgCQMtEsQUAAC0eo34AoGWj2AIAgBbPMAy1bdtWHTp0MDsKAKAJUGwBAECLFxsbq5kzZ8pms5kdBQDQBGxut9v9dSeVlZWpbdu2Ki0tVWRkZHPkAgAAAAD4sfr0UFZsAQAAAACWRrEFAAAAAFgaxRYAAAAAYGkUWwAAAACApVFsAQAAAACWRrEFAAAAAFgaxRYAAAAAYGkUWwAAAACApVFsAQAAAACWRrEFAAAAAFgaxRYAAAAAYGmtzA4AAACsz+l0qry83OwYPiUiIkJxcXFmxwAAv0CxBQAADeJ0OtW/f3+zY/ik/Px8yi0ANAOKLQAAaJC6ldp58+YpJibG5DS+oaioSBkZGaxiA0AzodgCAIBGERMTo9jYWLNjAAD8EJtHAQAAAAAsjWILAAAAALA0ii0AAPAZ2dnZSk9P19mzZ82OcoWFCxdq4cKFZscAAFwFxRYAADSpF154QbNmzVJVVdU1z3nttdf0rW99q96bLf3tb3/Tjh07GhoRAGBxFFsAANCkkpKSVF1dre3bt1/19UuXLmnnzp0aOnSoHA6H3n77bXXq1OmGrk2xBQBIFFsAANDE7rjjDoWGhio3N/eqr+/cuVOXLl1SUlKSAgICFBwcLJvNds3rud1uVVdXN1VcAIAFMe4HAAA0qeDgYI0cOVI5OTkqLS1V27ZtvV7PyclRaGio7rjjDmVnZ2vJkiV6/fXXFR0dLemL+bg9evRQSkqKVqxYoePHj+u+++7Tn//8Z0nS5s2btXnzZklScnKy5s6dqzfeeEOHDh1SRkaG13utWrVKq1ev1ooVKzzHNm3apC1btuj48eOqrKxU586dlZqaqsmTJzfltwUA0IgotgAAoMklJSVp8+bN2rp1q1JTUz3HKyoqtG/fPiUmJio4OPian3/y5Em99tprmjhxosaPH69u3bpp3rx5evPNN9W3b19NnDhRktS5c+d6Z9uwYYO6d++u+Ph4BQYGateuXXrrrbfkdruVkpJS/y8WANDsKLYAAKDJ3X777YqKilJubq5Xsd26datqa2uVlJR03c8/ffq0nnzySQ0dOtTr+O9//3t17txZY8aMuels//M//+NVqlNTU/WrX/1KmZmZFFsAsAiesQUAAE0uICBAo0ePVn5+vtcon9zcXLVt21aDBg267udHR0dfUWoby5dLbWVlpcrKynTrrbfqzJkzqqysbJL3BAA0LlZsAQBAs0hKSlJmZqZyc3M1depUFRcX65NPPlFqaqoCAq7/d+11z9s2hU8++USrVq2S0+nUpUuXvF6rrKxUmzZtmuy9AQCNg2ILAACaRWxsrLp16+Yptrm5uXK73V97G7Kk6z5/Wx8ul8vr49OnT+uXv/ylunXrplmzZqljx44KDAzU3r17lZmZecX5AADfRLEFAADNJikpSStXrtTRo0eVm5urrl27ql+/fjd9vWuNBQoPD9eFCxeuOP7ZZ595fbxr1y7V1NRo/vz56tixo+f4oUOHbjoTAKD58YwtAABoNnWbPK1cuVKFhYVKTExs0PVat2591QLbuXNnVVZW6ujRo55j586d044dO7zOq7sF2u12e45VVlYqOzu7QbkAAM2LFVsAANBsoqOj1b9/f+3cuVOSGrSbsfTF7c0HDhzQBx98oKioKEVHRysuLk6jR4/WX/7yF7300ktKTU3VpUuXtGHDBnXt2lVHjhzxfP6QIUPUqlUrvfDCC5o4caIuXryojRs3KjIyUufOnWtQNgBA82HFFgAANKu6Z2r79eunLl26NOhas2fPVmxsrFasWKHXXntNGzZskCRFREToJz/5iYKDg/WXv/xFH330ke677z7Fx8d7fX63bt302GOPSZLefvttbdiwQRMmTFBaWlqDcgEAmpfN/eV7b66hrKxMbdu2VWlpqSIjI5sjFwAAsIjdu3crPj5ezz//vGJjY82O4xMOHz6sJ598Urt27dLw4cPNjgMAllSfHsqKLQAAAADA0ii2AAAAAABLo9gCAAAAACyNYgsAAAAAsDSKLQAAAADA0ii2AAAAAABLo9gCAADLSU9P16pVq27o3Hnz5umNN96o93ucPXtW6enpys7OrvfnAgCaF8UWAACYIjs7W+np6SooKGjwtT799FOtWrVKFy5caIRkAACraWV2AAAAgPp6++23FRgY6Pk4Pz9fq1evVnJyssLCwrzO/c1vfiObzdbcEQEAzYhiCwAALCc4OPiGzw0KCmrCJAAAX0CxBQAAPuGNN95QXl6eXnnlFb311ls6cOCAgoODlZycrPvvv18BAf//BFV6erruuecezZgxQ6tWrdLq1aslST/4wQ8857z++uuKjo7WvHnzNHDgQM2dO1eSVFFRob/97W/at2+fzp49q4CAAA0YMED33Xefevfu3axfMwCgcVBsAQCAz3C5XHruuecUFxenWbNm6cCBA/rggw/UuXNnTZ48+aqfM3LkSJ06dUq5ubmaPXu2IiMjJcnz61edOXNGO3bsUEJCgqKjo1VaWqoPP/xQCxcu1EsvvaT27ds32dcHAGgaFFsAAOAzampqNHr0aE2fPl2SNGnSJD3xxBPatGnTNYttr1691KdPH+Xm5mrEiBGKjo6+7nv07NlTr7zyitcK8JgxY/TYY49p06ZNnvcGAFgHuyIDAACfMmnSJK+Pb731Vp05c6bRrh8UFOQptS6XS+Xl5QoJCVHXrl115MiRRnsfAEDzYcUWAAD4jKCgoCtuIQ4LC2vUMT4ul0tr1qzR+vXrdfbsWblcLs9rERERjfY+AIDmQ7EFAAA+48u3BzeVv/3tb1q5cqXGjRune++9V+Hh4bLZbPrTn/4kt9vd5O8PAGh8FFsAAOBXtm3bpttuu01z5szxOl5ZWXnNDacAAL6NZ2wBAIDlhYSESPqinH6dgICAK1Zmt27dqpKSkibJBgBoeqzYAgAAy+vTp48k6d1339Xo0aMVGBio+Ph4T+H9suHDh+u9997TG2+8oQEDBujYsWPKyclR586dmzs2AKCRUGwBAIDl9evXT/fee68+/PBD7d27V263W6+//vpVi+3UqVN16dIl5ebmauvWrerTp4+eeOIJvfPOOyYkBwA0Bpv7BnZJKCsrU9u2bVVaWsqzJwAAwMvu3bsVHx+v559/XrGxsWbH8QmHDx/Wk08+qV27dmn48OFmxwEAS6pPD+UZWwAAAACApVFsAQAAAACWRrEFAAAAAFgaxRYAAAAAYGkUWwAAAACApVFsAQAAAACWRrEFAAB+IT09XatWrar35509e1bp6enKzs5u/FAAgEZBsQUAAM0qOztb6enpSk9P1yeffHLF6263W3PnzlV6eroWLVpkQkIAgNVQbAEAgCmCgoKUk5NzxfFDhw6puLhYQUFBJqQCAFgRxRYAAJhi2LBhysvLU21trdfx3NxcxcbGql27duYEAwBYTiuzAwAAAP+UmJioHTt2aP/+/Ro2bJgk6fLly8rLy9O0adO0du1ar/MvXryolStXKi8vT6WlperUqZMmTJigKVOmyGazec6rqanR//7v/2rLli2qqanRbbfdpu9+97tXzVBSUqIVK1Zoz549unDhgrp06aIpU6Zo3LhxTfeFAwAaHcUWAACYolOnToqLi1Nubq6n2O7Zs0eVlZUaPXq0V7F1u91avHix/vWvf2ncuHHq3bu39u3bp+XLl6ukpETf/va3Pee++eab2rJlixITEzVgwAAdPHhQv/71r694//Pnz+vpp5+WJKWkpCgyMlJ79+7V0qVLVVlZKYfD0cTfAQBAY6HYAgAA0yQlJemdd95RdXW1goODlZOTo4EDB6p9+/Ze5+3cuVMHDx5Uenq6pk2bJumLMvryyy9rzZo1SklJUZcuXVRYWKgtW7Zo8uTJnlXalJQUvfbaazp27JjXNd999125XC4tXrxYERERkqRJkybp1Vdf1erVqzVp0iQFBwc3w3cBANBQPGMLAABMM2rUKFVXV2vXrl2qqqrS7t27lZiYeMV5e/bsUUBAgNLS0ryOT5kyRW63W3v37vWcJ+mK8+x2u9fHbrdb27dv1/Dhw+V2u1VWVub5Z8iQIaqsrNThw4cb8SsFADQlVmwBAIBpIiMjNWjQIOXm5qq6uloul0sJCQlXnPf5558rKipKoaGhXse7d+/ueb3uV5vNps6dO3ud161bN6+Py8rKdOHCBW3cuFEbN268araysrKb/roAAM2LYgsAAEyVmJio3/3udzp//ryGDh2qsLCwJn9Pt9stSRozZozuuuuuq57Tq1evJs8BAGgcFFsAAGCqkSNH6ve//72cTqceffTRq57TsWNHHThwQFVVVV6rtkVFRZ7X6351u906c+aM1yrtyZMnva4XGRmp0NBQuVwuDR48uJG/IgBAc+MZWwAAYKqQkBA99NBDuueeexQfH3/Vc4YNGyaXy3XFCKDMzEzZbDYNHTrUc54krVmzxuu8rKwsr48DAgI0cuRIbdu27YpNpSRuQwYAq2HFFgAAmC45Ofm6r8fHx+u2227TihUr9Nlnn6lXr17av3+/du7cKbvdri5dukiSevfurcTERK1fv16VlZXq37+/Dh48qNOnT19xzW9961s6dOiQnn76aY0fP17du3dXRUWFjhw5ogMHDuiPf/xjk3ytAIDGR7EFAAA+LyAgQPPnz9fKlSv18ccfKzs7W9HR0Zo5c6amTJnide6cOXMUGRmpnJwc7dixQ7fffrsWLFiguXPnep3Xrl07Pffcc3rvvfe0fft2rV+/XhEREerevbvuv//+5vzyAAANZHPX7Z5wHWVlZWrbtq1KS0sVGRnZHLkAAIBF7N69W/Hx8Xr++ecVGxtrdhyfcPjwYT355JPatWuXhg8fbnYcALCk+vRQnrEFAAAAAFgaxRYAAAAAYGkUWwAAAACApVFsAQAAAACWRrEFAAAAAFgaxRYAAAAAYGkUWwAAAACApbUyOwAAAGgZioqKzI7gM/heAEDzotgCAIAGiYiIkCRlZGSYnMT31H1vAABNi2ILAAAaJC4uTvn5+SovLzc7ik+JiIhQXFyc2TEAwC9QbAEAQINR4AAAZmLzKAAAAACApVFsAQAAAACWRrEFAAAAAFgaxRYAAAAAYGkUWwAAAACApVFsAQAAAACWRrEFAAAAAFgaxRYAAAAAYGkUWwAAAACApVFsAQAAAACWRrEFAAAAAFgaxRYAAAAAYGkUWwAAAACApVFsAQAAAACWRrEFAAAAAFgaxRYAAAAAYGkUWwAAAACApVFsAQAAAACWRrEFAAAAAFgaxRYAAAAAYGkUWwAAAACApVFsAQAAAACWRrEFAAAAAFgaxRYAAAAAYGkUWwAAAACApVFsAQAAAACWRrEFAAAAAFgaxRYAAAAAYGkUWwAAAACApVFsAQAAAACWRrEFAAAAAFgaxRYAAAAAYGkUWwAAAACApVFsAQAAAACWRrEFAAAAAFgaxRYAAAAAYGkUWwAAAACApVFsAQAAAACWRrEFAAAAAFgaxRYAAAAAYGkUWwAAAACApbW6kZPcbrckqaysrEnDAAAAAAAg/X//rOuj13NDxba8vFyS1KNHjwbEAgAAAACgfsrLy9W2bdvrnmNz30D9dblcOnnypCIiImSz2RotIAAAAAAAV+N2u1VeXq5u3bopIOD6T9HeULEFAAAAAMBXsXkUAAAAAMDSKLYAAAAAAEuj2AIAAAAALI1iCwAAAACwNIotAAAAAMDSKLYAAAAAAEuj2AIAAAAALO3/APj6LQganxc4AAAAAElFTkSuQmCC", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], + "outputs": [], "source": [ "petab_select.plot.graph_history(\n", " models=models,\n", @@ -350,21 +172,10 @@ }, { "cell_type": "code", - "execution_count": 7, + "execution_count": null, "id": "bce41584", "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjIAAAGwCAYAAACzXI8XAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAo3ElEQVR4nO3dfXRU9Z3H8c9AyPA4gfCQhyVBCghEDK0okKosDykBWRZKzuID2vCwKDRAIS7SbHmobm0Qd5XqiaF1IegpMcIWaHUVFlMIy0NYjE1BYbPAQYmFCV1oEghkEsndP3IcHSEwgUzu/bHv1zn3HO7v3vnN934PjB/vvXPHZVmWJQAAAAO1srsAAACAm0WQAQAAxiLIAAAAYxFkAACAsQgyAADAWAQZAABgLIIMAAAwVpjdBYRafX29Tp8+rU6dOsnlctldDgAACIJlWbpw4YJiY2PVqlXj511u+yBz+vRpxcXF2V0GAAC4CWVlZerZs2ej22/7INOpUydJDY3weDw2VwMAAIJRVVWluLg4/3/HG+OYILNy5UplZmbqRz/6kVavXi1Jqqmp0dNPP638/Hz5fD6lpKTotddeU1RUVNDzfnk5yePxEGQAADDMjW4LccTNvgcPHtQvf/lLJSYmBowvWrRI77zzjjZt2qTCwkKdPn1aU6ZMsalKAADgNLYHmYsXL2ratGl6/fXX1aVLF/94ZWWl1q5dq5deekmjR4/WkCFDlJubq3379qmoqMjGigEAgFPYHmTS09M1YcIEJScnB4wXFxerrq4uYHzAgAGKj4/X/v37G53P5/OpqqoqYAEAALcnW++Ryc/P10cffaSDBw9etc3r9So8PFydO3cOGI+KipLX6210zqysLD377LPNXSoAAHAg287IlJWV6Uc/+pE2bNigtm3bNtu8mZmZqqys9C9lZWXNNjcAAHAW24JMcXGxzp49q3vuuUdhYWEKCwtTYWGhXnnlFYWFhSkqKkq1tbWqqKgIeF15ebmio6Mbndftdvu/ocQ3lQAAuL3ZdmlpzJgxOnz4cMDYjBkzNGDAAC1ZskRxcXFq06aNCgoKlJqaKkkqLS3VqVOnlJSUZEfJAADAYWwLMp06ddKgQYMCxjp06KCuXbv6x2fNmqWMjAxFRkbK4/Fo/vz5SkpK0vDhw+0oGQAAOIxjHoh3LS+//LJatWql1NTUgAfiAQAASJLLsizL7iJCqaqqShEREaqsrOR+GQAADBHsf79tf44MAADAzSLIAAAAYxFkAACAsQgyAADAWAQZAABgLEd//drpNm7caHcJzW7q1Kl2lwAAQNA4IwMAAIxFkAEAAMYiyAAAAGMRZAAAgLEIMgAAwFgEGQAAYCyCDAAAMBZBBgAAGIsgAwAAjEWQAQAAxiLIAAAAYxFkAACAsQgyAADAWAQZAABgLIIMAAAwFkEGAAAYiyADAACMFWZ3AQAA/H+xceNGu0todlOnTrX1/TkjAwAAjEWQAQAAxiLIAAAAYxFkAACAsQgyAADAWAQZAABgLIIMAAAwFkEGAAAYiyADAACMRZABAADGIsgAAABj2RpkcnJylJiYKI/HI4/Ho6SkJL3//vv+7SNHjpTL5QpY5syZY2PFAADASWz90ciePXtq5cqV6tevnyzL0htvvKFJkybpD3/4g+666y5J0uzZs/Xcc8/5X9O+fXu7ygUAAA5ja5CZOHFiwPrzzz+vnJwcFRUV+YNM+/btFR0dHfScPp9PPp/Pv15VVdU8xQIAAMdxzD0yV65cUX5+vqqrq5WUlOQf37Bhg7p166ZBgwYpMzNTly5duu48WVlZioiI8C9xcXGhLh0AANjE1jMyknT48GElJSWppqZGHTt21JYtW5SQkCBJeuyxx9SrVy/Fxsbq0KFDWrJkiUpLS7V58+ZG58vMzFRGRoZ/vaqqijADAMBtyvYg079/f5WUlKiyslL/9m//prS0NBUWFiohIUFPPvmkf7+7775bMTExGjNmjE6cOKE+ffpccz632y23291S5QMAABvZfmkpPDxcffv21ZAhQ5SVlaXBgwfrF7/4xTX3HTZsmCTp+PHjLVkiAABwKNuDzDfV19cH3Kz7dSUlJZKkmJiYFqwIAAA4la2XljIzMzV+/HjFx8frwoULysvL065du7R9+3adOHFCeXl5euihh9S1a1cdOnRIixYt0ogRI5SYmGhn2QAAwCFsDTJnz57VD37wA505c0YRERFKTEzU9u3b9b3vfU9lZWX64IMPtHr1alVXVysuLk6pqalaunSpnSUDAAAHsTXIrF27ttFtcXFxKiwsbMFqAACAaRx3jwwAAECwCDIAAMBYBBkAAGAsggwAADAWQQYAABiLIAMAAIxFkAEAAMYiyAAAAGMRZAAAgLEIMgAAwFgEGQAAYCyCDAAAMBZBBgAAGIsgAwAAjEWQAQAAxiLIAAAAYxFkAACAsQgyAADAWAQZAABgLIIMAAAwFkEGAAAYiyADAACMRZABAADGIsgAAABjEWQAAICxCDIAAMBYBBkAAGAsggwAADAWQQYAABiLIAMAAIxFkAEAAMYiyAAAAGMRZAAAgLEIMgAAwFi2BpmcnBwlJibK4/HI4/EoKSlJ77//vn97TU2N0tPT1bVrV3Xs2FGpqakqLy+3sWIAAOAktgaZnj17auXKlSouLtaHH36o0aNHa9KkSfrkk08kSYsWLdI777yjTZs2qbCwUKdPn9aUKVPsLBkAADhImJ1vPnHixID1559/Xjk5OSoqKlLPnj21du1a5eXlafTo0ZKk3NxcDRw4UEVFRRo+fLgdJQMAAAdxzD0yV65cUX5+vqqrq5WUlKTi4mLV1dUpOTnZv8+AAQMUHx+v/fv3NzqPz+dTVVVVwAIAAG5PtgeZw4cPq2PHjnK73ZozZ462bNmihIQEeb1ehYeHq3PnzgH7R0VFyev1NjpfVlaWIiIi/EtcXFyIjwAAANjF9iDTv39/lZSU6MCBA5o7d67S0tJ05MiRm54vMzNTlZWV/qWsrKwZqwUAAE5i6z0ykhQeHq6+fftKkoYMGaKDBw/qF7/4hR5++GHV1taqoqIi4KxMeXm5oqOjG53P7XbL7XaHumwAAOAAtp+R+ab6+nr5fD4NGTJEbdq0UUFBgX9baWmpTp06paSkJBsrBAAATmHrGZnMzEyNHz9e8fHxunDhgvLy8rRr1y5t375dERERmjVrljIyMhQZGSmPx6P58+crKSmJbywBAABJNgeZs2fP6gc/+IHOnDmjiIgIJSYmavv27fre974nSXr55ZfVqlUrpaamyufzKSUlRa+99pqdJQMAAAexNcisXbv2utvbtm2r7OxsZWdnt1BFAADAJI67RwYAACBYBBkAAGAsggwAADAWQQYAABiLIAMAAIxFkAEAAMYiyAAAAGMRZAAAgLEIMgAAwFgEGQAAYCyCDAAAMBZBBgAAGIsgAwAAjEWQAQAAxiLIAAAAYxFkAACAsQgyAADAWAQZAABgLIIMAAAwFkEGAAAYiyADAACMRZABAADGIsgAAABjEWQAAICxCDIAAMBYBBkAAGAsggwAADAWQQYAABiLIAMAAIxFkAEAAMYiyAAAAGMRZAAAgLEIMgAAwFgEGQAAYCyCDAAAMJatQSYrK0v33XefOnXqpB49emjy5MkqLS0N2GfkyJFyuVwBy5w5c2yqGAAAOImtQaawsFDp6ekqKirSjh07VFdXp7Fjx6q6ujpgv9mzZ+vMmTP+ZdWqVTZVDAAAnCTMzjfftm1bwPr69evVo0cPFRcXa8SIEf7x9u3bKzo6Oqg5fT6ffD6ff72qqqp5igUAAI7jqHtkKisrJUmRkZEB4xs2bFC3bt00aNAgZWZm6tKlS43OkZWVpYiICP8SFxcX0poBAIB9bD0j83X19fVauHCh7r//fg0aNMg//thjj6lXr16KjY3VoUOHtGTJEpWWlmrz5s3XnCczM1MZGRn+9aqqKsIMAAC3KccEmfT0dH388cfas2dPwPiTTz7p//Pdd9+tmJgYjRkzRidOnFCfPn2umsftdsvtdoe8XgAAYD9HXFqaN2+e3n33Xe3cuVM9e/a87r7Dhg2TJB0/frwlSgMAAA5m6xkZy7I0f/58bdmyRbt27VLv3r1v+JqSkhJJUkxMTIirAwAATmdrkElPT1deXp5++9vfqlOnTvJ6vZKkiIgItWvXTidOnFBeXp4eeughde3aVYcOHdKiRYs0YsQIJSYm2lk6AABwAFuDTE5OjqSGh959XW5urqZPn67w8HB98MEHWr16taqrqxUXF6fU1FQtXbrUhmoBAIDT2H5p6Xri4uJUWFjYQtUAAADTOOJmXwAAgJtBkAEAAMYiyAAAAGMRZAAAgLEIMgAAwFgEGQAAYCyCDAAAMBZBBgAAGIsgAwAAjEWQAQAAxiLIAAAAYxFkAACAsQgyAADAWAQZAABgLIIMAAAwFkEGAAAYiyADAACMRZABAADGanKQycrK0rp1664aX7dunV544YVmKQoAACAYTQ4yv/zlLzVgwICrxu+66y6tWbOmWYoCAAAIRpODjNfrVUxMzFXj3bt315kzZ5qlKAAAgGA0OcjExcVp7969V43v3btXsbGxzVIUAABAMMKa+oLZs2dr4cKFqqur0+jRoyVJBQUFeuaZZ/T00083e4EAAACNaXKQWbx4sc6dO6cf/vCHqq2tlSS1bdtWS5Ys0Y9//ONmLxAAAKAxTQ4yLpdLL7zwgpYtW6ajR4+qXbt26tevn9xudyjqAwAAaFTQ98j8/ve/V0JCgqqqqiRJHTt21H333adBgwappqZGd911l/7zP/8zZIUCAAB8U9BBZvXq1Zo9e7Y8Hs9V2yIiIvTUU0/ppZdeatbiAAAArifoIPPHP/5R48aNa3T72LFjVVxc3CxFAQAABCPoIFNeXq42bdo0uj0sLEx//vOfm6UoAACAYAQdZP7qr/5KH3/8caPbDx06dM0H5QEAAIRK0EHmoYce0rJly1RTU3PVtsuXL2vFihX6m7/5m2YtDgAA4HqC/vr10qVLtXnzZt15552aN2+e+vfvL0n67//+b2VnZ+vKlSv6yU9+ErJCAQAAvinoIBMVFaV9+/Zp7ty5yszMlGVZkhqeK5OSkqLs7GxFRUWFrFAAAIBvatID8Xr16qX33ntPf/nLX3T8+HFZlqV+/fqpS5cuoaoPAACgUU3+0UhJ6tKli+677z4NHTr0lkJMVlaW7rvvPnXq1Ek9evTQ5MmTVVpaGrBPTU2N0tPT1bVrV3Xs2FGpqakqLy+/6fcEAAC3j5sKMs2lsLBQ6enpKioq0o4dO1RXV6exY8equrrav8+iRYv0zjvvaNOmTSosLNTp06c1ZcoUG6sGAABOEfSlpWDDw+bNm4N+823btgWsr1+/Xj169FBxcbFGjBihyspKrV27Vnl5ef5f2s7NzdXAgQNVVFSk4cOHB/1eAADg9hN0kImIiAhlHZKkyspKSVJkZKQkqbi4WHV1dUpOTvbvM2DAAMXHx2v//v3XDDI+n08+n8+//uVvQwEAgNtP0EEmNzf3hvtc74F5N1JfX6+FCxfq/vvv16BBgyRJXq9X4eHh6ty5c8C+UVFR8nq915wnKytLzz777E3XAQAAzHHL98hcuHBBv/rVrzRs2DANHjz4pudJT0/Xxx9/rPz8/FuqJzMzU5WVlf6lrKzsluYDAADOddNBZvfu3UpLS1NMTIz++Z//WaNGjVJRUdFNzTVv3jy9++672rlzp3r27Okfj46OVm1trSoqKgL2Ly8vV3R09DXncrvd8ng8AQsAALg9Nek5Ml6vV+vXr9fatWtVVVWlqVOnyufzaevWrUpISGjym1uWpfnz52vLli3atWuXevfuHbB9yJAhatOmjQoKCpSamipJKi0t1alTp5SUlNTk9wMAALeXoM/ITJw4Uf3799ehQ4e0evVqnT59Wq+++uotvXl6erp+/etfKy8vT506dZLX65XX69Xly5clNdxgPGvWLGVkZGjnzp0qLi7WjBkzlJSUxDeWAABA8Gdk3n//fS1YsEBz585Vv379muXNc3JyJEkjR44MGM/NzdX06dMlSS+//LJatWql1NRU+Xw+paSk6LXXXmuW9wcAAGYLOsjs2bNHa9eu1ZAhQzRw4EA98cQTeuSRR27pzb/8vabradu2rbKzs5WdnX1L7wUAAG4/QV9aGj58uF5//XWdOXNGTz31lPLz8xUbG6v6+nrt2LFDFy5cCGWdAAAAV2nyt5Y6dOigmTNnas+ePTp8+LCefvpprVy5Uj169NDf/u3fhqJGAACAa7ql58j0799fq1at0ueff678/PyA30gCAAAItSZ9/fpaLly4oLfeekv/+q//quLi4uaoCQAAICjN8kC8n/zkJ4qLi2vOugAAAG6oSUHG6/Vq5cqV6tevnx566CF98cUX2rhxo86cOcPvGwEAgBYX9KWliRMnqqCgQKNGjdJPf/pTTZ48WR06dPBvd7lcISkQAACgMUEHmX//93/XY489poULF+ree+8NZU0AAABBCfrS0r59+9SuXTuNHj1a/fv313PPPacTJ06EsjYAAIDruqkH4i1ZskT/8R//oTvvvFPDhw/Xq6++qvLy8lDWCQAAcJVbeiDekSNHNGLECP385z9XcnJyKOoDAABoVLM9EG/z5s2aMGFCc9UFAABwQ7cUZL7UunVrTZ48Wb/73e+aYzoAAICgNEuQAQAAsANBBgAAGIsgAwAAjEWQAQAAxiLIAAAAYxFkAACAsQgyAADAWAQZAABgLIIMAAAwFkEGAAAYiyADAACMRZABAADGIsgAAABjEWQAAICxCDIAAMBYBBkAAGAsggwAADAWQQYAABiLIAMAAIxFkAEAAMYiyAAAAGMRZAAAgLFsDTK7d+/WxIkTFRsbK5fLpa1btwZsnz59ulwuV8Aybtw4e4oFAACOY2uQqa6u1uDBg5Wdnd3oPuPGjdOZM2f8y1tvvdWCFQIAACcLs/PNx48fr/Hjx193H7fbrejo6KDn9Pl88vl8/vWqqqqbrg8AADib4++R2bVrl3r06KH+/ftr7ty5Onfu3HX3z8rKUkREhH+Ji4troUoBAEBLc3SQGTdunN58800VFBTohRdeUGFhocaPH68rV640+prMzExVVlb6l7KyshasGAAAtCRbLy3dyCOPPOL/8913363ExET16dNHu3bt0pgxY675GrfbLbfb3VIlAgAAGzn6jMw3fetb31K3bt10/Phxu0sBAAAOYFSQ+fzzz3Xu3DnFxMTYXQoAAHAAWy8tXbx4MeDsysmTJ1VSUqLIyEhFRkbq2WefVWpqqqKjo3XixAk988wz6tu3r1JSUmysGgAAOIWtQebDDz/UqFGj/OsZGRmSpLS0NOXk5OjQoUN64403VFFRodjYWI0dO1b/9E//xD0wAABAks1BZuTIkbIsq9Ht27dvb8FqAACAaYy6RwYAAODrCDIAAMBYBBkAAGAsggwAADAWQQYAABiLIAMAAIxFkAEAAMYiyAAAAGMRZAAAgLEIMgAAwFgEGQAAYCyCDAAAMBZBBgAAGIsgAwAAjEWQAQAAxiLIAAAAYxFkAACAsQgyAADAWAQZAABgLIIMAAAwFkEGAAAYiyADAACMRZABAADGIsgAAABjEWQAAICxCDIAAMBYBBkAAGAsggwAADAWQQYAABiLIAMAAIxFkAEAAMYiyAAAAGMRZAAAgLEIMgAAwFi2Bpndu3dr4sSJio2Nlcvl0tatWwO2W5al5cuXKyYmRu3atVNycrKOHTtmT7EAAMBxbA0y1dXVGjx4sLKzs6+5fdWqVXrllVe0Zs0aHThwQB06dFBKSopqampauFIAAOBEYXa++fjx4zV+/PhrbrMsS6tXr9bSpUs1adIkSdKbb76pqKgobd26VY888khLlgoAABzIsffInDx5Ul6vV8nJyf6xiIgIDRs2TPv372/0dT6fT1VVVQELAAC4Pdl6RuZ6vF6vJCkqKipgPCoqyr/tWrKysvTss8+GtDYACNbGjRvtLqHZTZ061e4SAD/HnpG5WZmZmaqsrPQvZWVldpcEAABCxLFBJjo6WpJUXl4eMF5eXu7fdi1ut1sejydgAQAAtyfHBpnevXsrOjpaBQUF/rGqqiodOHBASUlJNlYGAACcwtZ7ZC5evKjjx4/710+ePKmSkhJFRkYqPj5eCxcu1M9+9jP169dPvXv31rJlyxQbG6vJkyfbVzQAAHAMW4PMhx9+qFGjRvnXMzIyJElpaWlav369nnnmGVVXV+vJJ59URUWFHnjgAW3btk1t27a1q2QAAOAgtgaZkSNHyrKsRre7XC4999xzeu6551qwKgAAYArH3iMDAABwIwQZAABgLIIMAAAwFkEGAAAYiyADAACMRZABAADGcuyPRgIAbh/8eCZChTMyAADAWAQZAABgLIIMAAAwFkEGAAAYiyADAACMRZABAADGIsgAAABjEWQAAICxCDIAAMBYBBkAAGAsggwAADAWQQYAABiLIAMAAIxFkAEAAMYiyAAAAGMRZAAAgLEIMgAAwFgEGQAAYCyCDAAAMBZBBgAAGIsgAwAAjEWQAQAAxiLIAAAAYxFkAACAsQgyAADAWAQZAABgLIIMAAAwFkEGAAAYy9FB5qc//alcLlfAMmDAALvLAgAADhFmdwE3ctddd+mDDz7wr4eFOb5kAADQQhyfCsLCwhQdHR30/j6fTz6fz79eVVUVirIAAIADOPrSkiQdO3ZMsbGx+ta3vqVp06bp1KlT190/KytLERER/iUuLq6FKgUAAC3N0UFm2LBhWr9+vbZt26acnBydPHlSDz74oC5cuNDoazIzM1VZWelfysrKWrBiAADQkhx9aWn8+PH+PycmJmrYsGHq1auXNm7cqFmzZl3zNW63W263u6VKBAAANnL0GZlv6ty5s+68804dP37c7lIAAIADGBVkLl68qBMnTigmJsbuUgAAgAM4Osj8wz/8gwoLC/Xpp59q3759+v73v6/WrVvr0Ucftbs0AADgAI6+R+bzzz/Xo48+qnPnzql79+564IEHVFRUpO7du9tdGgAAcABHB5n8/Hy7SwAAAA7m6EtLAAAA10OQAQAAxiLIAAAAYxFkAACAsQgyAADAWAQZAABgLIIMAAAwFkEGAAAYiyADAACMRZABAADGIsgAAABjEWQAAICxCDIAAMBYBBkAAGAsggwAADAWQQYAABiLIAMAAIxFkAEAAMYiyAAAAGMRZAAAgLEIMgAAwFgEGQAAYCyCDAAAMBZBBgAAGIsgAwAAjEWQAQAAxiLIAAAAYxFkAACAsQgyAADAWAQZAABgLIIMAAAwFkEGAAAYiyADAACMFWZ3Abg9bNy40e4Smt3UqVPtLgEAcANGBJns7Gy9+OKL8nq9Gjx4sF599VUNHTrU7rKAqxDoAKBlOf7S0ttvv62MjAytWLFCH330kQYPHqyUlBSdPXvW7tIAAIDNHB9kXnrpJc2ePVszZsxQQkKC1qxZo/bt22vdunV2lwYAAGzm6EtLtbW1Ki4uVmZmpn+sVatWSk5O1v79+6/5Gp/PJ5/P51+vrKyUJFVVVTV7fZcuXWr2Oe12s32iFw3oA76JvxMN6EMD+tD0eS3Luv6OloP96U9/siRZ+/btCxhfvHixNXTo0Gu+ZsWKFZYkFhYWFhYWlttgKSsru25WcPQZmZuRmZmpjIwM/3p9fb3Onz+vrl27yuVy2VjZzauqqlJcXJzKysrk8XjsLsc29OEr9KIBfWhAH75CLxrcDn2wLEsXLlxQbGzsdfdzdJDp1q2bWrdurfLy8oDx8vJyRUdHX/M1brdbbrc7YKxz586hKrFFeTweY/9CNif68BV60YA+NKAPX6EXDUzvQ0RExA33cfTNvuHh4RoyZIgKCgr8Y/X19SooKFBSUpKNlQEAACdw9BkZScrIyFBaWpruvfdeDR06VKtXr1Z1dbVmzJhhd2kAAMBmjg8yDz/8sP785z9r+fLl8nq9+va3v61t27YpKirK7tJajNvt1ooVK666ZPb/DX34Cr1oQB8a0Iev0IsG/5/64LKsG32vCQAAwJkcfY8MAADA9RBkAACAsQgyAADAWAQZAABgLIJMCEyfPl0ul0tz5sy5alt6erpcLpemT58e1FzZ2dm644471LZtWw0bNkz/9V//FbC9pqZG6enp6tq1qzp27KjU1NSrHiB46tQpTZgwQe3bt1ePHj20ePFiffHFFzd9fMFyWh8WLFigIUOGyO1269vf/vbNHlaTtWQffvWrX2nkyJHyeDxyuVyqqKi4ao7z589r2rRp8ng86ty5s2bNmqWLFy/ezKE1WXP1Yvfu3Zo4caJiY2Plcrm0devWq/axLEvLly9XTEyM2rVrp+TkZB07dixgH7t64bQ+PP/88/rud7+r9u3bt+gDRFuyD5s3b9bYsWP9T3kvKSm5ap9gPkdCwWl9COZzxEkIMiESFxen/Px8Xb582T9WU1OjvLw8xcfHBzXH22+/rYyMDK1YsUIfffSRBg8erJSUFJ09e9a/z6JFi/TOO+9o06ZNKiws1OnTpzVlyhT/9itXrmjChAmqra3Vvn379MYbb2j9+vVavnx58x3sdTilD1+aOXOmHn744Vs/sCZqqT5cunRJ48aN0z/+4z82Os+0adP0ySefaMeOHXr33Xe1e/duPfnkkzd/cE3UHL2orq7W4MGDlZ2d3eg+q1at0iuvvKI1a9bowIED6tChg1JSUlRTU+Pfx85eOKkPtbW1+ru/+zvNnTv35g/oJrVUH6qrq/XAAw/ohRdeaHSfYD9HQsFJfQjmc8RRmuPHHREoLS3NmjRpkjVo0CDr17/+tX98w4YNVmJiojVp0iQrLS3thvMMHTrUSk9P969fuXLFio2NtbKysizLsqyKigqrTZs21qZNm/z7HD161JJk7d+/37Isy3rvvfesVq1aWV6v179PTk6O5fF4LJ/Pd6uHel1O6sPXrVixwho8ePDNH1gTtVQfvm7nzp2WJOsvf/lLwPiRI0csSdbBgwf9Y++//77lcrmsP/3pT00/uCZqrl58nSRry5YtAWP19fVWdHS09eKLL/rHKioqLLfbbb311luWZdnbCyf14etyc3OtiIiIJr3vrWipPnzdyZMnLUnWH/7wh4Dxpn6ONCcn9eHrGvsccRrOyITQzJkzlZub619ft25d0E8krq2tVXFxsZKTk/1jrVq1UnJysvbv3y9JKi4uVl1dXcA+AwYMUHx8vH+f/fv36+677w54gGBKSoqqqqr0ySef3NLxBcsJfXCCUPchGPv371fnzp117733+seSk5PVqlUrHThwIOh5btWt9CIYJ0+elNfrDehXRESEhg0bFvBvw+5eOKEPThDqPgTDCZ8jTuiDiQgyIfT4449rz549+uyzz/TZZ59p7969evzxx4N67f/+7//qypUrVz3BOCoqSl6vV5Lk9XoVHh5+1TXtb+5zrTm+3NYSnNAHJwh1H4Lh9XrVo0ePgLGwsDBFRka2aK9upRfB+PJYbvT3xu5eOKEPThDqPgTDCZ8jTuiDiRz/EwUm6969uyZMmKD169fLsixNmDBB3bp1s7usFkcfGtCHr9CLBvShAX1oQB9uDkEmxGbOnKl58+ZJ0nVvwPqmbt26qXXr1lfdMV9eXq7o6GhJUnR0tGpra1VRURHwfxHf3Oeb32z5cs4v92kJdvfBKULZh2BER0cH3BwsSV988YXOnz/f4r262V4E48tjKS8vV0xMjH+8vLzc/401p/TC7j44RSj7EAynfI7Y3QcTcWkpxMaNG6fa2lrV1dUpJSUl6NeFh4dryJAhKigo8I/V19eroKBASUlJkqQhQ4aoTZs2AfuUlpbq1KlT/n2SkpJ0+PDhgA/sHTt2yOPxKCEh4VYPL2h298EpQtmHYCQlJamiokLFxcX+sd///veqr6/XsGHDgp6nOdxsL4LRu3dvRUdHB/SrqqpKBw4cCPi34YRe2N0HpwhlH4LhlM8Ru/tgIs7IhFjr1q119OhR/5+bIiMjQ2lpabr33ns1dOhQrV69WtXV1f6bvyIiIjRr1ixlZGQoMjJSHo9H8+fPV1JSkoYPHy5JGjt2rBISEvTEE09o1apV8nq9Wrp0qdLT01v0V1Ht7oMkHT9+XBcvXpTX69Xly5f9z09ISEhQeHh48xzoDYSyD1LDdX6v16vjx49Lkg4fPqxOnTopPj5ekZGRGjhwoMaNG6fZs2drzZo1qqur07x58/TII48oNja2+Q40CLfSi4sXL/qPUWq4qbWkpESRkZGKj4+Xy+XSwoUL9bOf/Uz9+vVT7969tWzZMsXGxmry5MmS5Jhe2N0HqeFZU+fPn9epU6d05coV/7+Nvn37qmPHjrd8jMEIZR8k+Y/v9OnTkhpCitRwJiY6Ojroz5FQs7sP0o0/RxzHxm9M3ba+/CpdY5ryVbpXX33Vio+Pt8LDw62hQ4daRUVFAdsvX75s/fCHP7S6dOlitW/f3vr+979vnTlzJmCfTz/91Bo/frzVrl07q1u3btbTTz9t1dXVNfWwmsxpffjrv/5rS9JVy8mTJ5t4ZE3Tkn1YsWLFNY8xNzfXv8+5c+esRx991OrYsaPl8XisGTNmWBcuXLiJI2u65urFl18L/eby9dfW19dby5Yts6Kioiy3222NGTPGKi0tDZjHrl44rQ9paWnXnGfnzp03d4BBask+5ObmXnOfFStW+PcJ5nMkFJzWh2A+R5zEZVmW1dzhCAAAoCVwjwwAADAWQcYmp06dUseOHRtdTp06ZXeJLYI+NKAPX6EXDehDA/rQgD40jktLNvniiy/06aefNrr9jjvuUFjY7X8vNn1oQB++Qi8a0IcG9KEBfWgcQQYAABiLS0sAAMBYBBkAAGAsggwAADAWQQYAABiLIAPgtrJr1y65XC5VVFQE/Zo77rhDq1evDllNAEKHIAOgRU2fPl0ul0tz5sy5alt6erpcLpemT5/e8oUBMBJBBkCLi4uLU35+vi5fvuwfq6mpUV5env/H7QAgGAQZAC3unnvuUVxcnDZv3uwf27x5s+Lj4/Wd73zHP+bz+bRgwQL16NFDbdu21QMPPKCDBw8GzPXee+/pzjvvVLt27TRq1KhrPjRsz549evDBB9WuXTvFxcVpwYIFqq6uDtnxAWg5BBkAtpg5c6Zyc3P96+vWrdOMGTMC9nnmmWf0m9/8Rm+88YY++ugj9e3bVykpKTp//rwkqaysTFOmTNHEiRNVUlKiv//7v9ePf/zjgDlOnDihcePGKTU1VYcOHdLbb7+tPXv2aN68eaE/SAAhR5ABYIvHH39ce/bs0WeffabPPvtMe/fu1eOPP+7fXl1drZycHL344osaP368EhIS9Prrr6tdu3Zau3atJCknJ0d9+vTRv/zLv6h///6aNm3aVffXZGVladq0aVq4cKH69eun7373u3rllVf05ptvqqampiUPGUAI/P/8YQYAtuvevbsmTJig9evXy7IsTZgwQd26dfNvP3HihOrq6nT//ff7x9q0aaOhQ4fq6NGjkqSjR49q2LBhAfMmJSUFrP/xj3/UoUOHtGHDBv+YZVmqr6/XyZMnNXDgwFAcHoAWQpABYJuZM2f6L/FkZ2eH5D0uXryop556SgsWLLhqGzcWA+YjyACwzbhx41RbWyuXy6WUlJSAbX369FF4eLj27t2rXr16SZLq6up08OBBLVy4UJI0cOBA/e53vwt4XVFRUcD6PffcoyNHjqhv376hOxAAtuEeGQC2ad26tY4ePaojR46odevWAds6dOiguXPnavHixdq2bZuOHDmi2bNn69KlS5o1a5Ykac6cOTp27JgWL16s0tJS5eXlaf369QHzLFmyRPv27dO8efNUUlKiY8eO6be//S03+wK3CYIMAFt5PB55PJ5rblu5cqVSU1P1xBNP6J577tHx48e1fft2denSRVLDpaHf/OY32rp1qwYPHqw1a9bo5z//ecAciYmJKiws1P/8z//owQcf1He+8x0tX75csbGxIT82AKHnsizLsrsIAACAm8EZGQAAYCyCDAAAMBZBBgAAGIsgAwAAjEWQAQAAxiLIAAAAYxFkAACAsQgyAADAWAQZAABgLIIMAAAwFkEGAAAY6/8AYlKKr5rH46wAAAAASUVORK5CYII=", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], + "outputs": [], "source": [ "petab_select.plot.bar_criterion_vs_models(\n", " models=models,\n", @@ -390,21 +201,10 @@ }, { "cell_type": "code", - "execution_count": 8, + "execution_count": null, "id": "824e2e6a", "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjIAAAGxCAYAAAB4AFyyAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAA1mUlEQVR4nO3de3xU9Z3/8feQy4SQzISEkJAmBOQS7iCIELFUIBDQZUHx11bdCpTaVgOVi0qzXgCpDailVBeRtgpuV8TVAtpaoUgLKLdCaLgohCYixJIEQcgkASYh+f7+cJkyksAAIWcOvJ4+zsOc77l9ZjJw3nzPd85xGGOMAAAAbKiJ1QUAAABcLoIMAACwLYIMAACwLYIMAACwLYIMAACwLYIMAACwLYIMAACwLYIMAACwrVCrC7jaamtrdfjwYUVHR8vhcFhdDgAACIAxRuXl5UpKSlKTJvX3u1zzQebw4cNKSUmxugwAAHAZioqKlJycXO/yoAkyc+bMUXZ2th5++GHNnz9fknT69GlNmzZNy5Ytk9frVWZmpl566SUlJCQEvN/o6GhJX70RLpfrapQOAAAamMfjUUpKiu88Xp+gCDLbtm3TokWL1KNHD7/2KVOm6L333tNbb70lt9utiRMn6q677tLGjRsD3vfZy0kul4sgAwCAzVxsWIjlg30rKip033336Te/+Y2aN2/uay8rK9Mrr7yiefPmafDgwerTp48WL16sTZs2acuWLRZWDAAAgoXlQSYrK0t33HGHMjIy/Npzc3NVXV3t196pUye1bt1amzdvrnd/Xq9XHo/HbwIAANcmSy8tLVu2TDt27NC2bdvOW1ZSUqLw8HDFxMT4tSckJKikpKTefebk5GjWrFkNXSoAAAhClvXIFBUV6eGHH9brr7+uiIiIBttvdna2ysrKfFNRUVGD7RsAAAQXy4JMbm6ujhw5ot69eys0NFShoaFav369XnjhBYWGhiohIUFVVVU6ceKE33alpaVKTEysd79Op9M3sJcBvgAAXNssu7Q0ZMgQ7d69269t/Pjx6tSpk6ZPn66UlBSFhYVp7dq1GjNmjCQpPz9fhw4dUnp6uhUlAwCAIGNZkImOjla3bt382po1a6a4uDhf+4QJEzR16lTFxsbK5XJp0qRJSk9PV//+/a0oGQAABJmguI9MfX75y1+qSZMmGjNmjN8N8QAAACTJYYwxVhdxNXk8HrndbpWVlTFeBgAAmwj0/B3UPTLB6HTtae3y7tInVZ/oVO0pRTWJUjdnN3VzdlOYI8zq8gAAuK4QZC5BeW253ip/SxW1FTL6qiPry9ovteHUBn3s/Vh3R9+tiCYN91VyAABwYZbf2ddOVlWu8gsx5/qy9kutO7mu8YsCAOA6RpAJ0LGaYzp85nCdIUaSjIz2V+9XZW1lI1cGAMD1iyAToOIzxRddx8joi5ovGqEaAAAgEWQC1iTAt8qhCz9uHAAANByCTICSw5Ivuk6oQpUYWv/jEwAAQMMiyATI1cSlDmEdLtjj0t3ZXU6HsxGrAgDg+kaQuQRDmg1RQkiCpH9dQjr7/7ahbTWg6QDLagMA4HrEfWQugdPh1P+L/n/6tPpT7a3aq8raSrmauNTV2VWtQ1vL4WB8DAAAjYkgc4maOJqofXh7tQ9vb3UpAABc97i0BAAAbIsgAwAAbIsgAwAAbIsgAwAAbIsgAwAAbIsgAwAAbIuvXwMAgEtmjNGXX36p6upqNWvWTNHR0ZbUQZABAACX5ODBg9q9e7dOnjzpa2vRooV69+6tmJiYRq2FS0sAACBghYWF2rp1q1+IkaRjx45p7dq1Kisra9R6CDIAACAg1dXVysvLq3OZMUa1tbXauXNno9ZEkAEAAAH5/PPPVVNTU+9yY4xKSkp06tSpRquJIAMAAAJy8uTJgB6QTJABAABBx+l0yhgT0HqNhSADAAACkpKSctEembi4ODVr1qyRKiLIAACAADmdTnXu3Lne5Q6HQ927d2/EiriPDAAAuARdu3aVw+HQ3r17VVtb62uPiIhQ37591bJly0athyADAAAC5nA41LVrV3Xs2FGHDx/23dk3ISFBTZo0/oUeggwAALhkYWFhSk1NtboMxsgAAAD7IsgAAADbIsgAAADbsjTILFy4UD169JDL5ZLL5VJ6erref/993/LbbrtNDofDb/rxj39sYcUAACCYWDrYNzk5WXPmzFGHDh1kjNFrr72mUaNG6e9//7u6du0qSXrggQf09NNP+7aJjIy0qlwAABBkLA0yI0eO9Jt/5plntHDhQm3ZssUXZCIjI5WYmGhFeQAAIMgFzRiZmpoaLVu2TJWVlUpPT/e1v/7662rRooW6deum7OxsnTx50sIqAQBAMLH8PjK7d+9Wenq6Tp8+raioKK1YsUJdunSRJN17771KTU1VUlKSdu3apenTpys/P1/Lly+vd39er1der9c37/F4rvprAAAA1nCYQB5jeRVVVVXp0KFDKisr09tvv63f/va3Wr9+vS/MnOsvf/mLhgwZooKCArVr167O/c2cOVOzZs06r72srEwul6vB6wcAAA3P4/HI7XZf9PxteZD5uoyMDLVr106LFi06b1llZaWioqK0atUqZWZm1rl9XT0yKSkpBBkAAGwk0CBj+aWlr6utrfULIufKy8uTJLVq1are7Z1Op5xO59UoDQAABBlLg0x2drZGjBih1q1bq7y8XEuXLtW6deu0evVqFRYWaunSpbr99tsVFxenXbt2acqUKRo4cKB69OhhZdkAACBIWBpkjhw5ovvvv1/FxcVyu93q0aOHVq9eraFDh6qoqEgffPCB5s+fr8rKSqWkpGjMmDF64oknrCwZAAAEkaAbI9PQAr3GBgAAgkeg5++guY8MAADApSLIAAAA2yLIAAAA2yLIAAAA2yLIAAAA2yLIAAAA2yLIAAAA2yLIAAAA2yLIAAAA2yLIAAAA2yLIAAAA2yLIAAAA2yLIAAAA2yLIAAAA2yLIAAAA2yLIAAAA2yLIAAAA2yLIAAAA2yLIAAAA2yLIAAAA2yLIAAAA2yLIAAAA2yLIAAAA2yLIAAAA2yLIAAAA2yLIAAAA2yLIAAAA2yLIAAAA2yLIAAAA2yLIAAAA2yLIAAAA2yLIAAAA2yLIAAAA27I0yCxcuFA9evSQy+WSy+VSenq63n//fd/y06dPKysrS3FxcYqKitKYMWNUWlpqYcUAACCYWBpkkpOTNWfOHOXm5mr79u0aPHiwRo0apY8//liSNGXKFP3hD3/QW2+9pfXr1+vw4cO66667rCwZAAAEEYcxxlhdxLliY2P13HPP6e6771Z8fLyWLl2qu+++W5K0b98+de7cWZs3b1b//v0D2p/H45Hb7VZZWZlcLtfVLB0AADSQQM/fQTNGpqamRsuWLVNlZaXS09OVm5ur6upqZWRk+Nbp1KmTWrdurc2bN9e7H6/XK4/H4zcBAIBrk+VBZvfu3YqKipLT6dSPf/xjrVixQl26dFFJSYnCw8MVExPjt35CQoJKSkrq3V9OTo7cbrdvSklJucqvAAAAWMXyIJOWlqa8vDxt3bpVDz74oMaOHatPPvnksveXnZ2tsrIy31RUVNSA1QIAgGASanUB4eHhat++vSSpT58+2rZtm371q1/pO9/5jqqqqnTixAm/XpnS0lIlJibWuz+n0ymn03m1ywYAAEHA8h6Zr6utrZXX61WfPn0UFhamtWvX+pbl5+fr0KFDSk9Pt7BCAAAQLCztkcnOztaIESPUunVrlZeXa+nSpVq3bp1Wr14tt9utCRMmaOrUqYqNjZXL5dKkSZOUnp4e8DeWAADAtc3SIHPkyBHdf//9Ki4ultvtVo8ePbR69WoNHTpUkvTLX/5STZo00ZgxY+T1epWZmamXXnrJypIBAEAQCbr7yDQ07iMDAID92O4+MgAAAJeKIAMAAGyLIAMAAGyLIAMAAGyLIAMAAGyLIAMAAGyLIAMAAGyLIAMAAGyLIAMAAGyLIAMAAGyLIAMAAGyLIAMAAGyLIAMAAGyLIAMAAGyLIAMAAGyLIAMAAGyLIAMAAGyLIAMAAGyLIAMAAGyLIAMAAGyLIAMAAGyLIAMAAGyLIAMAAGyLIAMAAGyLIAMAAGyLIAMAAGyLIAMAAGyLIAMAAGyLIAMAAGyLIAMAAGyLIAMAAGyLIAMAAGzL0iCTk5Ojvn37Kjo6Wi1bttTo0aOVn5/vt85tt90mh8PhN/34xz+2qGIAABBMLA0y69evV1ZWlrZs2aI1a9aourpaw4YNU2Vlpd96DzzwgIqLi33Ts88+a1HFAAAgmIRaefBVq1b5zS9ZskQtW7ZUbm6uBg4c6GuPjIxUYmJiY5cHAACCXFCNkSkrK5MkxcbG+rW//vrratGihbp166bs7GydPHnSivIAAECQsbRH5ly1tbWaPHmyBgwYoG7duvna7733XqWmpiopKUm7du3S9OnTlZ+fr+XLl9e5H6/XK6/X65v3eDxXvXYAAGCNoAkyWVlZ2rNnjz766CO/9h/+8Ie+n7t3765WrVppyJAhKiwsVLt27c7bT05OjmbNmnXV6wUAANYLiktLEydO1B//+Ef99a9/VXJy8gXX7devnySpoKCgzuXZ2dkqKyvzTUVFRQ1eLwAACA6W9sgYYzRp0iStWLFC69atU9u2bS+6TV5eniSpVatWdS53Op1yOp0NWSYAAAhSlgaZrKwsLV26VO+8846io6NVUlIiSXK73WratKkKCwu1dOlS3X777YqLi9OuXbs0ZcoUDRw4UD169LCydAAAEAQcxhhj2cEdjjrbFy9erHHjxqmoqEj/8R//oT179qiyslIpKSm688479cQTT8jlcgV0DI/HI7fbrbKysoC3AQAA1gr0/G35paULSUlJ0fr16xupGgAAYDdBMdgXAADgchBkAACAbRFkAACAbRFkAACAbRFkAACAbRFkAACAbRFkAACAbRFkAACAbRFkAACAbRFkAACAbRFkAACAbRFkAACAbRFkAACAbRFkAACAbRFkAACAbRFkAACAbRFkAACAbRFkAACAbRFkAACAbRFkAACAbRFkAACAbRFkAACAbRFkAACAbRFkAACAbRFkAACAbV1ykMnJydGrr756Xvurr76quXPnNkhRAAAAgbjkILNo0SJ16tTpvPauXbvq5ZdfbpCiAAAAAnHJQaakpEStWrU6rz0+Pl7FxcUNUhQAAEAgLjnIpKSkaOPGjee1b9y4UUlJSQ1SFAAAQCBCL3WDBx54QJMnT1Z1dbUGDx4sSVq7dq0ee+wxTZs2rcELBAAAqM8lB5lHH31Ux44d00MPPaSqqipJUkREhKZPn66f/vSnDV4gAABAfRzGGHM5G1ZUVGjv3r1q2rSpOnToIKfT2dC1NQiPxyO3262ysjK5XC6rywEAAAEI9Pwd8BiZv/zlL+rSpYs8Ho8kKSoqSn379lW3bt10+vRpde3aVR9++OGVVw4AABCggIPM/Pnz9cADD9SZitxut370ox9p3rx5l3TwnJwc9e3bV9HR0WrZsqVGjx6t/Px8v3VOnz6trKwsxcXFKSoqSmPGjFFpaeklHQcAAFybAg4yO3fu1PDhw+tdPmzYMOXm5l7SwdevX6+srCxt2bJFa9asUXV1tYYNG6bKykrfOlOmTNEf/vAHvfXWW1q/fr0OHz6su+6665KOAwAArk0Bj5GJiIjQnj171L59+zqXFxQUqHv37jp16tRlF/PFF1+oZcuWWr9+vQYOHKiysjLFx8dr6dKluvvuuyVJ+/btU+fOnbV582b179//ovtkjAwAAPbT4GNkvvGNb2jPnj31Lt+1a1edN8q7FGVlZZKk2NhYSVJubq6qq6uVkZHhW6dTp05q3bq1Nm/eXOc+vF6vPB6P3wQAAK5NAQeZ22+/XU8++aROnz593rJTp05pxowZ+rd/+7fLLqS2tlaTJ0/WgAED1K1bN0lf3UU4PDxcMTExfusmJCSopKSkzv3k5OTI7Xb7ppSUlMuuCQAABLeA7yPzxBNPaPny5erYsaMmTpyotLQ0SV9d6lmwYIFqamr0+OOPX3YhWVlZ2rNnjz766KPL3ockZWdna+rUqb55j8dDmAEA4BoVcJBJSEjQpk2b9OCDDyo7O1tnh9Y4HA5lZmZqwYIFSkhIuKwiJk6cqD/+8Y/asGGDkpOTfe2JiYmqqqrSiRMn/HplSktLlZiYWOe+nE5n0N7TBgAANKxLurNvamqq/vSnP+n48eMqKCiQMUYdOnRQ8+bNL+vgxhhNmjRJK1as0Lp169S2bVu/5X369FFYWJjWrl2rMWPGSJLy8/N16NAhpaenX9YxAQDAteOSH1EgSc2bN1ffvn2v+OBZWVlaunSp3nnnHUVHR/vGvbjdbjVt2lRut1sTJkzQ1KlTFRsbK5fLpUmTJik9PT2gbywBAIBr22U/oqBBDu5w1Nm+ePFijRs3TtJXN8SbNm2a3njjDXm9XmVmZuqll16q99LS1/H1awAA7CfQ83fAQSbQm9AtX748sAobCUEGAAD7CfT8HfClJbfb3SCFAQAANJSAg8zixYsvus6FbpgHAADQ0AK+IV59ysvL9etf/1r9+vVTz549G6ImAACAgFx2kNmwYYPGjh2rVq1a6fnnn9egQYO0ZcuWhqwNAADggi7p69clJSVasmSJXnnlFXk8Hn3729+W1+vVypUr1aVLl6tVIwAAQJ0C7pEZOXKk0tLStGvXLs2fP1+HDx/Wiy++eDVrAwAAuKCAe2Tef/99/eQnP9GDDz6oDh06XM2aAAAAAhJwj8xHH32k8vJy9enTR/369dN//dd/6ejRo1ezNgAAgAsKOMj0799fv/nNb1RcXKwf/ehHWrZsmZKSklRbW6s1a9aovLz8atYJAABwnit6REF+fr5eeeUV/e53v9OJEyc0dOhQvfvuuw1Z3xXjzr4AANhPoOfvK7qPTFpamp599ll9/vnnWrZsmSorK69kdwAAAJfksp5+fa7y8nK98cYb+u1vf6vc3NyGqAkAACAgDXJDvMcff1wpKSkNWRcAAMBFXVKQKSkp0Zw5c9ShQwfdfvvtOnPmjP73f/9XxcXFmjVr1tWqEQAAoE4BX1oaOXKk1q5dq0GDBmnmzJkaPXq0mjVr5lvucDiuSoEAAAD1CTjIvPfee7r33ns1efJk3XTTTVezJgAAgIAEfGlp06ZNatq0qQYPHqy0tDQ9/fTTKiwsvJq1AQAAXNBl3RBv+vTp+vOf/6yOHTuqf//+evHFF1VaWno16wQAADhPg90Qr7S0VA6HQzU1NQ1Z3xXjhngAANhPo98Qb/ny5brjjjuuZHcAAACX5Ip6ZOyAHhkAAOynUXpkAAAArESQAQAAtkWQAQAAtkWQAQAAtkWQAQAAtkWQAQAAtkWQAQAAtkWQAQAAtkWQAQAAtkWQAQAAtkWQAQAAtmVpkNmwYYNGjhyppKQkORwOrVy50m/5uHHj5HA4/Kbhw4dbUywAAAg6lgaZyspK9ezZUwsWLKh3neHDh6u4uNg3vfHGG41YIQAACGahVh58xIgRGjFixAXXcTqdSkxMbKSKAACAnQT9GJl169apZcuWSktL04MPPqhjx45ZXRIAAAgSlvbIXMzw4cN11113qW3btiosLNR//ud/asSIEdq8ebNCQkLq3Mbr9crr9frmPR5PY5ULAAAaWVAHme9+97u+n7t3764ePXqoXbt2WrdunYYMGVLnNjk5OZo1a1ZjlQgAACwU9JeWznXDDTeoRYsWKigoqHed7OxslZWV+aaioqJGrBAAADSmoO6R+brPP/9cx44dU6tWrepdx+l0yul0NmJVAADAKpYGmYqKCr/elQMHDigvL0+xsbGKjY3VrFmzNGbMGCUmJqqwsFCPPfaY2rdvr8zMTAurBgAAwcLSILN9+3YNGjTINz916lRJ0tixY7Vw4ULt2rVLr732mk6cOKGkpCQNGzZMs2fPpscFAABIkhzGGGN1EVeTx+OR2+1WWVmZXC6X1eUAAIAABHr+ttVgXwAAgHMRZAAAgG0RZAAAgG0RZAAAgG0RZAAAgG0RZAAAgG0RZAAAgG0RZAAAgG0RZAAAgG0RZAAAgG0RZAAAgG0RZAAAgG0RZAAAgG0RZAAAgG0RZAAAgG0RZAAAgG0RZAAAgG0RZAAAgG0RZAAAgG0RZAAAgG0RZAAAgG0RZAAAgG0RZAAAgG0RZAAAgG0RZAAAgG0RZAAAgG0RZAAAgG0RZAAAgG0RZAAAgG0RZAAAgG0RZAAAgG0RZAAAgG2FWl0AACA4fPnllyooKNCJEycUGhqq5ORktWnTRuHh4VaXBtTL0h6ZDRs2aOTIkUpKSpLD4dDKlSv9lhtj9NRTT6lVq1Zq2rSpMjIy9I9//MOaYgHgGmWM0e7du/XBBx/o4MGDOnHihI4ePaq8vDy9//77Kisrs7pEoF6WBpnKykr17NlTCxYsqHP5s88+qxdeeEEvv/yytm7dqmbNmikzM1OnT59u5EoB4NpVVFSkvXv3Svoq1JyrqqpKGzZsUG1trRWlARdl6aWlESNGaMSIEXUuM8Zo/vz5euKJJzRq1ChJ0n//938rISFBK1eu1He/+93GLBUArln79u2rd5kxRqdOndI///lPpaSkNGJVQGCCdrDvgQMHVFJSooyMDF+b2+1Wv379tHnz5nq383q98ng8fhMAoG7V1dU6ceLEBddxOBwqLS1tnIKASxS0QaakpESSlJCQ4NeekJDgW1aXnJwcud1u38S/IACgfl+/lATYTdAGmcuVnZ2tsrIy31RUVGR1SQAQtMLCwhQVFXXBdYwxiouLa6SKgEsTtEEmMTFRks7rziwtLfUtq4vT6ZTL5fKbAAB1czgc6tix4wXXCQ8Pp3cbQStog0zbtm2VmJiotWvX+to8Ho+2bt2q9PR0CysDgGtLu3btlJqaKumrYHOWw+FQSEiIbr31VoWGctsxBCdLP5kVFRUqKCjwzR84cEB5eXmKjY1V69atNXnyZP3sZz9Thw4d1LZtWz355JNKSkrS6NGjrSsaAK4xDodDN998s77xjW/43RAvJSVF7du3V7NmzawuEaiXpUFm+/btGjRokG9+6tSpkqSxY8dqyZIleuyxx1RZWakf/vCHOnHihG699VatWrVKERERVpUMANckh8Oh5ORkJScnW10KcEkc5hofsu7xeOR2u1VWVsZ4GQAAbCLQ8zcXPQEgiBhjVFZWJq/Xq8jISEVHR1tdEhDUCDIAECT++c9/ateuXSovL/e1xcXF6cYbb1RsbKyFlQHBK2i/tQQA15NDhw5p48aNfiFG+uqJ1H/961/15ZdfWlQZENwIMgBgsZqaGu3YsaPOZcYY1dbWKi8vr3GLAmyCIAMAFisuLlZVVVW9y40xOnr0qCoqKhqxKsAeCDIAYLGTJ0826HrA9YQgAwAWczqdAa0XHh5+lSsB7IcgAwAWS0pKUpMmF/7rODo6Wm63u5EqAuyDIAMAFgsLC1PXrl0vuE7Pnj39noME4CvcRwYAgkCnTp0kSZ988olqamp87eHh4erTp4+SkpKsKg0IagQZAAgCDodDnTt3Vvv27XX48GF5vV41a9ZMiYmJCgkJsbo8IGgRZAAgiISFhSk1NdXqMgDbYIwMAACwLYIMAACwLYIMAACwLYIMAACwLYIMAACwLYIMAACwLYIMAACwLYIMAACwLYIMAACwLYIMAACwLYIMAACwLYIMAACwLYIMAACwLYIMAACwLYIMAACwLYIMAACwLYIMAACwLYIMAACwLYIMAACwLYIMAACwraAOMjNnzpTD4fCbOnXqZHVZAAAgSIRaXcDFdO3aVR988IFvPjQ06EsGAACNJOhTQWhoqBITE60uAwAABKGgvrQkSf/4xz+UlJSkG264Qffdd58OHTp0wfW9Xq88Ho/fBAAArk1BHWT69eunJUuWaNWqVVq4cKEOHDigb37zmyovL693m5ycHLndbt+UkpLSiBUDAIDG5DDGGKuLCNSJEyeUmpqqefPmacKECXWu4/V65fV6ffMej0cpKSkqKyuTy+VqrFIBAMAV8Hg8crvdFz1/B/0YmXPFxMSoY8eOKigoqHcdp9Mpp9PZiFUBAACrBPWlpa+rqKhQYWGhWrVqZXUpAAAgCAR1kHnkkUe0fv16ffbZZ9q0aZPuvPNOhYSE6J577rG6NAAAEASC+tLS559/rnvuuUfHjh1TfHy8br31Vm3ZskXx8fFWlwYAAIJAUAeZZcuWWV0CAAAIYkF9aQkAAOBCCDIAAMC2CDIAAMC2CDIAAMC2CDIAAMC2CDIAAMC2CDIAAMC2CDIAAMC2CDIAAMC2CDIAAMC2CDIAAMC2CDIAAMC2CDIAAMC2CDIAAMC2CDIAAMC2CDIAAMC2CDIAAMC2CDIAAMC2CDIAAMC2CDIAAMC2CDIAAMC2CDIAAMC2CDIAAMC2CDIAAMC2CDIAAMC2CDIAAMC2CDIAAMC2Qq0uALielJ4p1YHqA6pVreJD4nVD2A0KcYRYXRYA2BZBBrgCxhiVlpaqqKhI1dXVio6OVtu2bRUVFeW33qnaU3qv8j3988w/5fi//2pVq0hHpO6IukNJoUkWvQIAsDeCDHCZqqqq9OGHH+rYsWNyOBwyxsjhcGjv3r3q1q2bunTpIkmqNbVaWbFSX9R8IUky//efJJ0yp7SifIXudd2r5iHNLXstAGBXjJEBLtOmTZv05ZdfSvqqZ+bc/+/Zs0cHDx6UJH1W/ZmO1BzxhZdzGRnVqEa5p3MbqWoAuLYQZIDLcPz4cR05csQXXOryySefyBijf1T/Qw456l3PyGh/1f6rUSYAXPNsEWQWLFigNm3aKCIiQv369dPf/vY3q0vCde7w4cNyOOoPJ5JUXl6uyspKeWu9dfbGnKu6tlqffvqp1qxZo+XLl+sPf/iDdu3apZMnTzZk2QBwzQn6IPPmm29q6tSpmjFjhnbs2KGePXsqMzNTR44csbo0XMdqa2sDXq95SPML9sioVorPi9f27dt1/PhxnTlzRqdOnVJ+fr5Wr16t48ePN1DVAHDtCfogM2/ePD3wwAMaP368unTpopdfflmRkZF69dVXrS4N17GYmJgLXlaSpNDQUEVGRqqrs+sFe2SiDkQp9Nj54+6NMTpz5ow2btwYcHACgOtNUAeZqqoq5ebmKiMjw9fWpEkTZWRkaPPmzRZWhutdUlKSnE5nvcsdDofatm2r0NBQxYbE6uaIm+ter9ahqKKoOpdJX4WZkydPqqSk5IprBoBrUVAHmaNHj6qmpkYJCQl+7QkJCfX+xe71euXxePwmoKGFhIQoPT1dTZo0qXOsjNvtVrdu3Xzz/SP6a2jkULmbuH1t4QpX95ruclRfeKyNw+HQsWPHGq54ALiGXHP3kcnJydGsWbOsLgPXgZYtW2ro0KHat2+fioqKVFtbq4iICLVv314dOnRQWFiYb12Hw6Euzi7qHN5ZnlqPalQjVxOXTlWc0vt6/6LHutjAYgC4XgV1kGnRooVCQkJUWlrq115aWqrExMQ6t8nOztbUqVN98x6PRykpKVe1Tly/3G63+vXrp5tvvlm1tbUKCbnw4wYcDofcIf/qlYmKilJkZOQFv51kjDmvVxIA8JWgvrQUHh6uPn36aO3atb622tparV27Vunp6XVu43Q65XK5/CbganM4HBcNMfVtl5aWdsHlMTExatGixZWUBwDXrKDukZGkqVOnauzYsbrpppt08803a/78+aqsrNT48eOtLg1oEO3bt1d5ebkKCgp8jzo4q1mzZrr11lu5tAQA9Qj6IPOd73xHX3zxhZ566imVlJSoV69eWrVqFV3tuGY4HA717t1brVu31qeffiqPx6OwsDC1bt1aKSkpCg0N+j+mAGAZh7nYzTBszuPxyO12q6ysjMtMAADYRKDn76AeIwMAAHAhBBkAAGBbBBkAAGBbBBkAAGBbBBkAAGBbBBkAAGBbBBkAAGBbBBkAAGBbBBkAAGBbBBkAAGBb1/xDXM4+gcHj8VhcCQAACNTZ8/bFnqR0zQeZ8vJySVJKSorFlQAAgEtVXl4ut9td7/Jr/qGRtbW1Onz4sKKjo+VwOBrlmB6PRykpKSoqKuJBlbgifJbQUPgsoSE05ufIGKPy8nIlJSWpSZP6R8Jc8z0yTZo0UXJysiXHdrlc/IWBBsFnCQ2FzxIaQmN9ji7UE3MWg30BAIBtEWQAAIBtEWSuAqfTqRkzZsjpdFpdCmyOzxIaCp8lNIRg/Bxd84N9AQDAtYseGQAAYFsEGQAAYFsEGQAAYFsEmQa0YcMGjRw5UklJSXI4HFq5cqXVJcGmcnJy1LdvX0VHR6tly5YaPXq08vPzrS4LNrNw4UL16NHDd8+P9PR0vf/++1aXBZubM2eOHA6HJk+ebHUpkggyDaqyslI9e/bUggULrC4FNrd+/XplZWVpy5YtWrNmjaqrqzVs2DBVVlZaXRpsJDk5WXPmzFFubq62b9+uwYMHa9SoUfr444+tLg02tW3bNi1atEg9evSwuhQfvrV0lTgcDq1YsUKjR4+2uhRcA7744gu1bNlS69ev18CBA60uBzYWGxur5557ThMmTLC6FNhMRUWFevfurZdeekk/+9nP1KtXL82fP9/qsuiRAeygrKxM0lcnIeBy1NTUaNmyZaqsrFR6errV5cCGsrKydMcddygjI8PqUvxc889aAuyutrZWkydP1oABA9StWzery4HN7N69W+np6Tp9+rSioqK0YsUKdenSxeqyYDPLli3Tjh07tG3bNqtLOQ9BBghyWVlZ2rNnjz766COrS4ENpaWlKS8vT2VlZXr77bc1duxYrV+/njCDgBUVFenhhx/WmjVrFBERYXU552GMzFXCGBk0hIkTJ+qdd97Rhg0b1LZtW6vLwTUgIyND7dq106JFi6wuBTaxcuVK3XnnnQoJCfG11dTUyOFwqEmTJvJ6vX7LGhs9MkAQMsZo0qRJWrFihdatW0eIQYOpra2V1+u1ugzYyJAhQ7R7926/tvHjx6tTp06aPn26pSFGIsg0qIqKChUUFPjmDxw4oLy8PMXGxqp169YWVga7ycrK0tKlS/XOO+8oOjpaJSUlkiS3262mTZtaXB3sIjs7WyNGjFDr1q1VXl6upUuXat26dVq9erXVpcFGoqOjzxuf16xZM8XFxQXFuD2CTAPavn27Bg0a5JufOnWqJGns2LFasmSJRVXBjhYuXChJuu222/zaFy9erHHjxjV+QbClI0eO6P7771dxcbHcbrd69Oih1atXa+jQoVaXBjQYxsgAAADb4j4yAADAtggyAADAtggyAADAtggyAADAtggyAADAtggyAADAtggyAADAtggyAADAtggyQCP77LPP5HA4lJeXZ3UpPvv27VP//v0VERGhXr16Ndpxx40bZ7sHq9qxZuBaRpDBdWfcuHFyOByaM2eOX/vKlSvlcDgsqspaM2bMULNmzZSfn6+1a9c2+P7rC2+/+tWvGuXxHYSPKzdz5sxGDblAoAgyuC5FRERo7ty5On78uNWlNJiqqqrL3rawsFC33nqrUlNTFRcX14BVXZjb7VZMTEyjHc/OruT3G0yuldeB4EGQwXUpIyNDiYmJysnJqXeduv4FOn/+fLVp08Y3f/Zf+j//+c+VkJCgmJgYPf300zpz5oweffRRxcbGKjk5WYsXLz5v//v27dMtt9yiiIgIdevWTevXr/dbvmfPHo0YMUJRUVFKSEjQ9773PR09etS3/LbbbtPEiRM1efJktWjRQpmZmXW+jtraWj399NNKTk6W0+lUr169tGrVKt9yh8Oh3NxcPf3003I4HJo5c2a9+8nJyVHbtm3VtGlT9ezZU2+//bZv+fHjx3XfffcpPj5eTZs2VYcOHXyvu23btpKkG2+8UQ6Hw/cwzK/3lNx2222aNGmSJk+erObNmyshIUG/+c1vVFlZqfHjxys6Olrt27fX+++/79umpqZGEyZM8NWVlpamX/3qV77lM2fO1GuvvaZ33nlHDodDDodD69atkyQVFRXp29/+tmJiYhQbG6tRo0bps88+89v31KlTFRMTo7i4OD322GO62OPplixZopiYGK1cuVIdOnRQRESEMjMzVVRU5FunsLBQo0aNUkJCgqKiotS3b1998MEHfvtp06aNZs+erfvvv18ul0s//OEPJUnTp09Xx44dFRkZqRtuuEFPPvmkqqur/V5vr1699Oqrr6p169aKiorSQw89pJqaGj377LNKTExUy5Yt9cwzz/gd78SJE/rBD36g+Ph4uVwuDR48WDt37vS9plmzZmnnzp2+9/BsT9qFtju3nt/+9rdq27atIiIiJElvv/22unfvrqZNmyouLk4ZGRmqrKy84HsL1MkA15mxY8eaUaNGmeXLl5uIiAhTVFRkjDFmxYoV5tw/EjNmzDA9e/b02/aXv/ylSU1N9dtXdHS0ycrKMvv27TOvvPKKkWQyMzPNM888Y/bv329mz55twsLCfMc5cOCAkWSSk5PN22+/bT755BPzgx/8wERHR5ujR48aY4w5fvy4iY+PN9nZ2Wbv3r1mx44dZujQoWbQoEG+Y3/rW98yUVFR5tFHHzX79u0z+/btq/P1zps3z7hcLvPGG2+Yffv2mccee8yEhYWZ/fv3G2OMKS4uNl27djXTpk0zxcXFpry8vM79/OxnPzOdOnUyq1atMoWFhWbx4sXG6XSadevWGWOMycrKMr169TLbtm0zBw4cMGvWrDHvvvuuMcaYv/3tb0aS+eCDD0xxcbE5duyY3+/i3NcUHR1tZs+e7XvvQkJCzIgRI8yvf/1rs3//fvPggw+auLg4U1lZaYwxpqqqyjz11FNm27Zt5tNPPzX/8z//YyIjI82bb75pjDGmvLzcfPvb3zbDhw83xcXFpri42Hi9XlNVVWU6d+5svv/975tdu3aZTz75xNx7770mLS3NeL1eY4wxc+fONc2bNze///3vzSeffGImTJhgoqOj/Wr+usWLF5uwsDBz0003mU2bNpnt27ebm2++2dxyyy2+dfLy8szLL79sdu/ebfbv32+eeOIJExERYQ4ePOhbJzU11bhcLvP888+bgoICU1BQYIwxZvbs2Wbjxo3mwIED5t133zUJCQlm7ty5vu1mzJhhoqKizN13320+/vhj8+6775rw8HCTmZlpJk2aZPbt22deffVVI8ls2bLFt11GRoYZOXKk2bZtm9m/f7+ZNm2aiYuLM8eOHTMnT54006ZNM127dvW9hydPnrzodmfradasmRk+fLjZsWOH2blzpzl8+LAJDQ018+bNMwcOHDC7du0yCxYsqPezB1wIQQbXnXNPnv379zff//73jTGXH2RSU1NNTU2Nry0tLc1885vf9M2fOXPGNGvWzLzxxhvGmH8FmTlz5vjWqa6uNsnJyb4T0uzZs82wYcP8jl1UVGQkmfz8fGPMVyf9G2+88aKvNykpyTzzzDN+bX379jUPPfSQb75nz55mxowZ9e7j9OnTJjIy0mzatMmvfcKECeaee+4xxhgzcuRIM378+Dq3P/ua//73v/u11xVkbr31Vt/82ffue9/7nq+tuLjYSDKbN2+ut96srCwzZsyYeo9jjDG/+93vTFpamqmtrfW1eb1e07RpU7N69WpjjDGtWrUyzz77rG/52d/TxYLM10PC3r17jSSzdevWerfr2rWrefHFF33zqampZvTo0fWuf9Zzzz1n+vTp45ufMWOGiYyMNB6Px9eWmZlp2rRpc97nNCcnxxhjzIcffmhcLpc5ffq0377btWtnFi1a5Nvv1/88BLpdWFiYOXLkiG95bm6ukWQ+++yzi74+4GJCLekGAoLE3LlzNXjwYD3yyCOXvY+uXbuqSZN/XaVNSEhQt27dfPMhISGKi4vTkSNH/LZLT0/3/RwaGqqbbrpJe/fulSTt3LlTf/3rXxUVFXXe8QoLC9WxY0dJUp8+fS5Ym8fj0eHDhzVgwAC/9gEDBvh1/19MQUGBTp48qaFDh/q1V1VV6cYbb5QkPfjggxozZox27NihYcOGafTo0brlllsCPsZZPXr08P189r3r3r27ry0hIUGS/N7PBQsW6NVXX9WhQ4d06tQpVVVVXXRg6s6dO1VQUKDo6Gi/9tOnT6uwsFBlZWUqLi5Wv379fMvO/p7MRS4vhYaGqm/fvr75Tp06KSYmRnv37tXNN9+siooKzZw5U++9956Ki4t15swZnTp1SocOHfLbz0033XTevt9880298MILKiwsVEVFhc6cOSOXy+W3Tps2bfxeV0JCgkJCQs77nJ59D3fu3KmKiorzxkedOnVKhYWF9b7OQLdLTU1VfHy8b75nz54aMmSIunfvrszMTA0bNkx33323mjdvXu+xgPoQZHBdGzhwoDIzM5Wdna1x48b5LWvSpMl5J6xzxyKcFRYW5jfvcDjqbKutrQ24roqKCo0cOVJz5849b1mrVq18Pzdr1izgfV6JiooKSdJ7772nb3zjG37LnE6nJGnEiBE6ePCg/vSnP2nNmjUaMmSIsrKy9Pzzz1/SsS72fp79ZtnZ93PZsmV65JFH9Itf/ELp6emKjo7Wc889p61bt170NfXp00evv/76ecvOPeleDY888ojWrFmj559/Xu3bt1fTpk119913nzcQ9uu/382bN+u+++7TrFmzlJmZKbfbrWXLlukXv/iF33qX+pmsqKhQq1atfGOHznWhwdiBbvf11xESEqI1a9Zo06ZN+vOf/6wXX3xRjz/+uLZu3eobTwUEiiCD696cOXPUq1cvpaWl+bXHx8erpKRExhjfybMh7/2yZcsWDRw4UJJ05swZ5ebmauLEiZKk3r176/e//73atGmj0NDL/2PqcrmUlJSkjRs36lvf+pavfePGjbr55psD3k+XLl3kdDp16NAhv/18XXx8vMaOHauxY8fqm9/8ph599FE9//zzCg8Pl/TV4NmGtnHjRt1yyy166KGHfG1f70UIDw8/79i9e/fWm2++qZYtW57Xo3FWq1attHXr1vN+T717975gTWfOnNH27dt973F+fr5OnDihzp07+2oeN26c7rzzTklfBYJzBxnXZ9OmTUpNTdXjjz/uazt48OBFt7uY3r17q6SkRKGhoX6D2c9V33t4se3q43A4NGDAAA0YMEBPPfWUUlNTtWLFCk2dOvUyXwWuV3xrCde97t2767777tMLL7zg137bbbfpiy++0LPPPqvCwkItWLDA79syV2rBggVasWKF9u3bp6ysLB0/flzf//73JUlZWVn68ssvdc8992jbtm0qLCzU6tWrNX78+EsOA48++qjmzp2rN998U/n5+frpT3+qvLw8PfzwwwHvIzo6Wo888oimTJmi1157TYWFhdqxY4defPFFvfbaa5Kkp556Su+8844KCgr08ccf649//KPvxN2yZUs1bdpUq1atUmlpqcrKyi7pNVxIhw4dtH37dq1evVr79+/Xk08+qW3btvmt06ZNG+3atUv5+fk6evSoqqurdd9996lFixYaNWqUPvzwQx04cEDr1q3TT37yE33++eeSpIcfflhz5szRypUrtW/fPj300EM6ceLERWsKCwvTpEmTtHXrVuXm5mrcuHHq37+/L9h06NBBy5cvV15ennbu3Kl77703oB67Dh066NChQ1q2bJkKCwv1wgsvaMWKFZf+pn1NRkaG0tPTNXr0aP35z3/WZ599pk2bNunxxx/X9u3bJX31Hh44cEB5eXk6evSovF5vQNvVZevWrfr5z3+u7du369ChQ1q+fLm++OIL3+cFuBQEGUDS008/fd6JpHPnznrppZe0YMEC9ezZU3/729+uaCzN182ZM0dz5sxRz5499dFHH+ndd99VixYtJMnXi1JTU6Nhw4ape/fumjx5smJiYvzGOQTiJz/5iaZOnapp06ape/fuWrVqld5991116NDhkvYze/ZsPfnkk8rJyVHnzp01fPhwvffee75LAeHh4crOzlaPHj00cOBAhYSEaNmyZZK+GjPywgsvaNGiRUpKStKoUaMu6dgX8qMf/Uh33XWXvvOd76hfv346duyYX++MJD3wwANKS0vTTTfdpPj4eG3cuFGRkZHasGGDWrdurbvuukudO3fWhAkTdPr0aV8PzbRp0/S9731PY8eO9V22OtuLciGRkZGaPn267r33Xg0YMEBRUVF68803fcvnzZun5s2b65ZbbtHIkSOVmZl50V4eSfr3f/93TZkyRRMnTlSvXr20adMmPfnkk5f4jp3P4XDoT3/6kwYOHKjx48erY8eO+u53v6uDBw/6xiSNGTNGw4cP16BBgxQfH6833ngjoO3q4nK5tGHDBt1+++3q2LGjnnjiCf3iF7/QiBEjrvi14PrjMBcbtQYACNiSJUs0efLkgHpuAFw5emQAAIBtEWQAAIBtcWkJAADYFj0yAADAtggyAADAtggyAADAtggyAADAtggyAADAtggyAADAtggyAADAtggyAADAtggyAADAtv4/3UOonQk/KMcAAAAASUVORK5CYII=", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], + "outputs": [], "source": [ "petab_select.plot.scatter_criterion_vs_n_estimated(\n", " models=models,\n", @@ -430,21 +230,10 @@ }, { "cell_type": "code", - "execution_count": 9, + "execution_count": null, "id": "5ce191fc", "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABXsAAAM0CAYAAADqdvEZAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAD6pklEQVR4nOzdd3gVZcL+8XsSUoAUjDGG3hEEQURURBFBUCmSEKSDlJDDLpa1y+W+uvpzF9fVtayrHEKHhB6CYkPFRUFBUBQFpYpGISAthZB65vdHigktPTPn5PuZa67AnMnMHV7n3ZM7T57HME3TFAAAAAAAAADArXlZHQAAAAAAAAAAUHmUvQAAAAAAAADgASh7AQAAAAAAAMADUPYCAAAAAAAAgAeg7AUAAAAAAAAAD0DZCwAAAAAAAAAegLIXAAAAAAAAADwAZS8AAAAAAAAAeADKXgAAAAAAAADwAJS9AAAAAAAAAOABKHsBAAAAAAAA2NIbb7whwzB0/fXXV/rc+fPnyzAMbdu27ZzX9u/fL4fDoVatWsnf319BQUHq2bOnXn31VZ05c6bSX0dNqWN1AAAAAAAAAAA4n7i4OPn6+urLL7/Uvn371KZNm4ue26JFizKdW9w777yju+++W35+fho/frw6deqk7Oxsbdy4UY8++qh27typWbNmVdWXVK0Y2QsAAAAAAADAdn766Sd9/vnn+utf/yofHx/FxcWVeu6///1vXXbZZRc99+zPGzlypJo3b65du3bp1Vdf1ZQpUzRt2jQtWbJEu3btUseOHavqS6p2lL0AAAAAAAAAbCcuLk7e3t6KiYlRv379LlrgxsXF6ZJLLtHAgQM1bNiwMpe9L7zwgtLT0zVnzhw1bNjwnNfbtGmjBx54oMSx3377TZMnT1ajRo3k5+enli1b6k9/+pOys7PL9wVWA8peAAAAAAAAALYTFxenXr166fLLL9fw4cO1d+9ebd269YLnDh06VL6+vho1atRFzy3u7bffVqtWrXTjjTeWKdOhQ4d03XXXaenSpRoxYoRee+01jRs3Ths2bFBGRka5vr7qwJy9AAAAAAAAAGzlq6++0o8//qi//OUvkqSIiAj5+voqLi5O3bt3P++5//nPfyRJN910k5o0aXLec4tLTU3Vb7/9piFDhpQ51/Tp05WcnKwtW7bo2muvLTr+7LPPyjTNcnyF1YORvQAAAAAAAABsJS4uTnXq1FFUVJQkKTg4WHfccYeWLl2qvLy8c869/PLLdeutt0qSDMPQiBEjzntucampqZKkwMDAMmVyuVxKTEzU4MGDSxS9hQzDKNN1qhNlLwAAAAAAAADbyMvL09KlS9WnTx+FhoYWHR8xYoSOHDmijz/++Jxzb731Vv3000/at2+f9u3bp+uvv/6cc88WFBQkSUpLSytTrt9//12pqanq1KlTBb+y6kfZCwAAAAAAAMA21q9fr8OHD2vEiBEljt91112qW7duicXXCs9dunSp2rZtW7QPHz5cki66UFtQUJAaNWqk77//vnq+EAtQ9gIAAAAAAACwjbi4OPn4+CgyMrLE8YCAAA0YMECrV6/WmTNnis4NCwvTihUrztlHjRpV4tzzGTRokPbv368vvvii1FyXXXaZgoKCbF0OU/YCAAAAAAAAsIUzZ84oISFB/fr10yWXXHLO68OHD1daWpreeuutonMHDRqkYcOGnbPfe++9RedeyGOPPab69esrOjpaR44cOef1/fv369VXX5UkeXl5KSIiQm+//ba2bdt2zrl2WKCtjtUBAAAAAAAAAECS3nrrraI5dJ9//vlzXs/IyJD0x/QMaWlpuuuuu857rRtuuEGXXXaZ4uLizpkSolDr1q0VHx+vESNGqEOHDho/frw6deqk7Oxsff7551qxYoUmTJhQdP4//vEPrVu3TrfccotiYmLUoUMHHT58WCtWrNDGjRvVoEGDSnz1lUfZCwAAAAAAAMAWCkvcd999V+++++4Fz3v//fdlmqb8/f3Vr1+/857j5eWlgQMHKi4uTsePH7/gte666y7t2LFD//rXv7RmzRq9+eab8vPzU+fOnfXSSy9pypQpRec2btxYW7Zs0f/93/8pLi5Oqampaty4se68807Vq1evgl911TFMO4wvBgAAAAAAAABUCnP2AgAAAAAAAIAHoOwFAAAAAAAAAA9A2QsAAAAAAAAAHoCyFwAAAAAAAAA8AGUvAAAAAAAAAHgAyl4AAAAAAAAA8AB1rA4AAAAAAAAAABeSmZmp7Oxsq2Ocw9fXV/7+/lbHKIGyFwAAAAAAAIAtZWZmqmXLlkpOTrY6yjnCw8P1008/2arwpewFAAAAAAAAYEvZ2dlKTk5WUlKSgoKCrI5TJDU1VU2bNlV2djZlLwAAAAAAAACUVVBQkK3KXrui7AUAAAAAAABga2bBZhd2ylKcl9UBAAAAAAAAAACVR9kLAAAAAAAAAB6AaRwAAAAAAAAA2JppmjJN+0ydYKcsxTGyFwAAAAAAAAA8AGUvAAAAAAAAAHgApnEAAAAAAAAAYGtmwWYXdspSHCN7AQAAAAAAAMADUPYCAAAAAAAAgAdgGgcAAAAAAAAAtmaapkzTPlMn2ClLcYzsBQAAAAAAAAAPQNkLAAAAAAAAAB6AaRwAAAAAAAAA2JpZsNmFnbIUx8heAAAAAAAAAPAAlL0AAAAAAAAA4AGYxgEAAAAAAACArZmmKdO0z9QJdspSHCN7AQAAAAAAAMADUPYCAAAAAAAAgAdgGgcAAAAAAAAAtmYWbHZhpyzFMbIXAAAAAAAAADwAZS8AAAAAAAAAeACmcQAAAAAAAABga6ZpyjTtM3WCnbIUx8heAAAAAAAAAPAAlL0AAAAAAAAA4AGYxgEAAAAAAACArZkFm13YKUtxjOwFAAAAAAAAAA9A2QsAAAAAAAAAHoBpHAAAAAAAAADYmmmaMk37TJ1gpyzFMbIXAAAAAAAAADwAZS8AAAAAAAAAeACmcQAAAAAAAABga2bBZhd2ylIcI3sBAAAAAAAAwANQ9gIAAAAAAACAB2AaBwAAAAAAAAC2ZpqmTNM+UyfYKUtxjOwFAAAAAAAAAA9A2QsAAAAAAAAAHoBpHAAAAAAAAADYmlmw2YWdshTHyF4AAAAAAAAA8ACUvUAVOXr0qNauXaunnnpKd955p0JDQ2UYhgzD0IQJE6yOB7g1ni+g+qSmpmrp0qV6+OGHdcstt6hNmzYKDg6Wr6+vwsLC1Lt3b73wwgs6fvy41VEBt7Vt2zY9++yz6t+/v5o0aSI/Pz8FBASoXbt2mjhxojZu3Gh1RMCt8V4RAP7ANA5AFbn88sutjgB4LJ4voPp8+eWXGjVq1Hlf+/3337VhwwZt2LBB//rXv7R48WLdfvvtNZwQcG+9evXSZ599ds7x7Oxs7d27V3v37tX8+fM1fvx4xcbGytfX14KUgHvjvSJQO5imKdO0z9QJdspSHGUvUA2aNWum9u3ba926dVZHATwOzxdQ9Zo2bapbb71V3bp1U9OmTdWwYUO5XC79+uuvWrlypRISEnTs2DHddddd+vLLL9WlSxerIwNu49ChQ5KkRo0a6e6779bNN9+sZs2aKS8vT1988YVeeukl/fbbb1q4cKFycnIUHx9vcWLAvfFeEUBtR9kLVJGnnnpK3bt3V/fu3XX55Zfr4MGDatmypdWxAI/A8wVUn1tvvVW//PLLBV8fPny4EhMTFRkZqezsbD3zzDNKSEiowYSAe2vfvr3+8Y9/KCoqSt7e3iVeu+GGGzRu3Dj17NlTe/bs0ZIlSzR16lT16tXLorSAe+K9IgD8gbIXqCLPPPOM1REAj8XzBVSfs8un84mIiNAVV1yh3bt3n/fX0QFc2Nq1ay/6emhoqF566SUNHjxYkrRy5UrKXqCceK8I1A5mwWYXdspSHAu0wS387W9/K5pgX5IyMzP1r3/9S9dcc40CAwMVGBio6667Tq+//rpyc3MtTgu4F54voHp5yjMWGBgoKT8/YCee8IzdeuutRX/ev3+/hUmAc3nCMwYAtQkje+F2jhw5ojvuuEPffPNNieNbt27V1q1btW7dOiUmJsrLi59lAOXF8wVUL3d9xnbv3l2UuX379taGAS7CXZ+xrKysoj+XZbQ9YBV3fcYAoDbh/wPD7QwdOlS7du3S/fffrw8//FBfffWV4uPj1aFDB0nS22+/rdjYWItTAu6J5wuoXu70jGVkZGjv3r3697//rVtuuaVotNZf/vIXa4MBF+FOz1hxGzZsKPpzYVbAjtz1GQPgGUzTtN1uR5S9cDtbt27VBx98oFdffVW33XabrrnmGo0aNUobN27U5ZdfLkl64403zvm8+fPnF/36UWV2wJPxfAHVy+7PWPH71K9fX+3atdPDDz+sI0eOSJKeeOIJjR49umr/UYAqZPdn7HxcLpeef/75or8PHz68Yl88UAPc8RkDgNqGshdu57777lPv3r3POR4SEqKJEydKkr777julpKTUcDLA/fF8AdXLXZ+xq6++Wl9++aVmzJjBN9uwNXd8xl5++WV9+eWXkvJHTXbr1s3iRMCFueMzBgC1DXP2wu2MGTPmgq8Vvjk2TVM//fSTrr766qLXIiIidO2111Z3PMCt8XwB1cvuz1jx+5w5c0b79+/X8uXLtXr1ao0aNUqvvPKKBg0aVO05gIqy+zN2tg0bNuiJJ56QJIWFhenNN9+s8QxAebjbMwbAs5gFm13YKUtxlL1wOxdbGCYkJKToz2lpaSVea9CggRo0aFBdsQCPwPMFVC+7P2Nn36d79+4aOXKkFi1apHvuuUdDhgzRnDlzNGHChGrPAlSE3Z+x4nbu3KnIyEjl5ubK399fK1asUFhYWI1mAMrLnZ4xAKitmMYBbqdevXoXfK34qq95eXk1EQfwKDxfQPVy12ds3Lhxuvvuu+VyuXTvvffqxIkTVkcCzstdnrGffvpJ/fv318mTJ+Xt7a2lS5eqV69elmYCysJdnjEAqM0Y2Yta49SpU/r1118rfZ1OnTpVQRrAs/B8AdXLDs/YkCFDtHz5cp0+fVrvv/8+C7XBo9TkM3bo0CHddtttOnTokAzD0Ny5czVkyJBK3xuwMzv87xgA92eapkzTPlMn2ClLcZS9qDUSExOLFg2oDLs+zICVeL6A6mWHZ+yyyy4r+vPPP/9c6SyAndTUM3bs2DH169dPBw4ckCT95z//0fjx4yt9X8Du7PC/YwBQWzCNAwAAAEr122+/Ff05ICDAwiSAe0pJSdHtt9+uXbt2SZKef/55TZs2zeJUAADA01D2otaYMGFC0ZD/yuwAzsXzBVQvOzxjK1asKPrzVVddVdkvCbCV6n7GMjIyNHDgQH399deSpCeffFKPP/54TX15gOXs8L9jADyDaaPNrih7AQAAarH58+crMzPzoue8/PLLevfddyVJLVu21M0331wT0QCPkJ2drcjISG3atEmS9MADD+i5556zOBUAAPBUzNkLVJGNGzdq3759RX8/duxY0Z/37dun+fPnlzh/woQJNZQMcH88X0D1+dvf/qaHH35YUVFRuummm9S6dWsFBAQoLS1N3333neLi4opKKl9fX82aNUve3t4Wpwbcx6hRo7Ru3TpJUp8+fTR58mR9//33Fzzf19dX7dq1q6l4gEfgvSIA/IGyF6gis2fP1oIFC8772qZNm4q+US7EGwyg7Hi+gOp14sQJxcbGKjY29oLnNGnSRHPnztVtt91Wg8kA95eQkFD05/Xr16tz584XPb958+Y6ePBgNacCPAvvFYHawW5TutgpS3GUvQAAALXYBx98oHfeeUebNm3Svn37dOTIER0/flx169ZVWFiYrr76ag0aNEjDhw9XvXr1rI4LAAAA4CIM0641NAAAAAAAAIBaLTU1VcHBwTpw+IACgwKtjlMkLTVNrRq2UkpKioKCgqyOU4SRvQAAAAAAAABszSzY7MJOWYrzsjoAAAAAAAAAAKDyKHsBAAAAAAAAwAMwjQMAAAAAAAAAWzNNU3ZaesxOWYpjZC8AAAAAAAAAeADKXgAAAAAAAADwAJS9AAAAAAAAAGzNtOFWHm+++aY6d+6soKAgBQUFqUePHnrvvfeKXu/du7cMwyixT506tdz/TszZCwAAAAAAAADVqEmTJnr++efVtm1bmaapBQsWaMiQIdq+fbs6duwoSZoyZYqeffbZos+pV69eue9D2QsAAAAAAAAA1Wjw4MEl/v73v/9db775pjZv3lxU9tarV0/h4eGVug/TOAAAAAAAAACwNdM0bbdLUmpqaok9Kyur1K8lLy9PS5cu1enTp9WjR4+i43FxcQoNDVWnTp00ffp0ZWRklPvfiZG9AAAAAAAAAFABTZs2LfH3p59+Wn/729/Oe+53332nHj16KDMzUwEBAVq9erWuvPJKSdLo0aPVvHlzNWrUSDt27NDjjz+u3bt3KyEhoVx5DLOwhgYAAAAAAAAAG0lNTVVwcLD2/LZHgUGBVscpkpaapnaN2ykpKUlBQUFFx/38/OTn53fez8nOztYvv/yilJQUrVy5UrNnz9aGDRuKCt/i1q9fr759+2rfvn1q3bp1mXMxshcAAAAAAACArZkFm10UZgkKCipR9l6Mr6+v2rRpI0nq1q2btm7dqldffVVOp/Occ6+//npJKnfZy5y9AAAAAAAAAFDDXC7XBef4/eabbyRJDRs2LNc1GdkLAAAAAAAAANVo+vTpuvPOO9WsWTOlpaUpPj5e//vf//TBBx9o//79io+P14ABA3TppZdqx44devDBB9WrVy917ty5XPeh7AUAAAAAAABga6Zpyk5Lj5U3y9GjRzV+/HgdPnxYwcHB6ty5sz744AP169dPSUlJ+uijj/TKK6/o9OnTatq0qaKiovTXv/613LlYoA0AAAAAAACALRUu0Pbjrz/aboG29k3aKyUlpcxz9tYERvYCAABUwt69e5WWlmZ1DNsJDAxU27ZtrY4BD8Azdn48YwAA4HwoewEAACpo7969ateundUxbGvPnj2UUagUnrGL4xkDANQmZsFmF3bKUhxlLwAAQAUVjTYcKinU0ij2ckxSghiNiUor/G+oTXQb1W1Y1+I09nHm8Bntm72PZwwAAJyDshcAAKCyQiU1sjoE4LnqNqyr+s3rWx0DAADA9ih7AQAAAAAAANiaaZoyTftMnWCnLMV5WR0AAAAAAAAAAFB5lL0AAAAAAAAA4AGYxgEAAKC6bZe0puDPEyU1P+t1U9LLklIltZU0pozXPSZpm6RfJR2WlCfpAUmXXOD8HyX9T9LvkupL6iqplyTvs847I+nDgvNzJDWW1F/MSwzbOrrpqA7MOyBJuvLxKxXUNqjE66Zpavtj25V9MlsNOjdQ+/vbl+m6Z5LP6Mj/jij9p3Sd/vm0zFxTVz9/tfxD/c8599iXx3Tq21NK/yldmUczFdguUB0f63je67pyXEpak6RjXxxTbkau6jWpp6YRTdWgY4PyfeEAANQiZsFmF3bKUhwjewEAAGpKHUnfnef4QeUXvWeXrqVJkrRFUraky0o5d6+kpZL8JQ2Q1F7Sp5LeO+s8l6T4gpzXSeon6bSk+ZKOlzMfUMMMH0PHt5z7H2rq7lRln8yWUcco1/XS9qcp+eNk5WXmqW7Duhc998j/jujENyfkG+Ir73oXf5j3z9uv5A+TFXpDqFqMbCHDy9Du13YrdW9qufIBAACcjZG9AAAANaWtpF2S7lTJYvc7SQ0lZZTzeldIekKSn6RNkpIvcu46SZdLGlfs3n6SPpN0vf4oi3cpv0S+W1LhoMSOkv4j6RNJw8qZEahBl1x1iY5vO64Wo1rI8P6j2D3+5XHVb15fOek55bpeSJcQXfqfS+Xt761DHxzSL0m/XPDcNtFt5NvAV4aXoW+f+vaC56UfSNfxL4+r2d3N1Oj2/OHyl914mb596lv9svIXdZreqVwZAQAAimNkLwAAQE3ppPxC90CxY7nKL1ivqsD16im/sC3NUeVP3dBNJUvm7gUfdxU7tkv5Uzx0KHasvvIL390FeQGbuvS6S5V7Olendp0qOubKden4tuMKvT603NerE1BH3v5lG3LvF+Inw6v0kcPHvzoueUlhvcKKjnn5eCns5jCl709X1omscucEAKA2ME3TdrsdUfYCAADUlAaSmqrkVA77JGUpvwiuLoUjfs+eczeoYE8+69yGOvddYmPlz9/LVA6wMb9QPwW0CtDxL//4D/XUd6eUdyZPl153qYXJ/pDxS4bqXl5XdeqW/CXLgJYBRa8DAABUFGUvAABATbpKfyx8Jkk7lL9gW9AFP6Py0go+Bp7ntYBirxeee6HzdNa5gA2FXh+qk9tPypXtkiQd23JMQVcEybeBr8XJ8mWnZMsn2Oec44XHslOyazoSAADwIJS9AAAANamj8qdC2KP8Eb17VLEpHMqjcOqF8/02eh39UTwXnnuh83TWuYANXdr9UrlyXDq546TyMvN0ascphV5X/ikcqosrxyWvOud+G+blk3+ssKQGAAAlmTbc7IgF2gAAAGpSfUmtlD+VQ44kU9KV1XzPwnd8eed5LVeSz1nnXug8nXUuYEM+gT4K6hCkY1uOyZXlkukyFXJtiNWxinj5eMmVe26h68rJP+bly3gcAABQcbyTAAAAqGlXSdoraZukNpLqVvP9CqdlON8UDOkqOW1D4EXOk84/xQNgM6HXh+rUd6d0ZMMRNejUQHXq2WeMi2+wr3JSzh0iX3jMN9ge000AAAD3RNkLAABQ09pLMiT9quqfwkGSwgs+HjrreGrBHn7WuYclnT3w8Fflj+q1xxpXwEWFdA2R4WUo/UC6Qq+3zxQOklSvWT2dOXJGuWdySxxPP5Be9DoAADiXaZq22+2IshcAAKCm+UkaJKm3pCtq4H5hkkIlfaWSJe62go/Fp5G4UtJpST8UO3Za0i5J7cQkYHAL3v7eajmmpZrc1USXdLnE6jglhHQLkVzS0U+PFh1z5bj0+6bfFdAqQH4hfhamAwAA7o636wAAAFa4ugqukSlpS8Gfkwo+finJv2C/vti5/SQtkbRIUidJRwvOvUbSZcXOu1JSE0lrJP0uqZ6krcoviW+tgsxADbms52Wln1SK3IxcJa9PliSl7cuf3+TI+iPyruetOvXqKLzPH8PiU/ekKnVPav7npeXKle3Sr2t/lSQFtQtSULsgSVJgq0CFXBuipIQk5aTmyD/MX79//ruyjmep1YRWlc4MAABqN8peAAAAd3VG0idnHfui4GOwSpa9V0gaIWmDpHeVv1DczZJuOevzvSSNkbRO+UVyrqRGkiKUPzoYqEVyM3L1a+KvJY4dXndYkuR7qW+JsjflhxT99vZvf5yYpqLPbTy4cVHZK0ltJrdRUmKSjm0+ptzTuarXpJ6uuO+KEucAAICSzILNLuyUpTjKXgAAgOrWtWAvzYPlvO4lkv5WjvM7FOylqStpSMEOuIGwnmEK6xlW6nnX/POacl3XP9RfN8y+oUznNh3SVE2HNC3TuV4+Xmp+d3M1v7t5ufIAAACUhjl7AQAAAAAAAMADMLIXAADAbjIk5V3kdS/lT8MAoEJy03PlynNd8HXDy5BPoE8NJgIAAKUxTVOmaZ+pE+yUpTjKXgAAALtZJunni7werPJP+QCgyO43dittT9oFX/e91LfcUz4AAADYAWUvAACA3dyu/MXXLoQBh0ClNB/eXHkZFx4+7+XDbHcAAMA9UfYCAADYTSOrAwCeLaBFgNURAABAOZkFm13YKUtx/MgaAAAAAAAAADwAI3sBAADczfeSPpV0QlInSRHFXpun/AXeplXh/eZL+k3SZZL6SWpZhdcGbOb41uP6be1vOnP0jEK7h6r1pNZFr+18Yady03PV5dkuVXa/Xf/apfSf0lW3UV01G9ZMwe2Dq+zaAACg9qHsBQAAcCfZkhIlBUi6TVLjCl5nn6Sdkn6VdExSkC686NvNko5I+lzSakkPVfCegM3lZeVp/7z98gnyUbOoZgpoWf7pHvKy8vT7pt918puTyvgtQ3mZefIP81dYrzBdfsvlMryMEuc3GtBIGb9m6PC6w9o/d7+ueYGF4QAAOB/TNGWa9pk6wU5ZiqPsBQAAcCe/S8qV1EPS9ZW4znfKL3sbSgos5dzWBXuupPXKHzlcrxL3BmzqzOEzcmW71LB/Q4X3Ca/QNbKOZengkoMKbh+shv0ayruut059f0oH4w4q/UC62kxuU+L8Bh0bqEHHBjJzTSWtTlJueq7qBPBtGgAAqBjeRQAAANSUeZIaSIqsxDVyCj5Wdn2pvpLukuQtKU7S0TJ8TuE9s0XZC9vZ+cJO+YX6qc2kNqWffAGuLJckySfIp8LX8AnyUee/dVa9xn88JJffcrn2z9uv3zf9riaDmsj/cv9zPy84/555WXmUvQAAoMJYoA0AAMCdVOS3xfZJek7SSkl5BceClF/0lkfhb5/b8zfWYLHk5GS5XC6rY1RKRX4d89TOU/ryz19q76y9MvNM+QT6lCh6C4V0DZGUP3r4vIyKZwAAoLYwbbTZFWUvAACAOyl8X2lc9Kw/7Ja0RFJHSUNV/oK3OMpeXMCxY8fUtGlTXXXVVUpISHDf0rfgv23DKNsDdvLbk9r9n90K6RaiNtFtZHhf+POyU7MlSXUCzz9q1yhqe8seFwAA4GyUvQAAAO4kreDjub8Ffq5dkpZJ6iJpiCr/zs+v4GN6Ja8Dj5Oenq7c3Fz98MMPioqKctvSN/tUfiHrXa/0n4qc+OqE9ryxR5fdeJlaT2x9zsJrxblyXUr+KFl+oX4KaHH+OVgK75lzKue8rwMAAJQFk0EBAABUhzxJmWcdcxUcP33W8boqvYg9I+mkpC+UX7o2LuX87yStlnStpDtV9pHAF9NE+SODP5XUX1Kw/iiAq0BSUpISExOr7oKoMcePH5f0xxQEhaVveHi4nnnmGcXExFTp/Vy5LuWdyStxzMwzZeaaykkrWZbWqV/nokWsJOVm5CrzaKYOf3hY3nW9FdDy4pNiH9tyTPvn7lfYLWFqMapFqSOBD8Yf1JlDZ3TF/VdccPRvQMsAGXUM/fbOb2o2vJn8Qvzk7V+ZofgAAHgWU6atpjuy61QOlL0AAADV4RdJC85zPEnS92cde0DSJaVcb6mkn5Vfro7QxUvWU5ISJF0paUAZspZVoPKngkiQ9IbyRwxXZrG5s3z00Ud67LHHqu6CqDFnj+At/EYsOTlZL730UpWXvWn70vTDiz+cczx9f7qOf3m8xLGrn79a/qEXHwq/+/XdStuTJu+63mr353YXLVmzjmVp3+x9uvTaS9VydMtSsx56/5COfnpUTSKa6JLOF37QfRv4qk10G+2bvU87ntqh0BtDK7XYHAAAqJ0oewEAAKpDuKRxZx1bJylA0o1nHb/4IMJ8/SUdlbRB+SN275Pke4FzA5RfzO6V9JtKHwVcVqclvS0pTPlfw+VVdN0CEydO1MSJE6v2oqgRBw8eVMuW+cWnYRgyTVOtWrXSs88+q5EjR1b5/eo3ra8OD3Uocezn5T/LJ9hHjW5vVOK4b/CFHpQ/NB/eXBm/Zui3tb9p35x9uvrvV8vb7/yFr0+wj3wb+OrUd6eUfjD9gtMySNLRTUf1y6pfFHZLmJoManLRDDlpOTqw8IDqNaqnhrc3VL2m5y7yBgAAUBrKXgAAgOpQV1Lrs475K7+IPft4WTTWH6XtGkm/Smp1gXPrSBqt/JHFiyVNVH5BW1m/KH9qitsltaiC68EjtWzZsqjk9faunmkI6tSvo+Arg0sc867nLZ9gn3OOl0VAi4D80taQDsw7oPQD6QrucP7rePl46Yr7rtAPL/6gH1/5UVc+eqXqNT63mD2x/YQOLDigkGtC1HJM6SOA0/amKS8jT81HNFfQFUHl/hoAAPB0ZsFmF3bKUhwLtAEAALiTwv7p7PmAz+Yvaayk+pIWSjpRBffOKvhID4WzNGrUSBMnTtTixYu1Z88ejRkzptqK3urkF5I/P0puRu5Fz6tTr47aP9hePoE++uHfPyjzaMkHMnVPqvbO2qugdkFqE92m1DmDJRXNQewbUvpIZAAAgAthZC8AAIA7KeyMyjKQoL6k8ZLmKr/wnaQ/itpkSbsL/nxC+UXuhoK/h0u64jzXK7xnVSz2Bo/i6+uruXPnWh2j8srxfPkE+qjDQx2085879cO/f1DHxzvK9xJfZR3P0u7/7JZhGArpFqLj20rOIVyvST3Vb1r/nOsVjQ7i+QIAAJVA2QsAAOBOCn8v6+IDD/8QpJKF70Tll8CHJX1y1rmFf++i85e9hffkd8PgoQpH4LpyXKWcmc/3Et8She+Vj12pzN8zi0bpHow7eM7nNB7c+LxlryvbVSIDAAAoyTTNokVg7cBOWYqj7AUAAKgpVbH2WGDBx52Smih/DmC/Uu4RIumRs451LdjLIlNSuqQflF/0nttTAZbr+FjHSl/D95L8KRRObDuhwFaB8gn2kbf/H9NRnO8e/mH+6vZSt6K/B7cP1g2zbyjzPXMzcpWTmqOTX5+U4W3IJ9CnEl8BAACo7Sh7AQAA3EmIpI7KL3v3KH8UbmQ133OJpJ8L/nyjeAcJj+V/mb9Crg3RiW0ndPLbkwq9MVRtJrWp1nvufn230vakSZIa3t5QXj4MnQcAABXHW3UAAAB3c7ek/pJOSapbA/e7XflTOIQofyQx4MHaTW2nrBNZyjqWpToB1f/tUosRLeTKdskvzE++wSzOBgDAhZgFm13YKUtxlL0AAADuKLhgrwmNaug+gE34hfjJL8Sv9BOrQP3mzIsCAACqDr8jBAAAAAAAAAAegJG9AAAAAAAAAGzNNE2Zpn2mTrBTluIY2QsAAAAAAAAAHoCRvQAAAJ7ie0mfSjohqZOkiGKvnZT0mvIXdGspaZBqZnE3wIMc33pcv639TWeOnlFo91C1ntS66LXMY5n6Zvo3qlO/joI7BKvluJaqU49vtwAAQM3i3QcAAIAnyJaUKClA0m2SGp/1en1Jd0k6LOlLSZdK6lOD+QA3l5eVp/3z9ssnyEfNopopoGVAidd9An3UakIrnf75tI6sPyL/y/3VNKKpRWkBAPA8ZsFmF3bKUhxlLwAAgCf4XVKupB6Srj/P676Suhbs+yQl11w0wBOcOXxGrmyXGvZvqPA+4ee87u3nrbCeYVJPKWVnijKSMixICQAAajvm7AUAAPAEOQUfAy561h/nZFdjFsADubJckiSfIJ9Sz/UJ8lFeZl51RwIAADgHI3sBAAA8QXl+i8wo5/kAyrfitmHfFboBAHBXpmna6n9f7ZSlOEb2AgAAeILC95pGGc6l7AXKr+CZMYzSHzLDMHjGAACAJSh7AQAAPEFawUf/MpzrJym9GrMAHij7VP7cJ971vEs917uut3JScko9DwAAoKpR9gIAALizM5IOSfpC+SVu4zJ8TgtJJyRtkZQiialFgQvKzchV+sF0Hf7wsLzreiugZekTYwe1C1Lm0Uwlr09W1oksuXJdNZAUAADPZtpwsyPm7AUAALCLXOWXt8XV18V/PL9U0s/KL3pHFHwszfWSkiS9V7DfI6llecMC7seV61Lu6dwSx3wCfWR4XXhqht2v71banjR51/VWuz+3k7d/6SN7w28LV9qBNB2MP6iD8QfV4ZEOCm4fXOn8AAAApaHsBQAAsIskSQvOOvaApEsu8jn9JR2VtEHSakn3SfIt5T7fSNol6TpJrSWFVyAr4IbS9qXphxd/KHHs6uevln/ohec/aT68uTJ+zdBva3/Tvjn7dPXfr5a338UL3983/a4T207o8j6Xq8GVDVS/af0qyQ8AAFAayl4AAAC7CJc07qxjpf3GeGP9MXXDGkm/SmpVyufsltRA0oBy5gPcXP2m9dXhoQ4ljvkGX/ynIwEtAhTQIkAypAPzDij9QLqCO1x8lO7Jb0/KL9RPLUczZB4AgKpimqZM0z5TJ9gpS3GUvQAAAHZRV/kjbSuisHvKLMO5WZKCKngfwI3VqV9HwVdWbDoFv5D8OVJyM3JLOVPKO5Mn30tKG2IPAABQ9VigDQAAwBMUTjlalgEGZrHzAZRNOZ4x0zR5xgAAgCUY2QsAAOAJCn+EX/qgw/xzGHQIlEvhIm6uHFep57pyXGVayA0AAJSdWbDZhZ2yFMfIXgAAAE8QWPBxp6Tjyp+qoTiXpHRJP0k6IqZxAMqpcFqGE9tOKPNIpvIy80q8brpMZadkK+XHFJ357Yx8G/ATFQAAUPMY2QsAAOAJQiR1VH7Zu0dSF0mRxV5PkfRqwZ/9JF1bo+kAt+d/mb9Crg3RiW0ndPLbkwq9MVRtJrUpej3rRJa+eeIbSZJ3XW9d3vtyi5ICAIDajLIXAADAU9wtqb+kU8pf7K24AEnjJflLukyST40mAzxCu6ntlHUiS1nHslQnoOS3Ur7BvurwcAd51/VWvcb15OXDL1ECAFCVTNPMnxffJuyUpTjKXgAAAE8SXLCfzUdSqxrOAnggvxA/+YX4nXPcy8dLwR3O9/ABAADUHH7cDAAAAAAAAAAegJG9AAAAAAAAAGzNLNjswk5ZimNkLwAAAAAAAAB4AEb2AgAAVNYxqwPYDP8eqGJnDp+xOoKt8O8BAAAuhLIXAACgggIDA/P/kGBtDrsq+vcBKqjwv6F9s/dZnMSeeMYAALWJaZoyTftMnWCnLMVR9gIAAFRQ27ZttWfPHqWlpVkdxXYCAwPVtm1bq2PAzfGMXRjPGAAAOB/KXgAAgEqgbJFSU1MVGBgowzCsjgIPxDMGAABQdizQBgAAgEoZMGCAhg8fbttfZQMAAID7M2242RFlLwAAACrlkUce0cqVK/WPf/zD6igAAABArUbZCwAAgEqJiIjQ008/rf/7v//T2rVrrY4DAAAA1FrM2QsAAIBKe+qpp/TNN99ozJgx+vLLL3XFFVdYHQkAAAAexDRNW00bZqcsxTGyFwAAAJXm5eWlhQsXqnHjxhoyZIhSUlKsjgQAAADUOpS9AAAAqBJBQUFKTExUcnKyxo0bJ5fLZXUkAAAAoFah7AUAAECVadeuneLj47V27Vo988wzVscBAACAhzBtuNkRZS8AAACK7Nq1S4MGDVJmZmaFrzFgwAD9/e9/17PPPquEhIQqTAcAAADgYih7AQAALLJ+/XqtWLHC6hgl+Pj46J133tHKlSsrdZ0nnnhCw4YN0/jx4/X9999XUToAAAAAF2OYdl06DgAAwIO99957GjRokIKCgnTy5Emr45TQt29fZWdn67PPPqvUddLT03XjjTcqIyNDW7du1SWXXFJFCQEAAFBbpKamKjg4WB//8LECAgOsjlMkPS1dfTv0VUpKioKCgqyOU4SRvQAAADVszpw5GjRokG0XMHM4HNq4caN27txZqesEBAQoMTFRJ06c0KhRo5SXl1dFCQEAAACcD2UvAABADTFNU08//bSio6OLit4zZ85YnOpcERERCgsL06xZsyp9rVatWmn58uX68MMP9eSTT1ZBOgAAAAAXQtkLAABQA/Ly8jR58mQ9++yzJY5nZWUpIyPDolTn5+vrq4kTJ2rhwoVVku22227Tv/71L/3zn//UsmXLqiAhAAAAaiPTRptdUfYCAADUgKSkJC1YsECGYZzz2u+//25BooubMmWKTp06peXLl1fJ9R588EGNGTNGEydO1Lffflsl1wQAAABQEmUvAABADWjRooW+//573X///fL29pakouL32LFjVkY7r9atW6tfv35yOp1Vcj3DMBQbG6sOHTooIiLCll8zAAAA4O4oewEAAGpIhw4dNHHiROXl5em+++7TddddJ0lF5a/dTJ06VZs3b9aOHTuq5Hp169bV6tWrdfr0aY0YMUK5ublVcl0AAAB4PtM0bbfbEWUvAABADXI6nQoPD9dLL72kzZs3KzU1VVdffbXVsc5r8ODBCg8Pr7LRvZLUrFkzrVixQhs2bNCjjz5aZdcFAAAA7OzNN99U586dFRQUpKCgIPXo0UPvvfde0euZmZmaNm2aLr30UgUEBCgqKkpHjhwp930oewEAAGpIenq6Fi9erOjoaPn4+EiSAgMDLU51YT4+Ppo8ebIWL16s06dPV9l1b7nlFr3yyit65ZVXtHDhwiq7LgAAAGBXTZo00fPPP6+vvvpK27ZtU58+fTRkyBDt3LlTUv4aF2+//XbRwIhDhw5p6NCh5b6PYdp1zDEAAICHmT17tmJiYvTTTz+pefPmVscpk59//lktW7ZUbGysJk+eXGXXNU1TkydPVnx8vDZu3Khrr722yq4NAAAAz5Gamqrg4GB9uOtD1Q+sb3WcIqfTTqvflf2UlJSkoKCgouN+fn7y8/Mr0zVCQkL0r3/9S8OGDdNll12m+Ph4DRs2TJL0448/qkOHDvriiy90ww03lDkXI3sBAABqiNPp1J133uk2Ra8kNW/eXHfccUeVTuUg5S/Y9sYbb6hLly6KjIys0K+oAQAAAFZr2rSpgoODi/YZM2aU+jl5eXlaunSpTp8+rR49euirr75STk6ObrvttqJz2rdvr2bNmumLL74oVx7KXgAAgBrw9ddfa9u2bXI4HFZHKTeHw6GtW7dq+/btVXpdf39/JSQkKDc3V8OGDVN2dnaVXh8AAACobklJSUpJSSnap0+ffsFzv/vuOwUEBMjPz09Tp07V6tWrdeWVVyo5OVm+vr5q0KBBifMvv/xyJScnlysPZS8AAEANcDqdaty4sQYMGGB1lHIbOHCgGjduXOWjeyWpcePGWrVqlbZs2aIHH3ywyq8PAAAAz2Capu12SUULrhXuF5vC4YorrtA333yjLVu26E9/+pPuuece7dq1q0r/nSh7AQAAqllaWpri4+MVHR2tOnXqWB2n3OrUqaPJkycrLi5OaWlpVX79G2+8Uf/973/1xhtvaPbs2VV+fQAAAMAOfH191aZNG3Xr1k0zZsxQly5d9Oqrryo8PFzZ2dk6depUifOPHDmi8PDwct2DshcAAKCaxcfHKyMjQ9HR0VZHqbDo6GhlZGRoyZIl1XL9KVOmaOrUqfrzn/9c7nnJAAAAAHfkcrmUlZWlbt26ycfHRx9//HHRa7t379Yvv/yiHj16lOuahlk45hgAAABVzjRNdevWTU2aNNFbb71ldZxKGTx4sA4dOqSvvvqqWq6fnZ2tPn36aP/+/frqq6/UqFGjarkPAAAA3EdqaqqCg4P1wc4PVD+wvtVxipxOO63bO96ulJQUBQUFlXr+9OnTdeedd6pZs2ZFv/n3z3/+Ux988IH69eunP/3pT3r33Xc1f/58BQUF6b777pMkff755+XKxcheAACAarRt2zZt377dLRdmO5vD4ShaaK46+Pr6auXKlfL29tbQoUOVlZVVLfcBAAAAatrRo0c1fvx4XXHFFerbt6+2bt1aVPRK0ssvv6xBgwYpKipKvXr1Unh4uBISEsp9H0b2AgAAVKPo6Gh9+OGHOnDggLy9va2OUyl5eXlq2bKlbr/9dsXGxlbbfbZu3aqbb75ZY8aM0ezZs2UYRrXdCwAAAPbmKSN7awojewEAAKpJSkqKlixZoujoaLcveiXJ29tb0dHRWrJkiVJTU6vtPt27d5fT6dTcuXP15ptvVtt9AAAA4D5M07TdbkeUvQAAANUkLi5OWVlZmjx5stVRqszkyZOVmZmpuLi4ar3PPffcowceeEAPPPCAPv3002q9FwAAAOApKHsBAACqgWmacjqdGjx4sEctNNa4cWMNGjRIM2fOrPbRDP/617908803a9iwYUpKSqrWewEAAACegLIXAACgGmzZskU7duzwiIXZzuZwOLRjxw5t2bKlWu/j4+OjZcuWqV69eoqMjNSZM2eq9X4AAACwL9OGmx1R9gIAAFSDmTNnqkWLFurfv7/VUapc//791aJFCzmdzmq/12WXXabVq1dr165diomJse3caAAAAIAdUPYCAABUsZMnT2rZsmWKiYmRl5fnvd3y9vbWlClTtGzZMp06dara79e1a1fNmTNHixcv1iuvvFLt9wMAAADcled99wEAAGCxRYsWKTc3VxMnTrQ6SrWZNGmScnJytGjRohq536hRo/Too4/qkUce0UcffVQj9wQAAIB9mKZpu92OKHsBAACqUOHCbBEREQoPD7c6TrUJDw/XkCFD5HQ6a+yN7owZM3TbbbdpxIgR+umnn2rkngAAAIA7oewFAACoQps2bdKuXbs8cmG2szkcDu3cuVOff/55jdzP29tbS5YsUYMGDRQREaHTp0/XyH0BAAAAd0HZCwAAUIWcTqdat26tPn36WB2l2vXt21etWrWqkYXaCoWEhGjNmjXav3+/Jk2aZNtfnwMAAEDVMm242RFlLwAAQBU5fvy4VqxY4bELs53Ny8tLMTExWr58uU6cOFFj9+3UqZMWLlyo5cuX64UXXqix+wIAAAB25/nfhQAAANSQhQsXyuVyacKECVZHqTETJ06Uy+XSwoULa/S+Q4cO1V//+ldNnz5d77//fo3eGwAAALAryl4AAIAqULgw29ChQxUWFmZ1nBoTFhamyMjIGl2ordAzzzyjgQMHauTIkdq7d2+N3hsAAAA1yzRN2+12RNkLAABQBT799FPt3r27VizMdjaHw6Eff/xRn332WY3e18vLS4sXL1Z4eLiGDBmitLS0Gr0/AAAAYDeUvQAAAFXA6XSqXbt26t27t9VRatytt96qtm3b1uhCbYWCg4OVmJioX3/9VePHj5fL5arxDAAAAIBdUPYCAABU0rFjx7Rq1SrFxMTIMAyr49Q4wzAUExOjlStX6tixYzV+//bt2ysuLk6JiYl67rnnavz+AAAAqH6mDTc7ouwFAACopPnz50uS7rnnHmuDWKhwUboFCxZYcv/Bgwfr2Wef1dNPP6233nrLkgwAAACA1Sh7AQAAKsE0Tc2aNUvDhg1TaGio1XEsExoaqqioKEsWaiv05JNPaujQoRo7dqx++OEHSzIAAAAAVqLsBQAAqIRPPvlEe/furZULs53N4XBo7969+uSTTyy5v5eXl+bPn69mzZppyJAhOnXqlCU5AAAAUPVM07TdbkeUvQAAAJXgdDrVoUMH3XzzzVZHsVyvXr3Uvn17SxZqKxQYGKjExET9/vvvGjNmjPLy8izLAgAAANQ0yl4AAIAKOnLkiBISEmrtwmxnMwxDDodDq1ev1tGjRy3L0aZNGy1dulTvv/++nnrqKctyAAAAADWNshcAAKCC5s2bpzp16mj8+PFWR7GN8ePHy8vLS/PmzbM0x+23364ZM2boH//4h1asWGFpFgAAAFSeacPNjih7AQAAKsDlcik2NlbDhw9XSEiI1XFsIyQkRMOHD9esWbPkcrkszfLoo49qxIgRmjBhgnbs2GFpFgAAAKAmUPYCAABUwEcffaQDBw6wMNt5OBwOHThwQB9//LGlOQzD0Jw5c9S2bVtFREToxIkTluYBAAAAqhtlLwAAQAU4nU516tRJPXr0sDqK7dx4443q2LGjpQu1Fapfv74SExOVmpqqkSNHKjc31+pIAAAAqADTNG232xFlLwAAQDkdPnxYa9askcPhYGG28yhcqG3NmjVKTk62Oo5atGih5cuXa/369Zo+fbrVcQAAAIBqQ9kLAABQTnPnzpWvr6/Gjh1rdRTbGjdunHx8fDR37lyro0iS+vTpo5deekkvvvii4uPjrY4DAAAAVAvKXgAAgHLIy8tTbGysRo4cqQYNGlgdx7YaNGigESNGKDY21vKF2grdf//9Gj9+vCZPnqyvv/7a6jgAAAAoB9OGmx1R9gIAAJTDunXr9PPPP7MwWxk4HA4dPHhQ69atszqKpPzpJWbOnKlOnTopIiJCR48etToSAAAAUKUoewEAAMrB6XSqS5cuuu6666yOYnvXX3+9OnfubIuF2grVrVtXCQkJysrK0vDhw5WTk2N1JAAAAKDKUPYCAACU0W+//aa1a9eyMFsZFS7U9vbbb+vQoUNWxynStGlTrVy5Ups2bdLDDz9sdRwAAACUgWmattvtiLIXAACgjObMmSN/f3+NGTPG6ihuY8yYMfLz89OcOXOsjlLCzTffrNdee03/+c9/NG/ePKvjAAAAAFWCshcAAKAM8vLyNHv2bI0aNUpBQUFWx3EbwcHBGjVqlGJjY5WXl2d1nBKmTp2q6OhoTZ06VVu2bLE6DgAAAFBplL0AAABl8N577ykpKYmF2SrA4XAoKSlJ7733ntVRSjAMQ6+//rq6deumoUOHKjk52epIAAAAuADThpsdUfYCAACUgdPp1DXXXKNrr73W6ihu59prr1XXrl1ttVBbIT8/P61atUqmaSoqKkrZ2dlWRwIAAAAqjLIXAACgFL/88oveffddRvVWUOFCbe+++66SkpKsjnOOhg0bKiEhQdu2bdN9991ndRwAAACgwih7AQAASjF79mzVr19fo0aNsjqK2xo9erTq1aun2bNnWx3lvG644Qa9+eabmjVrli1HIAMAANR2pmnabrcjyl4AAICLyM3N1Zw5czRmzBgFBgZaHcdtBQYGasyYMZo9e7Zyc3OtjnNekyZN0rRp03Tfffdp48aNVscBAAAAyo2yFwAA4CLWrl2rQ4cOMYVDFXA4HDp06JDeeecdq6Nc0Msvv6wePXpo2LBh+vXXX62OAwAAAJQLZS8AAMBFOJ1OXXfddbr66qutjuL2unbtqu7du9t6mgQfHx+tWLFCPj4+Gjp0qDIzM62OBAAAgAKmjTa7ouwFAAC4gIMHD+qDDz5gVG8Vcjgcev/993Xw4EGro1xQWFiYEhMT9d1332nq1Km2nY8NAAAAOBtlLwAAwAXExsYqMDBQI0aMsDqKxxg5cqQCAwNtu1BboW7duik2NlYLFizQ66+/bnUcAAAAoEwoewEAAM4jJydHc+fO1bhx41S/fn2r43iM+vXra+zYsZozZ45ycnKsjnNRY8eO1UMPPaQHH3xQ//vf/6yOAwAAUKuZMmWaNtptOpUDZS8AAMB5vPXWW0pOTmYKh2rgcDiUnJyst99+2+oopfrnP/+p3r176+6779bPP/9sdRwAAADgoih7AQAAzsPpdKpHjx666qqrrI7icTp37qwbbrjB1gu1FapTp46WLVumgIAARUREKCMjw+pIAAAAwAVR9gIAAJxl//79+vDDDxnVW40cDofWrVunAwcOWB2lVJdeeqkSExO1Z88eRUdHs2AbAACABUwbbnZE2QsAAHCW2NhYNWjQQMOHD7c6iscaPny4goODFRsba3WUMunSpYvmzZunJUuW6KWXXrI6DgAAAHBelL0AAADFZGdna968eRo/frzq1q1rdRyPVa9ePY0fP15z585Vdna21XHKZPjw4XriiSf0+OOPa926dVbHAQAAAM5B2QsAAFBMYmKijh49yhQONcDhcOjo0aNKTEy0OkqZPffcc7r99ts1cuRI7d+/3+o4AAAAtYZpmrbb7YiyFwAAoBin06mbbrpJV155pdVRPF7Hjh3Vs2dPt1iorZC3t7fi4+MVGhqqiIgIpaenWx0JAAAAKELZCwAAUGDPnj1av349o3prkMPh0Pr167V3716ro5RZgwYNlJiYqIMHD2rChAm2HdUBAACA2oeyFwAAoMCsWbMUEhKiYcOGWR2l1hg2bJguueQSzZo1y+oo5XLllVdq0aJFWrVqlf7xj39YHQcAAMDjmTbc7IiyFwAAQFJmZqbmz5+vCRMmyN/f3+o4tUbdunU1YcIEzZ8/X1lZWVbHKZeIiAg9/fTT+r//+z+tXbvW6jgAAAAAZS8AAIAkJSQk6Pjx44qJibE6Sq0TExOjY8eOKSEhweoo5fbUU09p8ODBGjNmjHbv3m11HAAAANRyhskkYwAAALrlllvk5eWlTz75xOootVLv3r0lSf/73/8szVERqampuv7662WaprZs2aLg4GCrIwEAAHiM1NRUBQcHa8m2JaoXUM/qOEUy0jM06tpRSklJUVBQkNVxijCyFwAA1Ho//PCDPv30UxZms5DD4dCGDRv0448/Wh2l3IKCgrRmzRodPnxY48aNk8vlsjoSAAAAainKXgAAUOvNmjVLoaGhioyMtDpKrTV06FCFhoa63UJthdq1a6clS5Zo7dq1euaZZ6yOAwAAgFqKshcAANRqZ86c0YIFCzRx4kT5+flZHafW8vPz04QJE7RgwQJlZmZaHadCBgwYoL///e969tlntXr1aqvjAAAAeBTThpsdUfYCAIBabeXKlTp58iQLs9lATEyMTpw4oZUrV1odpcKeeOIJDRs2TOPHj9fOnTutjgMAAIBahrIXAADUak6nU3379lWbNm2sjlLrtW3bVn369JHT6bQ6SoUZhqF58+apZcuWioiI0MmTJ62OBAAAgFqEshcAANRaO3fu1KZNm1iYzUYcDoc2btzo1qNiAwIClJiYqOPHj2vUqFHKy8uzOhIAAIDbM03TdrsdUfYCAIBay+l0KiwsTEOGDLE6CgpEREQoLCzMbRdqK9SqVSstW7ZMH374oZ588kmr4wAAAKCWoOwFAAC1UkZGhhYuXKhJkybJ19fX6jgo4Ovrq4kTJ2rhwoU6c+aM1XEqpV+/fnrhhRf0z3/+U8uWLbM6DgAAAGoByl4AAFArLV++XCkpKZoyZYrVUXCWKVOm6NSpU1q+fLnVUSrtoYce0ujRozVx4kR9++23VscBAABwW6YNNzui7AUAALWS0+lU//791apVK6uj4CytW7dWv379NHPmTKujVJphGIqNjVX79u0VERGhY8eOWR0JAAAAHoyyFwAA1DrffvutNm/ezMJsNuZwOLR582bt2LHD6iiVVq9ePSUmJur06dMaMWKEcnNzrY4EAAAAD0XZCwAAah2n06nw8HANHjzY6ii4gLvuukvh4eFyOp1WR6kSzZo104oVK7RhwwY99thjVscBAABwO6Zp2m63I8peAABQq6Snp2vx4sWKjo6Wj4+P1XFwAT4+Ppo8ebIWL16s06dPWx2nStxyyy165ZVX9PLLL2vhwoVWxwEAAIAHouwFAAC1ytKlS5Wenq7o6Giro6AUU6ZMUVpampYuXWp1lCozbdo0TZw4UTExMdq2bZvVcQAAAOBhKHsBAECt4nQ6deedd6p58+ZWR0EpmjdvrjvuuMNjpnKQ8hdse+ONN9SlSxdFRkbqyJEjVkcCAABwC6YNNzui7AUAALXG119/rW3btrEwmxtxOBzaunWrtm/fbnWUKuPv76+EhATl5ORo2LBhys7OtjoSAAAAPARlLwAAqDWcTqcaN26sAQMGWB0FZTRw4EA1btzYo0b3SlLjxo21atUqbdmyRQ8++KDVcQAAAOAhKHsBAECtkJaWpvj4eEVHR6tOnTpWx0EZ1alTR5MnT1ZcXJzS0tKsjlOlevbsqddff11vvPGGZs+ebXUcAAAAWzNN03a7HVH2AgCAWiE+Pl4ZGRkszOaGoqOjlZGRoSVLllgdpcrFxMRo6tSpmjZtmr744gur4wAAAMDNUfYCAACPZ5qmnE6nBg4cqCZNmlgdB+XUtGlTDRgwwOOmcij06quvqnv37oqKitKhQ4esjgMAAAA3RtkLAAA83rZt27R9+3YWZnNjDoejaIE9T+Pr66uVK1fKy8tLUVFRysrKsjoSAACA7Zg23OyIshcAAHg8p9OpZs2a6Y477rA6CirozjvvVNOmTT12dG94eLhWr16t7du3689//rNt54ADAACAvVH2AgAAj5aSkqIlS5YoOjpa3t7eVsdBBXl7eys6OlpLlixRamqq1XGqRffu3TVz5kzNnTtXb775ptVxAAAA4IYoewEAgEeLi4tTVlaWJk+ebHUUVNLkyZOVmZmpuLg4q6NUmwkTJuj+++/XAw88oE8//dTqOAAAALZhmqbtdjui7AUAAB6rcGG2wYMHq1GjRlbHQSU1btxYgwYN0syZM2375roqvPjii7rppps0bNgwJSUlWR0HAAAAboSyFwAAeKwtW7Zox44dLMzmQRwOh3bs2KEtW7ZYHaXa+Pj4aPny5apXr54iIyN15swZqyMBAADATVD2AgAAjzVz5ky1aNFC/fv3tzoKqkj//v3VvHlzj12ordBll12m1atXa9euXYqJifHokcwAAABlYdpwsyPKXgAA4JFOnjypZcuWacqUKfLy4i2Pp/D29taUKVO0bNkynTp1yuo41apr166aM2eOFi9erFdffdXqOAAAAHADfOcDAAA80qJFi5Sbm6tJkyZZHQVVbNKkScrJydGiRYusjlLtRo0apUcffVSPPPKIPv74Y6vjAAAAwOYoewEAgMcpXJgtIiJC4eHhVsdBFWvYsKGGDBkip9NZK6Y3mDFjhvr27avhw4frp59+sjoOAACAJUzTtN1uR5S9AADA42zatEm7du1iYTYP5nA4tHPnTn3++edWR6l23t7eWrJkiRo0aKCIiAidPn3a6kgAAACwKcpeAADgcZxOp1q3bq0+ffpYHQXVpG/fvmrVqpXHL9RWKCQkRImJidq/f78mTZpk25EkAAAAsBZlLwAA8CjHjx/XihUrFBMTw8JsHszLy0sxMTFavny5Tpw4YXWcGnHVVVdpwYIFWr58uV544QWr4wAAANQo04abHfEdEAAA8CgLFy6Uy+XShAkTrI6CajZx4kS5XC4tXLjQ6ig1JioqSk8++aSmT5+u999/3+o4AAAAKKMZM2aoe/fuCgwMVFhYmCIiIrR79+4S5/Tu3VuGYZTYp06dWq77UPYCAACPUbgw29ChQxUWFmZ1HFSzsLAwRUZG1pqF2go9++yzGjhwoEaNGqW9e/daHQcAAABlsGHDBk2bNk2bN2/Whx9+qJycHPXv3/+c9RimTJmiw4cPF+3l/Y2uOlUZGgAAwEqffvqpdu/erTfffNPqKKghDodDffv21WeffaZevXpZHadGeHl5afHixbr++usVERGhzZs3KzAw0OpYAAAA1co0TVv9gL+8Wc7+raz58+crLCxMX331VYn3sfXq1VN4eHiFczGyFwAAeAyn06l27dqpd+/eVkdBDbn11lvVtm3bWrNQW6Hg4GAlJiYqKSlJ48ePl8vlsjoSAABArZSamlpiz8rKKtPnpaSkSMpfiLe4uLg4hYaGqlOnTpo+fboyMjLKlYeyFwAAeIRjx45p1apViomJkWEYVsdBDTEMQzExMVq5cqWOHTtmdZwa1b59e8XFxSkxMVHPPfec1XEAAABqpaZNmyo4OLhonzFjRqmf43K59Je//EU9e/ZUp06dio6PHj1aixcv1ieffKLp06dr0aJFGjt2bLnyMI0DAADwCPPnz5ck3XPPPdYGQY2bMGGCnnzySS1YsEAPP/yw1XFq1ODBg/Xss8/qqaee0tVXX6277rrL6kgAAADVwizY7KIwS1JSkoKCgoqO+/n5lfq506ZN0/fff6+NGzeWOB4TE1P056uuukoNGzZU3759tX//frVu3bpMuRjZCwAA3J5pmpo1a5aGDRum0NBQq+OghoWGhioqKqrWLdRW6Mknn1RkZKTGjh2rH374weo4AAAAtUpQUFCJvbSy995779XatWv1ySefqEmTJhc99/rrr5ck7du3r8x5KHsBAIDb++STT7R37145HA6ro8AiDodDe/fu1SeffGJ1lBrn5eWlBQsWqGnTphoyZIhOnTpldSQAAACcxTRN3XvvvVq9erXWr1+vli1blvo533zzjSSpYcOGZb4PZS8AAHB7TqdTHTp00M0332x1FFikV69eat++fa1bqK1QYGCg1qxZo99//11jxoxRXl6e1ZEAAACqlplfmNplL++MEtOmTdPixYsVHx+vwMBAJScnKzk5WWfOnJEk7d+/X//v//0/ffXVVzp48KDeeustjR8/Xr169VLnzp3LfB/KXgAA4NaOHDmihIQEFmar5QoXalu9erWOHj1qdRxLtGnTRkuXLtX777+vp59+2uo4AAAAKObNN99USkqKevfurYYNGxbty5YtkyT5+vrqo48+Uv/+/dW+fXs9/PDDioqK0ttvv12u+7BAGwAAcGvz5s1TnTp1NH78eKujwGL33HOPpk+frnnz5unxxx+3Oo4lbr/9ds2YMUOPP/64rr76ag0bNszqSAAAAJBKXVuiadOm2rBhQ6Xvw8heAADgtlwul2JjYzV8+HCFhIRYHQcWCwkJ0fDhwzVr1iy5XC6r41jm0Ucf1YgRIzRhwgR99913VscBAACoEqYNNzui7AUAAG7ro48+0oEDB1iYDUUcDocOHDigjz/+2OooljEMQ3PmzFGbNm00ZMgQnThxwupIAAAAqCGUvQAAwG05nU516tRJPXr0sDoKbOLGG29Ux44da+1CbYXq16+vxMREpaamauTIkcrNzbU6EgAAAGoAZS8AAHBLhw8f1po1a+RwOFiYDUUMw5DD4dCaNWuUnJxsdRxLtWjRQsuWLdP69es1ffp0q+MAAABUimmattvtiLIXAAC4pblz58rX11djx461OgpsZty4cfLx8dHcuXOtjmK5vn376sUXX9SLL76o+Ph4q+MAAACgmlH2AgAAt5OXl6fY2FiNHDlSDRo0sDoObKZBgwYaMWKEYmNja/VCbYUeeOABjRs3TpMnT9bXX39tdRwAAABUI8peAADgdtatW6eff/6ZhdlwQQ6HQwcPHtS6deusjmI5wzCK5reOjIzU77//bnUkAACAcjNtuNkRZS8AAHA7TqdTXbp00XXXXWd1FNjU9ddfr86dO9f6hdoK1a1bVwkJCcrMzNTw4cOVk5NjdSQAAABUA8peAADgVn777TetXbuWhdlwUYULtb399ts6dOiQ1XFsoWnTplq5cqU2btyohx9+2Oo4AAAAqAaUvQAAwK3MmTNH/v7+GjNmjNVRYHNjxoyRn5+f5syZY3UU27j55pv12muv6T//+Y/mzZtndRwAAIAyM03TdrsdUfYCAAC3kZeXp9mzZ2vUqFEKCgqyOg5sLjg4WKNGjVJsbKzy8vKsjmMbU6dOVXR0tKZOnaotW7ZYHQcAAABViLIXAAC4jffee09JSUkszIYyczgcSkpK0nvvvWd1FNswDEOvv/66rrnmGg0dOlTJyclWRwIAAEAVoewFAABuw+l06pprrtG1115rdRS4iWuvvVZdu3Zlobaz+Pn5adWqVTJNU1FRUcrOzrY6EgAAwEWZNtzsiLIXAAC4hV9++UXvvvsuo3pRLoULtb377rtKSkqyOo6tNGrUSAkJCdq2bZvuv/9+q+MAAACgClD2AgAAtzB79mzVq1dPo0aNsjoK3Mzo0aNVr149zZ492+ootnPDDTfozTfflNPpZPQzAACAB6DsBQAAtpebm6s5c+Zo7NixCgwMtDoO3ExgYKBGjx6t2bNnKzc31+o4tjNp0iRNmzZN9913nzZt2mR1HAAAgPMyTdN2ux1R9gIAANtbu3atDh06xBQOqLCpU6fq0KFDeuedd6yOYksvv/yyevTooaioKP36669WxwEAAEAFUfYCAADbczqduu6663T11VdbHQVuqmvXrurevTtTFVyAj4+PVqxYIR8fHw0dOlSZmZlWRwIAAEAFUPYCAABbO3jwoD744ANG9aLSHA6H3n//fR08eNDqKLYUFhamxMREfffdd5o6daptfzURAADUTqYNNzui7AUAALYWGxurwMBAjRgxwuoocHMjR45UYGAgC7VdRLdu3TRr1iwtWLBAr7/+utVxAAAAUE6UvQAAwLZycnI0d+5cjRs3TvXr17c6Dtxc/fr1NXbsWM2ZM0c5OTlWx7GtcePG6cEHH9SDDz6o//3vf1bHAQAAQDlQ9gIAANt66623lJyczBQOqDIOh0PJycl6++23rY5iay+88IJ69+6tu+++Wz///LPVcQAAAGSapu12O6LsBQAAtuV0OtWjRw9dddVVVkeBh+jcubNuuOEGFmorRZ06dbRs2TIFBAQoMjJSGRkZVkcCAABAGVD2AgAAW9q/f78+/PBDRvWiyjkcDq1bt04HDhywOoqtXXrppUpMTNTu3bs1ZcoU245eAQAAwB8oewEAgC3FxsaqQYMGGj58uNVR4GGGDx+u4OBgxcbGWh3F9rp06aJ58+YpPj5eL730ktVxAABALWbacLMjyl4AAGA72dnZmjdvnsaPH6+6detaHQcepl69eho/frzmzp2r7Oxsq+PY3vDhw/XEE0/o8ccf17p166yOAwAAgIug7AUAALaTmJioo0ePMoUDqo3D4dDRo0e1Zs0aq6O4heeee079+/fXyJEjtX//fqvjAAAA4AIoewEAgO04nU7ddNNNuvLKK62OAg/VsWNH9ezZUzNnzrQ6ilvw9vZWfHy8Lr30UkVERCg9Pd3qSAAAoJYxTdN2ux1R9gIAAFvZs2eP1q9fz6heVDuHw6H169dr7969VkdxC5dccokSExN18OBBTZgwwbbf4AAAANRmlL0AAMBWZs2apZCQEA0bNszqKPBww4YN0yWXXKJZs2ZZHcVtdOzYUYsWLdKqVas0Y8YMq+MAAADgLJS9AADANjIzMzV//nxNmDBB/v7+VseBh6tbt67uuecezZ8/X1lZWVbHcRsRERF6+umn9de//lXvvPOO1XEAAEAtYdpwsyPKXgAAYBsJCQk6fvy4YmJirI6CWiImJkbHjh1TQkKC1VHcylNPPaXBgwdr9OjR2r17t9VxAAAAUICyFwAA2IbT6VTv3r11xRVXWB0FtUSHDh10yy23yOl0Wh3FrXh5eWnRokVq1KiRIiIilJqaanUkAAAAiLIXAADYxA8//KBPP/2UhdlQ4xwOhzZs2KAff/zR6ihuJSgoSGvWrNGhQ4c0duxYuVwuqyMBAAAPZpqm7XY7ouwFAAC2MGvWLIWGhioyMtLqKKhlhg4dqtDQUBZqq4B27dopPj5ea9eu1TPPPGN1HAAAgFqPshcAAFjuzJkzWrBggSZOnCg/Pz+r46CW8fPz04QJE7RgwQJlZmZaHcftDBw4UM8995yeffZZrV692uo4AAAAtRplLwAAsNzKlSt18uRJFmaDZWJiYnTixAmtXLnS6ihuafr06Ro2bJjGjx+vnTt3Wh0HAAB4INOGmx1R9gIAAMs5nU717dtXbdq0sToKaqm2bduqT58+LNRWQYZhaN68eWrZsqUiIiJ08uRJqyMBAADUSpS9AADAUjt37tSmTZtYmA2Wczgc2rhxIyNTKyggIECJiYk6fvy4Ro8erby8PKsjAQAA1DqUvQAAwFJOp1NhYWEaMmSI1VFQy0VERCgsLIyF2iqhVatWWrZsmdatW6e//vWvVscBAAAexDRN2+12RNkLAAAsk5GRoYULF2rSpEny9fW1Og5qOV9fX02cOFELFy7UmTNnrI7jtvr166cXXnhBzz//vJYtW2Z1HAAAgFqFshcAAFhm+fLlSklJ0ZQpU6yOAkiSpkyZolOnTmn58uVWR3FrDz30kEaPHq2JEyfq22+/tToOAABArUHZCwAALON0OtW/f3+1atXK6iiAJKl169bq16+fZs6caXUUt2YYhmJjY9W+fXtFRETo2LFjVkcCAABuzrThZkeUvQAAwBLffvutNm/ezMJssB2Hw6HNmzdrx44dVkdxa/Xq1dPq1auVnp6uESNGKDc31+pIAAAAHo+yFwAAWMLpdCo8PFyDBw+2OgpQwl133aXw8HA5nU6ro7i95s2ba8WKFdqwYYMee+wxq+MAAAB4PMpeAABQ49LT07V48WJFR0fLx8fH6jhACT4+Ppo0aZIWL16s06dPWx3H7fXu3VuvvPKKXn75ZS1atMjqOAAAwE2Zpmm73Y4oewEAQI1bunSp0tPTFR0dbXUU4LymTJmitLQ0LV261OooHmHatGmaOHGipkyZom3btlkdBwAAwGNR9gIAgBrndDp15513qnnz5lZHAc6rRYsWuv3225nKoYoYhqE33nhDXbp0UWRkpI4cOWJ1JAAAAI9E2QsAAGrU119/rW3btrEwG2xv6tSp2rp1q7Zv3251FI/g7++vhIQE5eTk6O6771Z2drbVkQAAgBsxbbjZEWUvAACoUU6nU40bN9aAAQOsjgJc1MCBA9W4cWNG91ahxo0ba9WqVdq8ebMefPBBq+MAAAB4HMpeAABQY9LS0hQfH6/o6GjVqVPH6jjARdWpU0eTJ09WXFyc0tLSrI7jMXr27KnXX39db7zxhmbPnm11HAAAAI9C2QsAAGpMfHy8MjIyWJgNbiM6OloZGRlasmSJ1VE8SkxMjBwOh6ZNm6YvvvjC6jgAAMBNmKZpm92uKHsBAECNME1TTqdTAwcOVJMmTayOA5RJ06ZNNWDAAKZyqAavvfaaunfvrqioKB06dMjqOAAAAB6BshcAANSIbdu2afv27SzMBrfjcDiKFhZE1fH19dXKlSvl5eWlqKgoZWVlWR0JAADA7VH2AgCAGuF0OtWsWTPdcccdVkcByuXOO+9U06ZNGd1bDcLDw7V69Wpt375d06ZNs/WvRAIAAGuZNtzsiLIXAABUu5SUFC1ZskTR0dHy9va2Og5QLt7e3oqOjtaSJUuUmppqdRyP0717d82cOVNz5szRzJkzrY4DAADg1ih7AQBAtYuLi1NWVpYmT55sdRSgQiZPnqzMzEzFxcVZHcUjTZgwQffff7/uv/9+ffrpp1bHAQAAcFuUvQAAoFoVLsw2ePBgNWrUyOo4QIU0btxYgwYNktPpZKqBavLiiy/qpptu0rBhw5SUlGR1HAAAYDOmadputyPKXgAAUK22bNmiHTt2sDAb3J7D4dC3336rLVu2WB3FI/n4+Gj58uWqW7euIiMjdebMGasjAQAAuB3KXgAAUK2cTqdatGih/v37Wx0FqJT+/furefPmLNRWjS677DIlJiZq165diomJse2IGQAAALui7AUAANXm5MmTWrp0qaZMmSIvL952wL15e3trypQpWrZsmU6dOmV1HI/VtWtXzZkzR4sXL9arr75qdRwAAGATpg03O+K7LgAAUG0WLVqk3NxcTZo0yeooQJWYNGmScnJytGjRIqujeLRRo0bp0Ucf1SOPPKKPP/7Y6jgAAABug7IXAABUi8KF2SIiIhQeHm51HKBKNGzYUHfddRcLtdWAGTNmqG/fvhoxYoR++uknq+MAAAC4BcpeAABQLTZt2qRdu3axMBs8jsPh0M6dO/X5559bHcWjeXt7a8mSJQoODlZkZKROnz5tdSQAAGAh0zRtt9sRZS8AAKgWTqdTrVu3Vp8+fayOAlSp2267Ta1atWKhthoQEhKixMRE7du3T5MnT7btN1UAAAB2QdkLAACq3PHjx7VixQrFxMSwMBs8jpeXl2JiYrR8+XKdOHHC6jge76qrrtKCBQu0bNkyvfDCC1bHAQAAsDW++wIAAFVu4cKFcrlcmjBhgtVRgGoxceJEuVwuLVy40OootUJUVJSefPJJTZ8+Xe+//77VcQAAgAVMG252RNkLAACqVOHCbEOHDlVYWJjVcYBqERYWpsjISBZqq0HPPPOMBgwYoFGjRmnv3r1WxwEAALAlyl4AAFClPv30U+3evZuF2eDxHA6HfvzxR3322WdWR6kVvL29FRcXp7CwMEVERCgtLc3qSAAAALZD2QsAAKqU0+lUu3bt1Lt3b6ujANXq1ltvVdu2bVmorQYFBwdrzZo1SkpK0vjx4+VyuayOBAAAaohpmrbb7aiO1QEAAIDnOHbsmFatWqV//OMfMgzD6jg1Yu/evYwwPI/AwEC1bdvW6hjVyjAMxcTE6Mknn9Srr76q0NBQqyPVCu3bt1dcXJzuuusu/f3vf9f//d//WR0JAADANih7AQBAlZk/f74k6Z577rE2SA3Zu3ev2rVrZ3UM29qzZ4/HF74TJkzQk08+qQULFujhhx+2Ok6tMXjwYD377LN66qmn1KVLF911111WRwIAALAFyl4AAFAlTNPUrFmzNGzYsFozwrFwRK8RZUi140sum2OSucqsFSOeQ0NDFRUVJafTqYceeqjWjGi3gyeffFLbt2/X2LFjtWXLFnXo0MHqSAAAoBqZBZtd2ClLcZS9AACgSnzyySfau3evZs+ebXWUmhcqGY0o+QrZ9Y1vdXE4HFqyZIk++eQT9enTx+o4tYaXl5cWLFigG264QUOGDNGXX36pBg0aWB0LAADAUizQBgAAqoTT6VSHDh108803Wx0FqFG9evVS+/btWajNAoGBgVqzZo1+//13jRkzRnl5eVZHAgAAsBRlLwAAqLQjR44oISFBMTEx/Bo7ap3ChdpWr16to0ePWh2n1mnTpo2WLFmi9957T08//bTVcQAAQDUxTdN2ux1R9gIAgEqbN2+e6tSpo/Hjx1sdBbDEPffcIy8vL82bN8/qKLXSHXfcoRkzZujvf/+7Vq5caXUcAAAAy1D2AgCASnG5XIqNjdXw4cMVEhJidRzAEiEhIbr77rs1a9YsuVwuq+PUSo899phGjBihCRMm6LvvvrM6DgAAgCVYoA0AAFTKRx99pAMHDmjRokVWR7Etc7spMzH/17yMSYaM5iWnujBNU+a/TSlVUjvJa0zZfx5vppoy3zel/ZJMSS0k4w5DRshZ9/jSlPmTKf0mKUXS1ZJX5PnvY54xZX5oSj9IypHUWDJuN1iErhQOh0OLFy/Wxx9/rH79+lkdp9YxDENz5sxRz549FRERoa1bt/IDKAAAPIhZsNmFnbIUx8heAABQKU6nU506dVKPHj2sjmJ/dSTzu/O8KTyo/KK3nD+GN7NMmfNN6aBk3GzI6G1IyZI5z5SZUfI+5iZT+knSZbroO0DTZcqMM6XvJOM6Q0Y/QzotmfNNmcft+YbWLnr27Kkrr7yShdosVL9+fSUmJiolJUUjR45Ubm6u1ZEAAABqFGUvAACosMOHD2vNmjVyOBwszFYWbSXtlMy8s4rY70ypkaSAcl5vq6TjkjHGkHGTIeNGQ8Y4Q0qXzM9L3sOYaMh43JDXOK+Ll8q7JCVJRoQh41ZDxvWGjImGZEjmJ5S9F2MYhqZOnao1a9YoOTnZ6ji1VosWLbRs2TKtX79e06dPtzoOAABAjaLsBQAAFTZ37lz5+vpq7NixVkdxC8ZVhnRG0oE/jpm5prSr4LVyMneZ+VMsNP7jc43LDKmlpJ1n3buBUaZC3txl5pfOHYp9bn1D6ijpx4K8uKBx48bJx8dHc+fOtTpKrda3b1+9+OKLevHFFxUfH291HAAAUAVM07TdbkeUvQAAoELy8vIUGxurkSNHqkGDBlbHcQ8NJDU5ayqHfZIyJXUq36VMlykdUf6I4LM1lnQif5qHcjssqaFkeJUsho3GRv78vcfLf8napEGDBhoxYoRiY2NZqM1iDzzwgMaNG6fJkyfr66+/tjoOAABAjaDsBQAAFbJu3Tr9/PPPcjgcVkdxK8ZVRv4I2Zz8ItbcYeYvqhZUzpG9ZyTlSkbAuZ9nBBYcS6tAwHSdfzqJQFX8mrWMw+HQwYMHtW7dOquj1GqGYcjpdKpjx46KjIzU77//bnUkAACAakfZCwAAKsTpdKpLly667rrrrI7iXjopf4TsnoKRt3sqNoWDCtedOt/8u4XHciqQL6carlnLXH/99ercuTMLtdlA3bp1tXr1amVmZmr48OHKyeE/YAAA3JVpw82OKHsBAEC5/fbbb1q7di0Ls1WAUd+QWhWM6P1BkkvSlRW4UGH5mnue1wqP+VTguj7VcM1axjAMORwOvf322zp06JDVcWq9pk2bauXKldq4caMeeeQRq+MAAABUK8peAABQbnPmzJG/v7/GjBljdRS3ZHQ2pH2SudWU2kpG3QoU5nUl1ZHM9HNHFJhpBccCz3mpdAHKn8rhbIXTN1TkmrXQmDFj5Ofnpzlz5lgdBZJuvvlmvfbaa3rttdc0f/58q+MAAABUG8peAABQLnl5eZo9e7ZGjRqloKAgq+O4p/aSDEm/VnAKBxUsoBYm6XwDR3+TdIlk+FXg2uGSDhcsAFeM+ZuZP6r30vJfsjYKDg7WqFGjFBsbq7y8PKvjQNLUqVMVHR2tqVOn6ssvv7Q6DgAAKCfTNG232xFlLwAAKJf33ntPSUlJLMxWCYafIWOQIaO3IV1RietcaUi/FRSxBcxjpvSTpI4VvGZHI39k7w9/HDNPm9JOSVdIRh2m7Sgrh8OhpKQkvf/++1ZHgfKn13j99dfVtWtXDR06VMnJyVZHAgAAqHKUvQAAoFycTqeuueYaXXvttVZHcWvG1YaMWw0ZPpUoT6+TFCKZcabMjabML0yZC02pvmTcWPK65m5T5ob8XXmSjqjo72ZysVEJV0pqIpmJpsz/mTK/NGXONyVTMm6l6C2Pa6+9Vl27dtXMmTOtjoICfn5+WrVqlVwul6KiopSdnW11JAAAUEvMmDFD3bt3V2BgoMLCwhQREaHdu3eXOCczM1PTpk3TpZdeqoCAAEVFRenIkSPlug9lLwAAKLNffvlF7777LqN6bcLwM2RMMKTmkvmpKXO9KV0uGRON/IXgijF35b9uri8oew/rj78fLnZNL0PGWEPqJJlbTJnrTKmeZNxjyAil7C2PwoXa3n33XSUlJVkdBwUaNWqkhIQEbdu2Tffff7/VcQAAQBmZNtzKY8OGDZo2bZo2b96sDz/8UDk5Oerfv79Onz5ddM6DDz6ot99+WytWrNCGDRt06NAhDR06tFz3qVP6KQAAAPlmz56tevXqadSoUVZHcStGV0NG19KLUq8Hy/9zeCPYkDGiDNeO9JIiy3jNuoaMIYY0pNxxcJbRo0frkUce0ezZs/XMM89YHQcFbrjhBv33v//VlClT1LVrV36ABQAAKiw1NbXE3/38/OTn53fOeWdP7TV//nyFhYXpq6++Uq9evZSSkqI5c+YoPj5effr0kSTNmzdPHTp00ObNm3XDDTeUKQ8jewEAQJnk5uZqzpw5Gjt2rAIDA62OA7iFwMBAjR49WrNnz1Zubq7VcVBMdHS0/vznP+u+++7Tpk2brI4DAADcVNOmTRUcHFy0z5gxo0yfl5KSIkkKCQmRJH311VfKycnRbbfdVnRO+/bt1axZM33xxRdlzsPIXgAAUCZr167VoUOHGAFXA8yMgqkWLsRL50zTAPtyOByaNWuW3nnnHQ0ZwnBpO3nllVf0/fffKyoqSl999ZUaN25sdSQAAHABpmnKNMs3dUJ1KsySlJSkoKCgouPnG9V7NpfLpb/85S/q2bOnOnXqJElKTk6Wr6+vGjRoUOLcyy+/vFwLy1L2AgCAMnE6nbruuut09dVXWx3F45nLTOngRU5oIBkPUva6i8IFDZ1OJ2Wvzfj4+GjFihXq1q2bhg4dqg0bNsjf39/qWAAAwI0EBQWVKHvLYtq0afr++++1cePGKs9D2QsAAEp18OBBffDBB5o9e7bVUWoF43ZDOnORE3xqLAqqiMPhUExMjA4ePKgWLVpYHQfFhIWFKTExUTfddJP+9Kc/ae7cuTIMfpgCAACqx7333qu1a9fq008/VZMmTYqOh4eHKzs7W6dOnSoxuvfIkSMKDw8v8/WZsxcAAJQqNjZWgYGBGjFihNVRagWjkSGj9UX2ZhRR7mbkyJEKDAzkByY21a1bN82aNUvz58/X66+/bnUcAABwHqYNt3LlN03de++9Wr16tdavX6+WLVuWeL1bt27y8fHRxx9/XHRs9+7d+uWXX9SjR48y34eyFwAAXFROTo7mzp2rcePGqX79+lbHAdxSQECAxo4dqzlz5ignJ8fqODiPcePG6cEHH9SDDz6o//3vf1bHAQAAHmbatGlavHix4uPjFRgYqOTkZCUnJ+vMmfxf6QsODtbkyZP10EMP6ZNPPtFXX32liRMnqkePHrrhhhvKfB/KXgAAcFFvvfWWkpOTWZjNRszvTbnecMn1/1xyrXaVeM01zyXXf10X+MyKcc1zyfWcS65ZLpk/2WdRDHfjcDiUnJyst99+2+oouIAXXnhBt9xyi+6++279/PPPVscBAAAe5M0331RKSop69+6thg0bFu3Lli0rOufll1/WoEGDFBUVpV69eik8PFwJCQnlug9z9gIAgItyOp3q0aOHrrrqKqujQJKZbcpMNKX6knGbITUp/XPOdw1tl8zdpnREUrakEMnoZkjXSoZXyWkijF6GlCyZX5gyV5syHmIaiYro3LmzbrjhBjmdTg0dOtTqODiPOnXqaNmyZerevbsiIyO1ceNG1atXz+pYAABA+dMgmKZ9Bh6UN0tZzvf399d///tf/fe//61oLEb2AgCAC9u/f78+/PBDRvXaye+SciTjRkNGD0NG0woUrycl8z1TMpV/jf6GdIlkvlNQJJ/FaG3I6GnIuM6QUiQzwz5vst2Nw+HQunXrdODAAauj4AJCQ0OVmJio3bt3a8qUKbb6phIAAKA0lL0AAOCCYmNj1aBBAw0fPtzqKB7BNe/caRfKrXC614BKXCNAMv5syOseLxk3GTK6G/Ia6SV1lfStZB6/QLlVeM/sSty7lhs+fLiCg4MVGxtrdRRcRJcuXTRv3jzFx8fr3//+t9VxAAAAyoyyFwAAnFd2drbmzZun8ePHq27dulbHQaEKDDI095n5c+6ucMnMM2XUN2SEnTsi2OhQcOzYBS5U+CkMdKywevXqafz48Zo7d66ys2nN7Wz48OF64okn9Nhjj+nDDz+0Og4AALWeacPNjih7AQDAeSUmJuro0aNM4WA3he8pyzh7g7nblLnElK6UjChDhvdFPjGt4OOFpiil7K0SDodDR48e1Zo1a6yOglI899xz6t+/v0aMGMHUGwAAwC1Q9gIAgPNyOp266aabdOWVV1odBcUVFrL+pZ9q7jJlLjOlLpIRYZyz8FqJc3NNmZtN6RJJjS5wkl/Bx/Ry5MU5OnbsqJ49e2rmzJlWR0EpvL29FR8fr0svvVRDhgxRejr/8QMAAHuj7AUAAOfYs2eP1q9fz6jeSjDzTJmnS+7Kk5Src46brtKHyppnTJmHTJlfmPmla+NSzv/OlLnClLpJxuCLF72SZL5rSr9LxoCLjP5tIqmOZH5qyjxqysxiiG9FORwOrV+/Xnv37rU6CkpxySWXKDExUQcPHtSECRNYsA0AANgaZS8AADjHrFmzFBISomHDhlkdxX39IpkvmCV2JUn6/jzHU0q/nLnUlOk0pROSMdKQ4XeR8vakZK7Kn7rBa6CXDKOUonejKX0lGX0MGe0ufK4RaMgYakg/SeZ/zfyCGBUybNgwXXLJJZo1a5bVUVAGHTt21MKFC7Vq1SrNmDHD6jgAANROpmSapm12u05tVsfqAAAAwF4yMzM1f/58TZgwQf7+ZZgrAOcXLhnjSxan5gemFCAZPc8qVANKv5zR35COSub/TJkJpnS/ZPheoJgNLLjmXsn8zZTR+CLTN2w3ZX5kStdKxi2llMKnTZlvm9JlBV/D5aXnxvnVrVtX99xzj+bPn6/nnntOfn5+pX8SLBUZGamnnnpKf/3rX9WlSxcNHDjQ6kgAAADnYGQvAAAoISEhQcePH1dMTIzVUdyaUdeQ0brkrrqSAnXOccOn9NXWjMaGjK6GjN5G/ry9v17k5DqSMcaQQiRzcf6UC+dj/mjKfMuUOkjGwDKs+PaLpDOScYch4ypDRlgZV4nDecXExOjYsWNKSEiwOgrK6Omnn9bgwYM1evRo7d692+o4AAAA56DsBQAAJTidTvXu3VtXXHGF1VFwPsEFHzMvfprhb8gYZ0j1JXOhKfNEycLXPFgwp29zyYgqfU5fSVJWwcegcqfGeXTo0EG9evWS0+m0OgrKyMvLS4sWLVKjRo0UERGh1NRUqyMBAFBrmDbc7IiyFwAAFPnhhx/06aefsjCbnRV2smV4b2nUN/KnkvCWzAWmzNT8TzJPmTKXmJIhGVca0k7J/Nb8Y0++wMULDzOgt8o4HA5t2LBBP/74o9VRUEZBQUFas2aNDh06pHHjxsnlclkdCQAAoAhlLwAAKDJr1iyFhoYqMjLS6ii4kMJ3b7llO90IMmTcY0h5BSN8T5vSSeWPDM6RzHfy5wAusf9wgbI356wMqLSoqChdeumlLNTmZtq1a6f4+Hi9/fbbeuaZZ6yOAwAAUIQF2gAAgCTpzJkzWrBggaKjo1ksqpp4TayCljQw/4O505SaKH/BN78/htqe7x5GiCHjkWLDcVtKxjNlH55rZppSuvJLYG9J9SuYHefw8/PTxIkTNXfuXP3jH/9gUUQ3MnDgQD333HN68skndfXVV/NDMgAAqplpmjJN+0ydYKcsxTEuAwAASJJWrlypkydPsjCbzRkhhtRR0m7JfM2U+W71v8k0l5gy/2NKByTdIBl1mMehKsXExOjEiRNauXKl1VFQTtOnT9ewYcM0fvx47dy50+o4AAAAlL0AACCf0+lU37591aZNG6ujoBRew71kPGTImGTI6Fn9xatxuyFjsiHjUUNe/Xn7WNXatm2rPn36sFCbGzIMQ/PmzVOLFi0UERGhkydPWh0JAADUcrxbBwAA2rlzpzZt2sTCbG7ECDZkNDdkhNVA2dvIkNHMkBHAiN7q4nA4tHHjRkaHuqGAgAAlJibq+PHjGj16tPLy8qyOBACARzJtuNkRZS8AAJDT6VRYWJiGDBlidRSgVoqIiFBYWBgLtbmp1q1ba9myZVq3bp3++te/Wh0HAADUYpS9AADUchkZGVq4cKEmTZokX19fq+MAtZKvr68mTpyohQsX6syZM1bHQQX069dPL7zwgp5//nktX77c6jgAAKCWouwFAKCWW758uVJSUjRlyhSro6CSzO9Nud5wyfX/XHKtdpV87aQp199ccv3TJdcKl8wz9vy1s9psypQpOnXqFEWhG3vooYc0evRoTZw4Ud9++63VcQAA8CimadputyPKXgAAajmn06n+/furVatWVkdBJZjZpsxEU8qSjNsMGdeeNb9ufckYYkidJH0vmV/Y881pbda6dWv169ePhdrcmGEYio2N1RVXXKGIiAgdO3bM6kgAAKCWoewFAKAW27FjhzZv3szCbJ7gd0k5knGjIaOHIaNpybLX8DVkdDXkNdBLulRSsiUpUQqHw6EvvvhCO3bssDoKKqhevXpavXq10tPTNWLECOXm5lodCQAA1CKUvQAA1GJOp1Ph4eEaPHiw1VFQWTkFHwPKcG6ApKxqzIIKu+uuuxQeHs7oXjfXvHlzrVixQhs2bNBjjz1mdRwAADyCacPNjih7AQCopdLT07Vo0SJNnjxZPj4+VsdBZZXnvaZR+imwho+PjyZNmqTFixfr9OnTVsdBJfTu3Vsvv/yyXn75ZS1atMjqOAAAoJag7AUAoJZaunSp0tPTWZjNUxSWvWUtcu05EAHKX6gtLS1NS5cutToKKunee+/VhAkTNGXKFG3bts3qOAAAoBag7AUAoJZyOp2688471bx5c6ujoCqkFXz0L8O5/sXOh+20aNFCt99+O1M5eADDMPTmm2+qS5cuioyM1JEjR6yOBACA2zJN03a7HVH2AgBQC3399dfatm0bC7N5APOMKfOQKfMLU/KT1Lj0zzGaG9IJydxiykwxZebZ841qbeZwOLR161Zt377d6iioJH9/fyUkJCgnJ0d33323cnJySv8kAACACqLsBQCgFnI6nWrcuLEGDBhgdRQUY+aaMtPO2l0XL2LNpaZMpymdkIyRhgy/MszjcIOkjpL5rinz36b0S9XkR9UZNGiQGjVqxOheD9G4cWOtWrVKmzdv1oMPPmh1HAAA4MEoewEAqGXS0tIUHx+v6Oho1alTx+o4KC5JMl80S+xKufinGP0NGRGGVFcyE0yZ2WUYpbtd0k5J10nGaEMKr4rwqEp16tRRdHS04uLilJbGnBueoGfPnnr99df13//+V3PmzLE6DgAAbse04WZHlL0AANQy8fHxysjIUHR0tNVRcLZwyRhvlNgVcPFPMRobMroaMnob+fPw/lr6bczdpnSJ5DXQS8YVhoy6ZV3VDTUpOjpaGRkZWrJkidVRUEViYmLkcDj05z//WV988YXVcQAAgAei7AUAoBYxTVNOp1MDBw5UkyZNrI6Dsxh1DRmtz9p9yljEBhd8zCzDuVmSgioYEjWmadOmGjBgAFM5eJjXXntN3bt3V1RUlA4dOmR1HAAA4GEoewEAqEW2bdum7du3szCbJyrshMv622QM5nULDoejaEFFeAZfX1+tXLlSXl5eioqKUlZWltWRAABwC6Zp2m63I8peAABqEafTqWbNmumOO+6wOgqqWuG7utwynJsj3gW6iTvvvFNNmzZldK+HCQ8P1+rVq7V9+3ZNmzbNtt8sAgAA98PbfAAAaomUlBQtWbJE0dHR8vb2tjoOqlpg/gdzpynzuCkzq2R5ZLpMmemmzJ9M6egf58PevL29FR0drSVLlig1NdXqOKhC3bt318yZMzVnzhzNnDnT6jgAAMBDUPYCAFBLxMXFKSsrS5MnT7Y6CqqBEWJIHSXtlszXTJnvnjVSMEUy/2XKnG9K3pLRnXkc3MXkyZOVmZmpuLg4q6Ogik2YMEH333+/7r//fn322WdWxwEAwNZMG252VMfqAAAAoPoVLsw2ePBgNWrUyOo4qCZew71kppjSKUl1z3oxQDLuMSR/SZep7Au/wXKNGzfWoEGD5HQ6NXXqVBkG/7fzJC+++KJ27NihYcOGadu2bWratKnVkQAAgBtjZC8AALXAli1btGPHDhZmqwWMYENGc0NGWMlC0PAxZLQyZDQyKHrdkMPh0LfffqstW7ZYHQVVzMfHR8uXL5e/v78iIyN15swZqyMBAAA3RtkLAEAt4HQ61aJFC/Xv39/qKAAqoH///mrevDkLtXmoyy67TImJidq1a5diYmJYsA0AgPMwTdN2ux1R9gIA4OFOnjyppUuXasqUKfLy4n/6AXfk7e2tKVOmaNmyZTp16pTVcVANunbtqtmzZ2vx4sV69dVXrY4DAADcFN/xAQDg4RYtWqTc3FxNmjTJ6igAKmHSpEnKycnRokWLrI6CajJ69Gg98sgjeuSRR/Txxx9bHQcAALghFmgDAMCDFS7MFhERofDwcKvjeK5jsu1qvJY4ZnUAz9SwYUPdddddcjqduvfee1mozUM9//zz2rFjh0aMGKGtW7eqZcuWVkcCAMAWzILNLuyUpTjKXgAAPNimTZu0a9cufiW4mgQGBkqSzFX2fKNntcJ/H1Qdh8Oh22+/XZ9//rl69uxpdRxUA29vby1ZskTdu3dXZGSkNm3apPr161sdCwAAuAnKXgAAPJjT6VTr1q3Vp08fq6N4pLZt22rPnj1KS0uzOortBAYGqm3btlbH8Di33XabWrVqJafTSdnrwUJCQpSYmKgePXpo8uTJWrJkCSO5AQBAmVD2AgDgoY4fP64VK1bo2WefZWG2akShiZrk5eWlmJgYPf3003rllVcUEhJidSRUk6uuukoLFizQsGHD1LVrVz3++ONWRwIAwFKmaco07fMbdXbKUhzf+QEA4KEWLlwol8ulCRMmWB0FQBWaOHGiXC6XFi5caHUUVLOoqCg9+eSTmj59ut5//32r4wAAADdA2QsAgAcqXJht6NChCgsLszqOxzt58qQmT57MdBmoEWFhYYqMjJTT6bTtiBJUnWeeeUYDBgzQqFGjtHfvXqvjAAAAm6PsBQDAA3366afavXu3HA6H1VE82s8//6wHHnhADRs21Ny5c/XVV19ZHQm1hMPh0I8//qjPPvvM6iioZt7e3oqLi1NYWJgiIiKYIxwAUGuZNtzsiLIXAAAP5HQ61a5dO/Xu3dvqKB7p22+/1ahRo9SqVSv997//VVZWliQpMjLS4mSoLW699Va1bdtWTqfT6iioAcHBwVqzZo2SkpI0fvx4uVwuqyMBAACbouwFAMDDHDt2TKtWrVJMTAyrt/9/9u47PIpyfeP4PRvSgCTUEKqAoCgovQkIiiKKHEIooRtagjSPBY8c/Yl6UBSxISgh9B5qQFEEQVQQEAQERYpKUwSkJaRAys7vD0wkJpRAkpndfD977YWZmX3nDhdjJs+++7x5IDk5Wc2aNdOCBQvkdDqVlpaWsa9FixYWJkNBYhiGwsPDtXjxYp06dcrqOMgHNWrU0Ny5cxUTE6NXX33V6jgAAMCmKPYCAOBmZsyYIUl67LHHrA3ipry8vDRp0iR5enpmKaY3adLEolQoiNIXX5w5c6a1QZBv2rdvr1deeUUvvviiVqxYYXUcAADylWmatnvaEcVeAADciGmamjx5sjp37qxSpUpZHcdt9erVS//73/9kmqYcjku3U4ULF1aNGjUsToaCpFSpUurUqZMmT55s2182kPuef/55dezYUb169dLevXutjgMAAGyGYi8AAG7kiy++0IEDB1iYLY/t3r1b//vf/9ShQwc1btxYktSoUSN5eHhYnAwFTUREhPbv36/169dbHQX5xOFwaObMmapYsaI6dOigc+fOWR0JAADYCMVeAADcSGRkpO644w56x+ahM2fOKDg4WNWqVdPcuXO1fv16jRo1SiNGjLA6Ggqge++9VzVq1NCkSZOsjoJ85Ofnp+XLl+vkyZPq2bNnpt7hAAC4K9OGDzui2AsAgJs4ceKEli5dysJseSg1NVXdunVTbGysYmJiVKRIEXl5eemll17SI488YnU8FEDpC7UtW7ZMJ0+etDoO8lG1atU0f/58ffrppxo1apTVcQAAgE1Q7AUAwE1Mnz5dHh4e6tOnj9VR3NbIkSO1bt06RUdHq3LlylbHASRdWozR4XBo+vTpVkdBPmvbtq3GjBmjV199VYsXL7Y6DgAAsAGKvQAAuAGn06moqCiFhoaqRIkSVsdxS/PmzdO4ceM0btw4tW7d2uo4QIYSJUqoS5cumjx5spxOp9VxkM+effZZhYaGKiwsTLt377Y6DgAAecY0Tds97YhiLwAAbuDzzz/Xr7/+ysJseWT79u3q37+/evfurSeeeMLqOEAWERER+vXXX7V27VqroyCfGYahqVOnqlq1agoODtaZM2esjgQAACxEsRcAADcQGRmpWrVqqWnTplZHcTt//vmnOnbsqFq1aikyMpJ+yLClZs2a6c4771RkZKTVUWCBIkWKKCYmRrGxserWrZtSU1OtjgQAACxCsRcAABf3xx9/aPny5YqIiKAQmctSUlLUtWtXXbhwQUuXLpWvr6/VkYBsGYahQYMGafny5Tp+/LjVcWCBypUrKzo6WuvWrdN///tfq+MAAJDrTBs+7IhiLwAALm7atGny8vJSr169rI7idp555hlt2LBBixcvVsWKFa2OA1xV79695enpqWnTplkdBRZp3bq1xo0bpzfffFPz5s2zOg4AALAAxV4AAFxYWlqaoqKi1K1bNxUrVszqOG5l+vTpGj9+vMaPH68WLVpYHQe4pmLFiik0NFRRUVEs1FaAPfHEE+rdu7f69++v7du3Wx0HAADkM4q9AAC4sNWrV+vw4cMszJbLtmzZokGDBmnAgAEaNGiQ1XGA6xYREaFDhw5p9erVVkeBRQzDyOjj3rFjR/35559WRwIAINeYpmmbp11R7AUAwIVFRkaqdu3aatSokdVR3Mbx48cVEhKievXqacKECfRBhktp3Lix7r77bhZqK+B8fX21dOlSXbhwQV27dlVKSorVkQAAQD6h2AsAgIv6/fff9fHHH7MwWy5KTk5Wp06dZJqmlixZIm9vb6sjATliGIYiIiL00Ucf6dixY1bHgYUqVqyoxYsXa8OGDXrmmWesjgMAAPIJxV4AAFzU1KlT5ePjo549e1odxW0MHz5c27Zt09KlS1WuXDmr4wA3pGfPnvL29tbUqVOtjgKLtWjRIqP3+IwZM6yOAwDATTFt+LAjir0AALigtLQ0TZkyRd27d5e/v7/VcdxCZGSkIiMj9eGHH6pJkyZWxwFuWEBAgLp3766oqCilpaVZHQcWu7z/+Lfffmt1HAAAkMco9gIA4II+/fRTHT16lIXZcsnGjRs1bNgwDRkyRP369bM6DnDTIiIidPToUa1atcrqKLCYYRiaMGGC6tatq5CQEB0/ftzqSAAAIA9R7AUAwAVFRkaqXr16atCggdVRXN5vv/2mTp06qWnTpnrnnXesjgPkigYNGqhu3bqaNGmS1VFgA97e3lqyZImcTqc6d+6s5ORkqyMBAJBjpmna7mlHFHsBAHAxR44c0SeffMKs3lxw4cIFhYSEyNPTU4sWLZKnp6fVkYBckb5Q2yeffKKjR49aHQc2UK5cOS1dulRbt27V8OHDrY4DAADyCMVeAABczJQpU1S4cGF1797d6iguzTRNDRo0SLt371ZMTIwCAwOtjgTkqh49eqhw4cKaMmWK1VFgE02aNNEHH3yQ0aMcAAC4H4q9AAC4kNTUVE2dOlW9evWSn5+f1XFc2oQJEzRz5kxNnjxZ9evXtzoOkOv8/PzUo0cPTZkyRampqVbHgU30799fQ4YM0bBhw7Rx40ar4wAAcN1MGz7siGIvAAAu5OOPP9axY8do4XCT1q9fryeffFJPPvmkevfubXUcIM9ERETo2LFjWrlypdVRYCPvvPOOmjZtqk6dOun333+3Og4AAMhFFHsBAHAhkZGRatSokerUqWN1FJd1+PBhdenSRa1atdLYsWOtjgPkqfSFHPnIPi53eZ/ykJAQXbhwwepIAAAgl1DsBQDARRw6dEifffYZs3pvQmJiojp27KiiRYsqOjpahQoVsjoSkOcGDRqkVatW6dChQ1ZHgY0EBgYqJiZGu3bt0uOPP27bFcUBAEhnmqbtnnZEsRcAABcRFRUlPz8/hYaGWh3FJZmmqQEDBmjfvn2KiYlRyZIlrY4E5Itu3brJz8+PhdqQRf369TV58mTNmDFDEyZMsDoOAADIBRR7AQBwASkpKZo2bZp69+6tIkWKWB3HJb311luaP3++pk+frtq1a1sdB8g3RYoUUa9evTR16lSlpKRYHQc207t374we5uvXr7c6DgAAuEkUewEAcAErVqzQ8ePHaeFwg1avXq3//Oc/eu6559S1a1er4wD5LiIiQsePH9dHH31kdRTY0NixY9WqVSt16dJFhw8ftjoOAADZMm34sCOKvQAAuIDIyEg1bdpUd911l9VRXM4vv/yibt26qU2bNho9erTVcQBL3H333WrSpAkLtSFbhQoVUnR0tIoWLaqOHTsqMTHR6kgAAOAGUewFAMDmfvnlF61Zs4ZZvTcgPj5ewcHBKlmypObNmycPDw+rIwGWiYiI0OrVq/Xrr79aHQU2VLJkScXExGjfvn0aOHCgbRedAQAAV0exFwAAm4uKilKxYsVoP5BDpmkqLCxMhw4dUkxMjIoXL251JMBSXbt2VUBAgKKioqyOApuqXbu2pk+frnnz5untt9+2Og4AAJmYpmm7px1R7AUAwMaSk5M1ffp09enTR76+vlbHcSljxozRkiVLNHv2bNWsWdPqOIDlChcurD59+mjatGlKTk62Og5sqmvXrnruuef07LPPas2aNVbHAQAAOUSxFwAAG4uJidHJkydp4ZBDK1eu1AsvvKBRo0YpODjY6jiAbUREROjkyZNavny51VFgY6NHj1abNm0UGhpK2w8AAFyMYdp1zjEAAFDr1q2VnJysr7/+2uooLmPfvn1q1KiRWrVqpWXLlsnh4L1t4HLNmzeXt7e31q5da3UU2NjZs2fVqFEj+fj4aNOmTSpatKjVkQAABVRcXJwCAgIUFh0mr8JeVsfJkJyYrBmhMxQbGyt/f3+r42Tgtx8AAGxq//79WrduHbN6cyA2NlYdOnRQuXLlNHv2bAq9QDYiIiK0bt06HThwwOoosLHixYsrJiZGhw4dUlhYmG37EgIAgMz4DQgAAJuaPHmySpQooc6dO1sdxSU4nU717t1bf/zxh5YvX26rd9cBO+ncubOKFy+uyZMnWx0FNlezZk3Nnj1bS5Ys0ZgxY6yOAwAArgPFXgAAbOjChQuaMWOGHnvsMfn4+FgdxyW8/PLL+vjjjzVv3jzddtttVscBbMvX11ePPfaYZsyYoYsXL1odBzYXHBysUaNG6YUXXtDKlSutjgMAKMBM07Td044o9gIAYENLly7V6dOnaeFwnZYtW6ZXXnlFo0ePVrt27ayOA9heeHi4Tp06paVLl1odBS7gxRdfVPv27dWjRw/t27fP6jgAAOAqWKANAAAbatmypRwOh7744guro9jejz/+qCZNmqht27ZauHChDMOwOhLgElq2bCnDMLR+/Xqro8AFxMXFqXHjxpKkLVu20CoHAJBv0hdoe2zBY7ZboG1mt5ks0AYAAK7up59+0ldffcWs3utw9uxZBQcHq0qVKpo+fTqFXiAHBg0apC+//FJ79+61OgpcgL+/v5YvX65jx46pd+/ecjqdVkcCABQwpg0fdkSxFwAAm5k8ebJKlSqljh07Wh3F1tLS0tSjRw+dPn1aMTExKlq0qNWRAJcSEhKiUqVKsVAbrtttt92mefPm6aOPPtIrr7xidRwAAFzKV199pfbt26tcuXIyDEMxMTGZ9oeFhckwjEzPtm3b5vg8FHsBALCRpKQkzZw5U3379pW3t7fVcWzt+eef1+rVqxUdHa2qVataHQdwOd7e3goLC9PMmTN14cIFq+PARbRr106jR4/Wyy+/rGXLllkdBwAAl5GQkKDatWtr4sSJVzymbdu2+uOPPzKe8+fPz/F5Ct1MSAAAkLsWL16ss2fPKjw83OoothYdHa033nhD48aN04MPPmh1HMBlhYeHa9y4cVq8eLF69epldRy4iJEjR2rHjh3q06ePNm/erJo1a1odCQBQAJimKTstPZbTLA8//LAefvjhqx7j7e2toKCgm4nFzF4AAOwkMjJSrVu3VrVq1ayOYlvff/+9+vbtqx49euipp56yOg7g0qpXr677779fkZGRVkeBCzEMQ9OnT1eVKlUUHByss2fPWh0JAADLxMXFZXpevHjxhsdav369AgMDdfvtt+vxxx/X6dOnczwGxV4AAGzixx9/1MaNG1mY7SpOnTql4OBg1ahRQ1FRUSzIBuSCiIgIbdiwQT/++KPVUeBCihYtqpiYGJ0+fVo9evRQWlqa1ZEAALBExYoVFRAQkPEcM2bMDY3Ttm1bzZo1S2vXrtUbb7yhL7/8Ug8//HCOf8bSxgEAAJuIjIxUYGCgOnToYHUUW0pNTVVoaKgSEhL05ZdfqnDhwlZHAtxCcHCwAgMDNXnyZL333ntWx4ELqVq1qqKjo9W2bVu98MILN/zLLQAA18P862EX6VmOHj0qf3//jO03uvZKt27dMv77rrvu0t13361bb71V69evV+vWra97HGb2AgBgA4mJiZo1a5b69esnLy8vq+PY0rPPPqsvv/xSixYtUqVKlayOA7gNLy8v9e3bV7NmzVJSUpLVceBiHnzwQY0dO1avv/66Fi5caHUcAADynb+/f6Znbi20XbVqVZUqVUo///xzjl5HsRcAABtYuHChYmNjNXDgQKuj2NKsWbP0zjvv6N1331XLli2tjgO4nYEDB+rcuXMU63BDnnrqKfXo0UN9+/bV999/b3UcAADcwm+//abTp0+rbNmyOXodxV4AAGwgMjJSbdq0UdWqVa2OYjvbtm1TeHi4+vbtqyFDhlgdB3BLt956qx588EEWasMNMQxDUVFRuv322xUcHHxDi8kAAHAtpmna7pkT8fHx2rlzp3bu3ClJOnjwoHbu3KkjR44oPj5eI0aM0ObNm3Xo0CGtXbtWHTp0ULVq1fTQQw/l6DwUewEAsNiuXbu0efNmFmbLxokTJ9SxY0fVrl1bH3zwAQuyAXkoIiJCmzZt0q5du6yOAhdUuHBhLVu2TPHx8eratatSU1OtjgQAgK1s27ZNdevWVd26dSVd+mRM3bp19eKLL8rDw0O7du3Sv/71L912223q37+/6tevr6+//jrHbSEMM6dlaAAAkKuGDBmipUuX6siRI/L09LQ6jm0kJyerdevWOnDggL777juVL1/e6kiAW0tJSVGlSpUUEhKiiRMnWh0HLmr9+vV64IEHNHz4cL399ttWxwEAuIG4uDgFBASo57ye8ipsn/VNkhOTNbfHXMXGxmZaoM1qzOwFAMBC8fHxmj17tvr370+h9x+efPJJbdmyRUuWLKHQC+QDT09P9evXT3PmzFFCQoLVceCiWrVqpXfffVfvvPOOZs+ebXUcAIAbMW34sCOKvQAAWGjBggWKj49nYbZ/mDJlij744ANNmDBBzZo1szoOUGAMHDhQ58+f14IFC6yOAhc2ZMgQ9e3bVwMHDtS2bdusjgMAQIFCsRcAAAtFRkbq4Ycf1i233GJ1FNvYtGmThgwZokGDBik8PNzqOECBUrlyZbVt25aF2nBTDMPQBx98oNq1a6tjx446ceKE1ZEAACgwKPYCAGCR7du3a9u2bSzMdpljx46pU6dOatiwod577z2r4wAFUkREhLZu3aodO3ZYHQUuzMfHR0uXLlVKSoq6dOmilJQUqyMBAFycaZq2e9oRxV4AACwSGRmp8uXL65FHHrE6ii1cvHhRnTp1ksPh0OLFi+XlZZ/FF4CCpF27dipfvjyze3HTypcvryVLlmjz5s168sknrY4DAECBQLEXAAALnD9/XvPmzdOAAQNUqFAhq+NYzjRNDR48WDt27NCyZcsUFBRkdSSgwCpUqJD69++vuXPn6vz581bHgYtr1qyZJkyYoIkTJ2rq1KlWxwEAwO1R7AUAwALz5s1TYmKiBgwYYHUUW/jwww81bdo0TZo0SQ0bNrQ6DlDgDRgwQImJiZo/f77VUeAGwsPDFRERocGDB2vTpk1WxwEAuCjThg87otgLAEA+M01TkZGRateunSpUqGB1HMt99dVXeuKJJzR8+HCFhYVZHQeApIoVK+qRRx6hlQNyzfjx49WwYUN16tRJx44dszoOAABui2IvAAD5bNu2bdqxYwcLs0k6evSoOnfurBYtWmjcuHFWxwFwmYiIiIyFJIGb5eXlpcWLF8vhcKhTp066ePGi1ZEAAHBLFHsBAMhnkZGRqlSpktq2bWt1FEslJSWpY8eOKly4sKKjo+Xp6Wl1JACXefjhh1WxYkVm9yLXBAUFadmyZdqxY4eGDBli21XMAQD2ZJqm7Z52RLEXAIB8FBsbq/nz52vAgAHy8PCwOo5lTNNUeHi49uzZo2XLlql06dJWRwLwDx4eHhowYIDmz5+vuLg4q+PATTRs2FCTJk3S1KlTNWnSJKvjAADgdij2AgCQj+bOnauLFy+qf//+Vkex1Lvvvqs5c+Zo6tSpqlu3rtVxAFxB//79deHCBc2dO9fqKHAjYWFhGj58uIYPH66vv/7a6jgAALgVir0AAOST9IXZ2rdvr3LlylkdxzKff/65nnnmGY0YMULdu3e3Og6AqyhfvrweffRRRUZG2vajinBN48aNU/PmzdW5c2cdPXrU6jgAABdg2vBhRxR7AQDIJ1u2bNGuXbsK9MJsBw8eVGhoqB544AGNGTPG6jgArkNERIS+//57bdmyxeoocCOenp5auHChfHx81LFjRyUlJVkdCQAAt0CxFwCAfBIZGanKlSurTZs2VkexREJCgoKDg1WsWDHNnz+/QPcsBlxJmzZtdMstt7BQG3Jd6dKlFRMToz179ig8PJzZ4wAA5AKKvQAA5IOzZ89qwYIFGjhwoByOgvfj1zRN9evXT7/88ouWL1+uEiVKWB0JwHXy8PDQwIEDFR0drXPnzlkdB26mbt26mjp1qubMmaP33nvP6jgAADszL/1eYZenTbs4UOwFACA/zJ49W6mpqerXr5/VUSwxduxYLVy4ULNmzVKtWrWsjgMgh/r166eUlBTNnj3b6ihwQ927d9eIESP0zDPPaO3atVbHAQDApVHsBQAgj6UvzBYcHKygoCCr4+S7VatWaeTIkXrhhRcUEhJidRwAN6Bs2bLq0KEDC7Uhz4wZM0atW7dWaGioDh48aHUcAABcFsVeAADy2MaNG7Vnz54CuTDbgQMH1K1bN7Vr104vv/yy1XEA3ISIiAj9+OOP+uabb6yOAjfk4eGh+fPnKyAgQB07dlRCQoLVkQAANmPa8GFHFHsBAMhjkZGRuvXWW3X//fdbHSVfnT9/Xh06dFBQUJDmzJlTIHsVA+6kdevWqlq1Kgu1Ic+UKFFCMTEx+vnnn9W/f39mkQMAcAP4rQsAgDx0+vRpLVq0SOHh4QWq2Ol0OtWnTx/99ttviomJUUBAgNWRANwkh8Oh8PBwLVy4UGfOnLE6DtzUXXfdpZkzZyo6Olpvvvmm1XEAAHA5Bee3TgAALDBr1iw5nU6FhYVZHSVfjR49WjExMZo7d65q1KhhdRwAuaRv375yOp2aNWuW1VHgxjp16qTnn39ezz33nFatWmV1HACATZimabunHVHsBQAgj6QvzBYSEqLAwECr4+SbFStWaNSoUXrllVfUvn17q+MAyEWBgYHq2LEjC7Uhz73yyitq166dunfvrgMHDlgdBwAAl0GxFwCAPPLVV19p3759BWphtp9++km9evVSSEiInn/+eavjAMgDERER2rt3r77++muro8CNORwOzZkzR2XKlFFwcLDOnz9vdSQAAFwCxV4AAPJIZGSkbrvtNrVq1crqKPni3Llz6tChgypVqqQZM2YUqB7FQEFy3333qXr16izUhjwXEBCgmJgYHT16VH369JHT6bQ6EgDAQqYNH3bEb2EAAOSBU6dOacmSJQoPD5dhGFbHyXNpaWnq2bOn/vzzT8XExMjPz8/qSADyiGEYCg8P1+LFi3Xq1Cmr48DN1ahRQ3PnzlVMTIxeffVVq+MAAGB7FHsBAMgDM2bMkCQ99thj1gbJJy+++KJWrVqlBQsWqFq1albHAZDH0hednDlzprVBUCC0b99er7zyil588UWtWLHC6jgAANgaxV4AAHKZaZqaPHmyOnfurFKlSlkdJ88tWrRIr732msaMGaOHHnrI6jgA8kGpUqXUqVMnTZ48mYXakC+ef/55dezYUb169dLevXutjgMAsIBpmrZ72hHFXgAActkXX3yhAwcOFIiF2Xbt2qWwsDCFhoZqxIgRVscBkI8iIiK0f/9+rV+/3uooKAAcDodmzpypihUrqkOHDjp37pzVkQAAsCWKvQAA5LLIyEjdcccdatGihdVR8tSZM2cUHBys6tWra+rUqQWiNzGAv917772qUaOGJk2aZHUUFBB+fn5avny5Tp48qZ49eyotLc3qSAAA2A7FXgAActGJEye0bNkyt1+YLTU1Vd26dVNcXJxiYmJUpEgRqyMByGfpC7UtW7ZMJ0+etDoOCohq1appwYIFWrVqlUaNGmV1HABAPjJt+LAjir0AAOSi6dOny+FwqE+fPlZHyVMjR47UunXrtHDhQlWuXNnqOAAs8thjj8nhcGj69OlWR0EB8tBDD2nMmDF69dVXtXjxYqvjAABgKxR7AQDIJU6nU1FRUQoNDVWJEiWsjpNn5s2bp3Hjxumtt97S/fffb3UcABYqUaKEunbtqsmTJ8vpdFodBwXIiBEjFBoaqrCwMO3evdvqOAAA2AbFXgAAcsnnn3+uX3/91a0XZtu+fbv69++vPn36aPjw4VbHAWADERER+vXXX7V27Vqro6AAMQxDU6dOVbVq1RQcHKwzZ85YHQkAkMdM07Td044o9gIAkEsiIyNVq1YtNW3a1OooeeLkyZMKDg5WrVq1NGnSJLfuSQzg+t1zzz2qWbOmIiMjrY6CAqZIkSKKiYlRbGysunXrptTUVKsjAQBgOYq9AADkgj/++EPLly9XRESEWxZBU1JS1LVrV128eFFLly6Vr6+v1ZEA2IRhGIqIiNDy5ct1/Phxq+OggKlcubKio6O1bt06/fe//7U6DgAAlqPYCwBALpg2bZq8vLzUq1cvq6PkiaefflobN27U4sWLVbFiRavjALCZ3r17y9PTU9OmTbM6Cgqg1q1ba9y4cXrzzTc1b948q+MAAPKIacOHHVHsBQDgJqWlpSkqKkrdunVTsWLFrI6T66ZPn673339f48ePV4sWLayOA8CGihUrptDQUEVFRbFQGyzxxBNPqE+fPurfv7+2b99udRwAACxDsRcAgJu0evVqHT582C0XZtuyZYsGDRqkgQMHatCgQVbHAWBjEREROnTokFavXm11FBRAhmFo0qRJqlWrljp27Kg///zT6kgAAFiCYi8AADcpMjJStWvXVqNGjayOkquOHz+ukJAQ1a9fX++//75b9iIGkHsaN26su+++m4XaYBlfX18tXbpUFy5cUNeuXZWSkmJ1JABALjJN03ZPO6LYCwDATfj999/18ccfu93CbMnJyerUqZNM09SSJUvk7e1tdSQANpe+UNtHH32kY8eOWR0HBVTFihW1ePFibdiwQc8884zVcQAAyHcUewEAuAlTp06Vj4+PevbsaXWUXDVs2DBt27ZNS5cuVdmyZa2OA8BF9OzZU97e3po6darVUVCAtWjRQuPHj9f48eM1Y8YMq+MAAJCvKPYCAHCD0tLSNGXKFHXv3l3+/v5Wx8k1kZGRmjx5sj788EM1adLE6jgAXEhAQIC6d++uqKgopaWlWR0HBdigQYM0YMAADRo0SN9++63VcQAAucC04cOOKPYCAHCDPv30Ux09etStFmbbsGGDhg0bpiFDhqhfv35WxwHggiIiInT06FGtWrXK6igowAzD0IQJE1S3bl2FhITo+PHjVkcCACBfUOwFAOAGRUZGql69emrQoIHVUXLFb7/9ps6dO6tp06Z65513rI4DwEU1aNBAdevW1aRJk6yOggLO29tbS5YskdPpVOfOnZWcnGx1JAAA8hzFXgAAbsCRI0f0ySefuM2s3gsXLigkJEReXl5atGiRPD09rY4EwEWlL9T2ySef6OjRo1bHQQFXrlw5LV26VFu3btXw4cOtjgMAuAmmadruaUcUewEAuAFTpkxR4cKF1b17d6uj3DTTNDVo0CDt3r1by5YtU2BgoNWRALi4Hj16qHDhwpoyZYrVUQA1adJEH374oSIjIxUZGWl1HAAA8hTFXgAAcig1NVVTp05Vr1695OfnZ3WcmzZhwgTNnDlTUVFRql+/vtVxALgBPz8/9ezZU1OmTFFqaqrVcQD169dPQ4YM0bBhw7Rx40ar4wAAkGco9gIAkEMff/yxjh075hYtHL744gs9+eSTeuqpp9SrVy+r4wBwIxERETp27JhWrlxpdRRAkvTOO++oadOm6tSpk37//Xer4wAAcsi04cOOKPYCAJBDkZGRatSokerUqWN1lJty6NAhdenSRa1atdIbb7xhdRwAbqZu3bpq2LAhH5uHbXh6emb0pQ8JCdGFCxesjgQAQK6j2AsAQA4cOnRIn332mcvP6k1MTFTHjh3l5+en6OhoFSpUyOpIANxQRESEVq1apUOHDlkdBZAkBQYGKiYmRrt27dLjjz9u28V1AAC4URR7AQDIgaioKPn5+Sk0NNTqKDfMNE0NGDBA+/fvV0xMjEqWLGl1JABuqlu3bvLz82OhNthK/fr1FRUVpRkzZmjixIlWxwEAXCfTNG33tCOKvQAAXKeUlBRNmzZNvXv3VpEiRayOc8PeeustzZ8/X9OnT1ft2rWtjgPAjRUpUkS9evXS1KlTlZKSYnUcIEOvXr301FNP6d///rfWr19vdRwAAHINxV4AAK7TihUrdPz4cZdu4bB69Wr95z//0ciRI9W1a1er4wAoACIiInT8+HF99NFHVkcBMnnjjTfUqlUrdenSRYcPH7Y6DgAAucIw7TrnGAAAm2nTpo3i4+P1zTffWB3lhvzyyy9q2LChmjRpoo8++kgeHh5WRwJQQDRt2lT+/v767LPPrI4CZHL69Gk1aNBAxYsX14YNG1S4cGGrIwEA/iEuLk4BAQF6eOrD8izsaXWcDCmJKfq0/6eKjY2Vv7+/1XEyMLMXAIDr8Msvv2jNmjUuO6s3Pj5ewcHBKlWqlObNm0ehF0C+ioiI0OrVq/Xrr79aHQXIpGTJkoqJidG+ffs0cOBA2/ZfBADgelHsBQDgOkRFRalYsWIu2frANE2FhYXp0KFDiomJUbFixayOBKCA6dq1qwICAhQVFWV1FCCL2rVra/r06Zo3b57efvttq+MAAHBTKPYCAHANycnJmj59uvr06SNfX1+r4+TYa6+9piVLlmj27Nm68847rY4DoAAqXLiw+vTpo2nTpik5OdnqOEAWXbt21XPPPadnn31Wa9assToOACAbpmna7mlHFHsBALiGmJgYnTx50iVbOHz88cf6v//7P40aNUrBwcFWxwFQgEVEROjkyZNavny51VGAbI0ePVpt2rRRaGgoLUcAAC6LBdoAALiG1q1bKzk5WV9//bXVUXJk3759atSokVq1aqVly5bJ4eA9XgDWat68uby9vbV27VqrowDZOnv2rBo1aiQfHx9t2rRJRYsWtToSABR46Qu0tZ3S1nYLtK0asIoF2gAAcCUHDhzQunXrXG5Wb2xsrDp06KDy5ctr9uzZFHoB2EJERITWrVunAwcOWB0FyFbx4sW1fPlyHTp0SGFhYbb9iC4AFESmDR92xG9+AABcxeTJk1WiRAl17tzZ6ijXzel0qnfv3jp+/LhiYmJs9S4zgIKtc+fOKl68uCZPnmx1FOCK7rzzTs2ePVtLlizRmDFjrI4DAECOUOwFAOAKLly4oOnTp+uxxx6Tj4+P1XGu28svv6yPP/5Y8+bN02233WZ1HADI4Ovrq7CwMM2YMUMXL160Og5wRcHBwRo1apReeOEFrVy50uo4AABcN4q9AABcwdKlS3X69GmXauGwbNkyvfLKK3r11Vf1yCOPWB0HALIIDw/XqVOntHTpUqujAFf14osvqn379urRo4f27dtndRwAKPBM07Td045YoA0AgCto2bKlHA6HvvjiC6ujXJcff/xRTZo0Udu2bbVw4UIZhmF1JADIVqtWrSRJ69evtzQHcC1xcXFq3LixJGnLli20RgIAC6Qv0NYmqo3tFmhbPXA1C7QBAOAKfvrpJ3311VcuM6v37Nmz6tChg6pUqaLp06dT6AVgaxEREfryyy+1d+9eq6MAV+Xv76/ly5fr2LFj6t27t5xOp9WRAAC4Koq9AABkY/LkySpVqpQ6duxodZRrSktLU/fu3XXmzBnFxMSoaNGiVkcCgKsKCQlRqVKlWKgNLuG2227T/Pnz9dFHH+mVV16xOg4AFFimDR92RLEXAIB/SEpK0syZM9W3b195e3tbHeeann/+ea1Zs0bR0dGqWrWq1XEA4Jq8vb0VFhammTNn6sKFC1bHAa7pkUce0auvvqqXX35Zy5YtszoOAABXRLEXAIB/WLx4sc6ePavw8HCro1xTdHS03njjDY0dO1YPPvig1XEA4LqFh4frzJkzWrx4sdVRgOvy3HPPqXPnzurTp49+/PFHq+MAAJAtFmgDAOAfmjdvLh8fH33++edWR7mq77//Xk2bNlVISIhmz55Nn14ALqd169ZKTk7W119/bXUU4LrEx8frnnvuUVJSkr799lsVL17c6kgA4PbSF2h7YPIDtlug7fPwz1mgDQAAO/vxxx+1ceNG2y/MdurUKQUHB+uOO+5QVFQUhV4ALikiIkIbNmxgliRcRtGiRRUTE6PTp0+rR48eSktLszoSAACZUOwFAOAykZGRCgwMVIcOHayOckWpqakKDQ1VQkKCli1bJl9fX6sjAcANCQ4OVmBgIAu1waVUrVpV0dHRWr16tV544QWr4wAAkAnFXgAA/pKYmKhZs2apX79+8vLysjrOFY0YMUJffvmlFi1apEqVKlkdBwBumJeXl/r27atZs2YpKSnJ6jjAdXvwwQc1duxYvf7661q4cKHVcQCgwDBt9LArir0AAPxl4cKFio2N1cCBA62OckWzZs3Su+++q3fffVctW7a0Og4A3LSBAwfq3LlzFMzgcp566in16NFDffv21ffff291HAAAJLFAGwAAGZo2bSp/f3999tlnVkfJ1rZt29S8eXP16NFDU6dOpU8vALfRpk0bxcfH65tvvrE6CpAjiYmJat68uc6ePatt27apZMmSVkcCALdz+QJthQoXsjpOhtTEVBZoAwDArnbt2qXNmzfbdmG2EydOqGPHjqpdu7Y++OADCr0A3EpERIQ2bdqkXbt2WR0FyJHChQsrJiZGCQkJ6tq1q1JTU62OBABuy5Qp07TR06atHCj2AgCgSwuzBQUFqX379lZHySI5OVmdO3dWamqqli5dKh8fH6sjAUCu+te//qWgoCBFRkZaHQXIsUqVKmnRokX68ssv9eyzz1odBwBQwFHsBQAUePHx8Zo9e7b69+8vT09Pq+Nk8eSTT2rLli1asmSJypcvb3UcAMh1np6e6t+/v+bMmaOEhASr4wA51rJlS7377rt65513NHv2bKvjAAAKMIq9AIACb8GCBYqPj7flwmxTpkzRBx98oIkTJ+qee+6xOg4A5JmBAwfq/PnzWrBggdVRgBsyZMgQ9e3bVwMHDtS2bdusjgMAbse04cOOWKANAFDgNWzYUIGBgVq5cqXVUTLZtGmTWrZsqf79++vDDz+0Og4A5LlHHnlEp06d0rfffmt1FOCGXLhwQS1bttSxY8e0bds2lSlTxupIAODy0hdou3/y/Srka6MF2pJStS58HQu0AQBgJ9u3b9e2bdtstzDbsWPHFBISokaNGum9996zOg4A5IuIiAht3bpVO3bssDoKcEN8fHy0dOlSpaSkqEuXLkpJSbE6EgCggKHYCwAo0CIjI1W+fHk98sgjVkfJcPHiRYWEhMjDw0OLFy+Wl5eX1ZEAIF+0a9dO5cuXZ6E2uLTy5ctr6dKl2rx5s5588kmr4wCA2zBN03ZPO6LYCwAosM6fP6958+ZpwIABKlTIHh8HMk1TgwcP1s6dO7Vs2TIFBQVZHQkA8k2hQoXUv39/zZ07V+fPn7c6DnDD7rnnHk2cOFETJ07U1KlTrY4DAChAKPYCAAqsefPmKTExUQMGDLA6SoYPP/xQ06ZN06RJk9SwYUOr4wBAvhswYIASExM1f/58q6MAN2XgwIEaNGiQBg8erM2bN1sdBwBQQLBAGwCgQDJNU/Xr11eFChW0YsUKq+NIkr766iu1bt1agwcPpk8vgAKtffv2OnbsmL777jurowA3JTk5Wffff79+/fVXbdu2TeXKlbM6EgC4nPQF2lpFtrLdAm3rI9azQBsAAHawbds27dixwzYLsx09elSdO3dWixYtNG7cOKvjAIClIiIiMhbQBFyZl5eXFi9eLIfDoU6dOunixYtWRwIAuDmKvQCAAikyMlKVKlVS27ZtrY6ipKQkdezYUYULF1Z0dLQ8PT2tjgQAlnr44YdVsWJFFmqDWwgKCtKyZcu0Y8cODRkyxLYL+gAA3APFXgBAgRMbG6v58+drwIAB8vDwsDSLaZoKDw/Xnj17tGzZMpUuXdrSPABgBx4eHhowYIDmz5+vuLg4q+MAN61hw4aaNGmSpk6dqkmTJlkdBwBckmmatnvaEcVeAECBM3fuXF28eFH9+/e3OoreffddzZkzR1OnTlXdunWtjgMAttG/f39duHBBc+fOtToKkCvCwsI0fPhwDR8+XF9//bXVcQAAbopiLwCgQDFNU5GRkWrfvr3li6R8/vnneuaZZzRixAh1797d0iwAYDfly5fXo48+qsjISNvOnAFyaty4cWrRooU6d+6so0ePWh0HAJCPvvrqq4zfQw3DUExMTKb9pmnqxRdfVNmyZeXr66sHHnhABw4cyPF5KPYCAAqULVu2aNeuXZYvzHbw4EGFhobqgQce0JgxYyzNAgB2FRERoe+//15btmyxOgqQKzw9PRUdHS1fX1917NhRSUlJVkcCAJdh2vCREwkJCapdu7YmTpyY7f6xY8dq/PjxmjRpkrZs2aIiRYrooYce0oULF3J0HsPkbXIAQAHSt29frV+/Xr/88oscDmve80xISNA999yj+Ph4bd26VSVKlLAkBwDYXVpamm699Vbdd999mj59utVxgFyzY8cONWvWTJ06ddKsWbNkGIbVkQDAtuLi4hQQEKB7J92rQr6FrI6TITUpVV8N+kpHjx6Vv79/xnZvb295e3tf9bWGYWjZsmUKDg6WdGlWb7ly5fT000/rmWeekXRprZkyZcpoxowZ6tat23XnYmYvAKDAOHv2rKKjozVw4EDLCr2maapfv3765ZdftHz5cgq9AHAVHh4eCg8PV3R0tM6dO2d1HCDX1K1bV1OnTtWcOXP03nvvWR0HAHATKlasqICAgIznjXxy8+DBgzp+/LgeeOCBjG0BAQFq3LixNm3alKOxKPYCAAqM2bNnKyUlRf369bMsw9ixY7Vw4ULNmjVLtWrVsiwHALiKfv36KSUlRbNnz7Y6CpCrunfvrhEjRuiZZ57R2rVrrY4DALZnmqbtnpJ09OhRxcbGZjxHjhyZ4+/t+PHjkqQyZcpk2l6mTJmMfdeLYi8AoEBIX5gtODhYQUFBlmRYtWqVRo4cqRdeeEEhISGWZAAAVxMUFKQOHTqwUBvc0pgxY9S6dWuFhobq4MGDVscBANwAf3//TM9rtXDIaxR7AQAFwsaNG7Vnzx7LFmY7cOCAunXrpnbt2unll1+2JAMAuKqIiAj9+OOP+uabb6yOAuQqDw8PzZ8/XwEBAerYsaMSEhKsjgQAsED6hKQTJ05k2n7ixIkcT1ai2AsAKBAiIyN166236v7778/3c58/f14dOnRQUFCQ5syZY1m/YABwVa1bt1bVqlUVGRlpdRQg15UoUULLly/Xzz//rP79+zODHQCuwLThI7dUqVJFQUFBmdr6xMXFacuWLWratGmOxuK3TQCA2zt9+rQWLVqk8PDwfC+0Op1O9enTR7/99ptiYmIUEBCQr+cHAHfgcDgUHh6uhQsX6syZM1bHAXJdrVq1NGvWLEVHR+vNN9+0Og4AIA/Ex8dr586d2rlzp6RLi7Lt3LlTR44ckWEY+ve//63Ro0drxYoV2r17t/r06aNy5copODg4R+eh2AsAcHuzZs2S0+lUWFhYvp979OjRiomJ0dy5c1WjRo18Pz8AuIu+ffvK6XRq1qxZVkcB8kRISIheeOEFPffcc1q1apXVcQAAuWzbtm2qW7eu6tatK0l66qmnVLduXb344ouSpGeffVbDhg1TeHi4GjZsqPj4eK1atUo+Pj45Oo9h8hkRAIAbM01Td9xxh+rUqaMFCxbk67lXrFihDh066JVXXtH//d//5eu5AcAdhYaGateuXdqzZ48Mw7A6DpDrnE6nOnTooA0bNujbb79V9erVrY4EAJaLi4tTQECAmn3QTIV8C1kdJ0NqUqo2Dt6o2NhY+fv7Wx0nAzN7AQBu7auvvtK+ffvyfWG2n376Sb169VJISIief/75fD03ALiriIgI7d27V19//bXVUYA84XA4NGfOHJUpU0bBwcE6f/681ZEAAC6GYi8AwK1FRkbqtttuU6tWrfLtnOfOnVOHDh1UqVIlzZgxgwXZACCX3HfffapevToLtcGtBQQEKCYmRkePHlWfPn3kdDqtjgQAcCH89gkAcFunTp3SkiVLFB4enm8f901LS1PPnj31559/KiYmRn5+fvlyXgAoCAzDUHh4uBYvXqxTp05ZHQfIMzVq1NDcuXMVExOjV1991eo4AGALpg0fdkSxFwDgtmbMmCFJeuyxx/LtnC+++KJWrVqlBQsWqFq1avl2XgAoKNIX25w5c6a1QYA81r59e73yyit68cUXtWLFCqvjAABcBMVeAIBbMk1TkydPVufOnVWqVKl8OeeiRYv02muvacyYMXrooYfy5ZwAUNCUKlVKnTp10uTJk8Va03B3zz//vDp27KhevXpp7969VscBALgAir0AALf0xRdf6MCBA/m2MNuuXbsUFham0NBQjRgxIl/OCQAFVUREhPbv36/169dbHQXIUw6HQzNnzlSlSpXUoUMHxcbGWh0JACxjmqbtnnZEsRcA4JYiIyN1xx13qEWLFnl+rjNnzig4OFjVq1fX1KlT860/MAAUVPfee69q1KihSZMmWR0FyHN+fn6KiYnRyZMn1bNnT6WlpVkdCQBgYxR7AQBu58SJE1q2bFm+LMyWmpqqbt26KS4uTjExMSpSpEieng8AcGmhtoiICC1btkwnT560Og6Q56pVq6YFCxbo008/1ahRo6yOAwCwMYq9AAC3M336dDkcDvXp0yfPzzVy5EitW7dOCxcuVOXKlfP8fACAS/r06SOHw6Hp06dbHQXIFw899JDGjBmjV199VYsXL7Y6DgDkO9OGDzui2AsAcCtOp1NRUVEKDQ1ViRIl8vRc8+bN07hx4/TWW2/p/vvvz9NzAQAyK1GihLp27arJkyfL6XRaHQfIFyNGjFBoaKjCwsK0e/duq+MAAGyIYi8AwK18/vnn+vXXX/N8Ybbt27erf//+6tOnj4YPH56n5wIAZC8iIkK//vqr1q5da3UUIF8YhqGpU6eqWrVqCg4O1pkzZ6yOBACwGYq9AAC3EhkZqVq1aqlp06Z5do6TJ08qODhYtWrV0qRJk1iQDQAscs8996hmzZqKjIy0OgqQb4oUKaKYmBjFxsaqW7duSk1NtToSAOQL0zRt97Qjir0AALfxxx9/aPny5YqIiMizAmxKSoq6du2qixcvaunSpfL19c2T8wAAri19obbly5fr+PHjVscB8k3lypW1cOFCrVu3Tv/973+tjgMAsBGKvQAAtzFt2jR5eXmpV69eeXaOp59+Whs3btTixYtVsWLFPDsPAOD69O7dW56enpo2bZrVUYB8df/99+utt97Sm2++qfnz51sdBwBgExR7AQBuIS0tTVFRUerWrZuKFSuWJ+eYPn263n//fY0fP14tWrTIk3MAAHKmWLFiCg0NVVRUFAu1ocAZPny4+vTpo/79+2vHjh1WxwGAPGXa8GFHFHsBAG5h9erVOnz4cJ4tzLZlyxYNGjRIAwYM0KBBg/LkHACAGxMREaFDhw5p9erVVkcB8pVhGJo0aZJq1qyp4OBg/fnnn1ZHAgBYjGIvAMAtREZGqnbt2mrUqFGuj338+HGFhISofv36mjBhAguyAYDNNG7cWHfffTcLtaFA8vX11dKlS3XhwgV17dpVKSkpVkcCAFiIYi8AwOX9/vvv+vjjj/NkYbbk5GR16tRJpmlqyZIl8vb2ztXxAQA3L32hto8++kjHjh2zOg6Q7ypWrKjFixdrw4YNeuaZZ6yOAwB5wjRN2z3tiGIvAMDlTZ06VT4+PurZs2eujz1s2DBt27ZNS5cuVdmyZXN9fABA7ujZs6e8vb01depUq6MAlmjRooXGjx+v8ePHa8aMGVbHAQBYhGIvAMClpaWlacqUKerevbv8/f1zdezIyEhNnjxZH374oZo0aZKrYwMAcldAQIC6d++uqKgopaWlWR0HsMTl6wt8++23VscBAFiAYi8AwKV9+umnOnr0aK4vzLZhwwYNGzZMQ4YMUb9+/XJ1bABA3oiIiNDRo0e1atUqq6MAljAMQxMmTFC9evUUEhKi48ePWx0JAHKNacOHHVHsBQC4tMjISNWrV08NGjTItTF/++03de7cWU2bNtU777yTa+MCAPJWgwYNVLduXU2aNEmS5HQ6FR8fb3EqIH95e3tryZIlcjqd6ty5s5KTk62OBADIRxR7AQAu68iRI/rkk09ydVbvhQsXFBISIk9PTy1atEienp65NjYAIG8ZhqFBgwZp5cqVev7553XrrbcqKCiIYhcKnLJly2rp0qXaunWrhg8fbnUcAEA+KmR1AAAAbtSUKVNUuHBhde/ePVfGM01TgwYN0u7du7VhwwYFBgbmyrgAgLxnmqa++uorffbZZzJNU6+99pokycPDgzfuUCA1adJEH374ofr376+6devmessrAMhvpmnKNO3TOsFOWS5HsRcA4JJSU1M1depU9ezZU35+frky5oQJEzRz5kzNnj1b9evXz5UxAQD5Y8mSJerSpYscjswfXixWrJgMw7AoFWCtfv36afv27Ro2bJhq1aqlZs2aWR0JAJDHaOMAAHBJH3/8sY4dO5Zrs1TWr1+vJ598Uk899ZR69eqVK2MCAPJP69at1bhx4yzbS5UqZUEawD7eeecdNW3aVJ06ddLvv/9udRwAQB6j2AsAcEmRkZFq1KiR6tate9NjHT58WF26dFGrVq30xhtv5EI6AEB+K168uL744gu1b98+00zeMmXKWJgKsF76OgReXl4KCQnRhQsXrI4EADfMtNHDrij2AgBczqFDh/TZZ5/lyqzexMREBQcHq2jRooqOjlahQnQ4AgBX5evrqyVLlmjw4MEZ23Kr1Q/gygIDA7Vs2TLt2rVLjz/+uG37TAIAbh7FXgCAy4mKipKfn59CQ0NvahzTNDVgwADt379fMTExKlmyZC4lBABYxcPDQ++//77+97//SZLi4uIsTgTYQ/369RUVFaUZM2Zo4sSJVscBAOQRpi8BAFxKSkqKpk2bpt69e6tIkSI3NdZbb72l+fPnKzo6WrVr186lhAAAqxmGoRdeeEFly5ZVnTp1rI4D2EavXr20Y8cO/fvf/1atWrXUqlUrnTt3Th999JF69uyZZYFDALAT0zRt9ckEO2W5HMVeAIBLMU1TtWrV0hNPPHFT46xevVr/+c9/9Nxzz6lr1665lA4AYCf9+/e3OgJgO2+88Ya+//57denSRQsWLNDAgQN18OBBVaxYUa1atbI6HgDgJvG2HQDApXh5eWnNmjWqXr36DY/xyy+/qFu3bnrooYc0evToXEwHAABgb4UKFVJ0dLQcDofatGmjI0eOyOFwaMuWLVZHAwDkAmb2AgAKlPj4eAUHB6tUqVKaN2+ePDw8rI4EAACQb5xOp95//32dPHkyY5vD4dCmTZssTAUA12b+9bALO2W5HMVeAECBYZqmwsLCdOjQIW3ZskXFihWzOhIAAEC+mjJlil5++eVM25xOpzZu3CjTNGUYhkXJAAC5gTYOAIAC47XXXtOSJUs0e/Zs3XnnnVbHAQAAyHcdOnRQv379VKhQoUyfcDp16pSOHj1qYTIAQG6g2AsAKBA+/vhj/d///Z9GjRql4OBgq+MAAABYokyZMpo6daqOHDmiESNGqGjRohn7VqxYYWEyALg60zRt97Qjir0AALe3b98+9ezZU+3bt9eLL75odRwAAADLlS1bVmPGjNGxY8f06quvytfXN1MfXwCAazJMu5ahAQDIJU8//bRWrVqlTZs2yd/f3+o4AAAAAIDrFBcXp4CAANV5t448fO2zwHZaUpp2/nunYmNjbfV7JjN7AQBub/To0dqxY4etfgADAAAAAK6facOHHRWyOgAAAHnN19fX6ggAAAAAAOQ5ir2whQMHDuj8+fNWx7AVPz8/Va9e3eoYcANcX9njGkNu4RrLHtcYcgvXWPa4xpBbuMay4voC4Moo9sJyBw4c0G233WZ1DFvav38/Nxm4KVxfV8c1hpvFNXZ1XGO4WVxjV8c1hpvFNXZlXF+A/ZimKTstPWanLJej2AvLpb+LPHToUJUvX97iNPbw+++/a8KECbzDjpuW/m9ozpw5uuOOOyxOYx8//fSTevXqxTWGm5b+b8joZMgoZVicxj7MU6bMJSbXGG5a+r+hOyPuVJFyRSxOYx8JxxK0J3IP1xhuWvq/oagZUbq9xu0Wp7GHfXv3aWDYQK4vAC6LYi9so3z58qpatarVMQC3dMcdd6hevXpWxwDcllHKkFGOYu/l7LpgBVxTkXJF5FfZz+oYgNu6vcbtqlO3jtUxAAC5gGIvAAAAAAAAAFsz/3rYhZ2yXM5hdQAAAAAAAAAAwM2j2AsAAAAAAAAAboBiL9zK+vXrFRoaqpMnT1odJYuXX35ZL7/8stUxAAAAAAAAXI5pmrZ72hHFXtje2LFj1bt3byUlJV3xmPHjx6tHjx45XjF12bJl2rp1681GBNzCjBkzZBiGDMPQhg0bsuw3TVMVK1aUYRh69NFHczT277//rq5du6pYsWLy9/dXhw4d9Ouvv2Z77NSpU3XHHXfIx8dH1atX1/vvv3/TYwJWc+5wKm1UmtJGpck8nPWm0DRNpb11aX/a3LQcjW3GmXIudCptTJrSXktT2rw0mWeyv/F0fudU2vtpSvtfmtLeS5NzszPreKdMOT91Km3KX8eNSpN51p43skC6P77+Q+seW6d1j63Tuf3nsuw3TVMbn9yodY+t0/dvf3/d4yb8kaADcw9o2/+2af2A9Vr32Dol/Xnle9I/t/+pb1/8VusHrNfGJzfq16W/ypmW+Tq7eO6ifl74s7aP2a4vI77UusfW6exPZ687E2CFubPmyt/bX/7e/tq0cVOW/aZp6o5b75C/t7+6BHe57nEP7Dug5555Tg+0fECl/UvL39tfhw8dzvbYJYuWaEDYANW5s478vf31yIOPZHtcfHy8Xn3lVXV8tKMqBVWSv7e/5s6ae92ZAMDVUeyF7TVv3lzJycn69ttvs91/8eJFbdu2TXXq1FG7du00e/ZslS5d+rrGptgLZOXj46N58+Zl2f7ll1/qt99+k7e3d47Gi4+P13333acvv/xS//3vf/Xyyy9rx44datmypU6fPp3p2MjISA0YMEA1a9bU+++/r6ZNm2r48OF64403bnhMwFYKSebubAqnhyTFKcdL55oXTTlnOGUeMmW0MGS0MqTjknO6U2Zi5vM4tzplrjClQMl42JBR0ZD5qSnn15kLUeZRU+YWU7ooqVTO8gBWc3g6dGLTiSzbz+09p4tnLsrhmbNff+J+jtPRNUeVdiFNhcsWvuqxp78/rd3jd6tQ4UKq3qu6StcvrUMrDunA7AOZjkv8I1FHVh7RxbMXVaRCkRzlAazm4+OjhQsWZtm+4asN+v2333N8n/jtlm81aeIkxZ+P1+01br/qsVMnT9UnH32iChUrqFjxYlc87vSp03rj1Te0f99+3XX3XTnKAwDuIIe/UgD5r0GDBvL19dXGjRvVsmXLLPu3bdumixcvqnnz5nI4HPLy8rrqeKZpKiUl5ZrHAQXVI488okWLFmn8+PEqVOjvHxPz5s1T/fr1derUqRyN98EHH+jAgQP69ttv1bBhQ0nSww8/rFq1aumtt97Sa6+9JklKSkrS888/r3bt2mnx4sWSpIEDB8rpdOp///ufwsPDVbx48RyNCdhOdcn80ZT5sCnDw8jYbO42pXKSEnM2nLnVlE5LjnCHjPKXxjOrm3J+4JT5jSnjgb+2pZgy15nSbZJHqMelFzeQnKZT5lemzAamDN9Lxxq3GzJGGjK8DTk3OmUeZ1YvXEfJ2iV1cutJVe9VXQ6Pvwu7JzadkF9lP6XEp+RovFJ1S+neD+9VId9COvLJEf185OcrHvvzgp9VtGJR1RlRJ+PcHj4eOvzxYVVoU0FFyl0q7PpV9lOLiS3kWdRTJ7ee1A8TfriB7xSwRpu2bRSzNEZvvvNmpvvERQsWqW69ujl+0/3hRx/W0ZNH5efnp/Fvj9eu73dd8djJ0yarXPlycjgcaly38RWPCyobpAOHD6hMUBlt/267Wt3TKkeZANiX+dfDLuyU5XLM7IXteXl5qVGjRvrhhx8UGxubZf+GDRvk6+urBg0aZNuzd+jQoXrjjTe0c+dOjRw5Ur1799aaNWsUGhqqixcv6ssvv1RoaKhCQ0P1wQcfSLpUSBo6dGiWcy1atEihoaGZtn3xxRd65ZVXNHDgQPXs2VNPPfWUVq9enct/C0D+6d69u06fPq01a9ZkbEtOTtbixYvVo0ePHI+3ePFiNWzYMKMoK0k1atRQ69attXDh3zNDvvjiC50+fVqDBw/O9PohQ4YoISFBK1euzPGYgN047nJISZIu6zhippoy95gy7jKu+LorMfeYUnllFHolyShtSFUuFZUzHJSUKDkaZr71MxoZUrJk7v/7WKPwpUIv4IrKNCmjlPgUnf3h77YIzlSnTm47qTJNy+R4PM+inirke+35MQm/JyjhWILKtSqXqchcoXUFyZRObv373rSQbyF5FvXMcRbADjqHdtaZ02e07vN1GduSk5MVsyxGXUKvv31DuhIlSsjPz++6jq1QsYIcjmuXMLy9vVUmKOfXOwC4C4q9cAnNmzdXWlqaNm3K3B8qPj5e33//vRo2bHjVmbrHjh3T+PHjddddd+mxxx5T5cqVNXToUHl6eqpGjRoaOnSohg4dqgceeCDH2dasWaNSpUopODhYvXv3VsmSJTV16lR99tlnOR4LsIPKlSuradOmmj9/fsa2Tz/9VLGxserWrVuOxnI6ndq1a5caNGiQZV+jRo30yy+/ZPTa3rFjhyRlObZ+/fpyOBwZ+3MyJmA7xSRV+Ecrh58lXZCMWjkrsJpOUzohGeWyvs4ob0hnLrV5kCTzj7/OV+4fB5aVZEj6I0enBmzLp5SPAm4N0InNf7dyOL3rtFITU1Wmcd4Vf84fvvRzx7+yf6bt3sW95V3CW/FH4vPs3EB+qnRLJTVq0kiLFy7O2LZm1RrFxcapU9dOFiYDAKSjjQNcQq1atVS8eHFt3LhRbdu2zdi+adMmpaWlqXnz5ld9/fHjxzVy5EjVqVMn0/aoqCiVKVNGLVq0uOFsL730UqZCc9u2bfXaa69p5cqVeuihh254XMBKPXr00MiRI5WUlCRfX1/NnTtXLVu2VLly/6wUXd2ZM2d08eJFlS1bNsu+9G3Hjh3T7bffrj/++EMeHh4KDAzMdJyXl5dKliypY8eO5XhMwI6MuwyZa02ZKaYMT0PmLlOqLBn+OZxNmyQpVVLRbPalT5I6L8lbUrwkh2QUzXwOo5AhFf7rOMBNlGlaRr8s+kVpyWny8PLQiW9OqFiNYvIunrNeojmRfC5ZkuRVLOvkA68AL108ezHPzg3kty6hXfTy/72ccZ+4cMFCNb+3ucqWy3pvBgC5yTRNmaZ9WifYKcvlmNkLl+BwOHTPPfdo//79mVo0bNy4UQEBAbrrrqs33g8MDMxS6M0tlxd6ExMTFRcXpzvuuEMnTpxQYmIOmy8CNtG1a1clJSXp448/1vnz5/Xxxx/fUAuHpKRLK5Znt1iHj49PpmOSkpKuOEPfx8cn03HXOyZgR0YtQ0qRtP/SzFtz/421cFDqX39m99Z9+raUy/70uMI4hS61kgDcRWCjQDlTnDq987RSk1J16vtTCmoSlKfnTEtJk6RsF4BzeDrkTHFm2Q64qpDOIUpKStKqT1bp/PnzWvXJqhtq4QAAyBvM7IXLaN68uVauXKmNGzeqY8eOOn36tPbu3au2bdtes3fTP2cK5qa9e/dq0aJFOnDggC5ezDxrIzExUYULX33lZsCOSpcurQceeEDz5s1TYmKi0tLS1Llz5xyP4+vrK0lZrg1JunDhQqZjfH19lZycnO04Fy5cyHTc9Y4J2JFRxJCqSs5dThkphuSUjDtvoNibfheXms2+9G2el/2ZdoVxUv+a4Qu4CS9/LxW/s7iObzqutOQ0mU5TpRuWztNzenheejclu6KuM8WZbREYcFWlSpdSq/tbadGCRRn3iR1COlgdCwDwF4q9cBlVq1ZVuXLlMoq9GzdulGma12zhIOmq/XxzwunMfAN//PhxjR49WuXKlVPv3r1VqlQpeXh4aOfOnVq5cmWW4wFX0qNHDw0cOFDHjx/Xww8/rGLFiuV4jBIlSsjb21t//JG1IWj6tvTWEGXLllVaWppOnjyZ6Q2a5ORknT59OuO4nIwJ2JVxtyFzhSkz3pSqS4bvDRRbfXXpTi67VqDpbRnS2zkUleSUzHgzUysHM9WUEi87DnATZZqW0b7p+5Qcm6ySd5eUZ5G8XRAtvX1D8rlk+ZT0ybQvOTZZ/lX9s3sZ4LK6dOui4Y8P14kTJ/TgQw/e0H0iAOSU+dfDLuyU5XK8xQyX0rx5cx09elSHDx/Wxo0bVbZsWVWrVu2GxzOM7H+5Llq0qBISErJs//PPPzN9/d133yklJUXPPvusHnzwQdWtW1d33313rhWXASt17NhRDodDmzdvvqEWDtKlFix33XWXtm3blmXfli1bVLVq1YwVmNNbrfzz2G3btsnpdGbsz8mYgF0ZNYxLC6P9phtr4SDJcBhSoGQey3qTaf5uSsUlw/vS2EbZv85x7B8HHpNk6tJCbYAbKV2/tGRIcb/EqUyTvFuYLV3RSpeaZ8cdisu0/eLZi7p45mLGfsBdtO/QXg6HQ1u3bFWXbrRwAAA7odgLl5K+kNrChQt16NAhNWvW7KbG8/b2zraoW6ZMGSUmJurw4cMZ286ePautW7dmOi69fcTlTbkTExO1fv36m8oF2EHRokX14Ycf6qWXXlL79u1veJzOnTtr69atmYqz+/bt07p169Sly9+/HNx///0qUaKEPvzww0yv//DDD1W4cGG1a9cux2MCdmV4GzIeNWS0MmTcfuMtFIw7Den3v4q7fzFPmdJByah52bhVJPlKzq2ZP3FibjUlT8moThsHuJdCPoV0+2O3q0pwFZWqWyrPz1e0QlEVLltYx9Yfk+n8+3r8fd3vkiEFNsy7lmKAFYoWLaq3339bI/9vpB5u97DVcQAAl6GNA1xKYGCgbrvttowCT3rx90ZVrVpVu3fv1scff6zixYsrMDBQ1atX1z333KO5c+fqrbfeUtu2bXXx4kWtWbNGZcuW1cGDBzNeX7t2bRUqVEhjx47VAw88oAsXLmjt2rXy9/fX2bNnbyobYAePPfbYTY8xePBgRUVFqV27dnrmmWfk6empt99+W2XKlNHTTz+dcZyvr6/+97//aciQIerSpYseeughff3115ozZ45effVVlShRIsdjAnbmqHPz77kbjQyZ20055zpl3GNIHpK5yZSK6NLX6cd5GjLuN2SuNJUWnSajmiEdlsxdpozWhozCl7V2uGDK3HKpWGUe+evPb02ZPqbkIzkaM1cArqFs85ufsp6amKqja45KkmIPxEqSfvv8NxUqXEiehT1V4cEKGcdW61ZNu97dpZ1v7lRg40Al/Jag3z7/TeXuLaci5YpkGvfg8kv3kwm/X5p0cPyb4zq3/5wkqUqHKjedG8gPPXv3vOkxYmNjFflBpCRp8zebJUmTP5ysgGIBCggIUMTgiIxjN369URs3bJQknTp1SokJiRo7ZqwkqVnzZmrW4u+JQJEfRCo2NlZ/HLvU4uvTlZ/q999/lyRFDI5QQEDATWcHkP9M08w02c5qdspyOYq9cDnNmzfX/v37Va1aNQUF3dzKyn369NHkyZMVHR2t5ORktWzZUtWrV5efn5+eeeYZzZo1S3PnzlVgYKC6d++u48ePZyr2litXTk899ZQWLFig2bNnq1ixYnrwwQfl7++vSZMm3ey3CrgFPz8/rV+/Xk8++aRGjx4tp9OpVq1a6Z133lHp0pkXzBk8eLA8PT311ltvacWKFapYsaLeeecdPfHEEzc8JuDODG9DjjCHnKucMr8yL7VkqCw52jouLQR3GUcjh5wOp8xNpsx9phQgGW0NGU3+Mas3STLXZb5xNb/56+tikhrn1XcD2E9KQooOLj2YadvRVZeKvz6lfDIVe0vVKaW7ht2lgzEHdWDOAXn6eapy+8qq3KFylnH/OeYfX/3dh55iLwqSc2fPafRLozNte//d9yVJlW6plKnY++X6L/X66NczHZv+2udeeC5Tsff9d9/XkcNHMr5eEbNCK2JWSJJCu4dS7AXg1gzTrmVoFBjbt29X/fr1NWbMGFWtWtXqOLbw66+/auTIkfruu+9Ur149q+PAhaVfX/xbyoy/F+SW9H9LjgiHjHK0QkhnHjPljHRyjeGmpV9jDV9uKL/K9GNPd/7QeW0dtZVrDDct/Rr7avNXqlO3jtVxbGHnjp26t8m9XF+AjcTFxSkgIEA1xtWQh6+H1XEypCWlae8zexUbGyt/f/ssxsrMXgAAAAAAAAC2Zv71sAs7ZbkcxV4AwA05c+aMkpOTr7jfw8ODlgrADTITTSntKgc4lKVNA4DrlxKfImeq84r7DYchL3+vfEwEuJczZ84oJTnlivs9PDxUqnTeL54IAAURxV4AwA0JCQnRl19+ecX9t9xyiw4dOpR/gQA34ox2SoeuckAxyeNJ+3yEDXA1u9/frXN7z11xv08pH93z1j35FwhwM71Ce2nDVxuuuL/SLZX0w/4f8jERABQcFHsBADfkrbfe0tmzZ6+439fXNx/TAO7F8ZBDSrrKAZ75FgVwS9W6VVNqYuoV9zs8HfmYBnA/r77xqs6dPXfF/dwnArgRpmnKTkuP2SnL5Sj2AgBuSP369a2OALgtFnsD8pZ/FfssogK4o7r16lodAQAKLN6yBgAAAAAAAAA3QLEXBVJoaKgWLVp0XccOHTpUH3zwQY7PcfLkSYWGhmr9+vU5fi1QUCxcuFB33323fH191bdv30z7Dh06lLHIW7du3XTu3DlrQgI25PzBqbQP0pT2vzQ5l2VeZCpteprSJl5tdbecS5ueprTRaUqbnCbzoD0/rgbklhNbTmjL81u0fsB67Ynak2nf9jHbteW/W3L1fNvHbNf6geu19aWtOvvTldsjAXa0dPFSNa3fVIEBgXp84OOZ9j3y4CNqXLdxnmfw9/bX0088nevjtmrVSu3atdORI0dyfWwAN8a04cOOKPbCZa1fv16hoaH65Zdfbnqsffv2adGiRUpISMiFZACuR0JCgsLCwnT+/Hm9/vrrCg8Pz7S/dOnSmjp1qrp166bo6Gi9/fbbFiUF7MVMNmXGmNJFyXjAkNHgxlo+OL9yKi0qTWlvXCoap72XJuenTpkJWW9aHfc6ZNxnSHHKUlwG3EnaxTT9NOUnpV1I061db1X5+8rf0DiHPjqkba9s09dDv9b6Aeu16dlN2j93v5LjkrMcW7l9ZVUNqaqLZy9qz+Q92YwG2FNCQoIeH/C44s/H66XRLymsf1iOx0hMTNTkDyerwyMdVP2W6ipXspyaN2quKZFTlJaWe29cJiUlaUjEEDWu21gVSldQ2RJldU+De/TB+x8oJSUl29d06dJFq1ev1gsvvJBrOQAgP9CzFwXS7Nmz5eHx9yrm+/fv1+LFi9WyZUsVKVIk07HvvPOODIPeiUBu++mnn5SUlKSnn35aQ4cOzbK/SJEiCgsLU1hYmD777DPt3Lkz/0MCdvSnpBTJuMeQo/GNv29vHjNlBBlSLUlekk5J5nemzP2mHI87ZHj9/bPPuNWQcashZ5pT5lpTZqIpozA/G+F+Eo4lyJnsVKW2lVThwQo3PM75Q+dVtFJRlWlcRh4+Hko4lqBjXx7T6e9Pq9H/GsnD++/70BK1SqhErRJypjr16+JflRKfIs+irMII+9u3d5+SkpI09N9DFTE44obGOHTwkEY8OUKt7mulocOHys/fT2vXrNVTw5/S1m+3KnJqZK5kTUpK0k97flKbtm1U6ZZKcjgc2rJ5i0aOGKltW7dp2qxpWV4zZMgQHT16lHtQAC6HYi8KJC8vr+s+1tOTm23gn1q1aqXKlStrxowZNzxG+kz6MmXKXPPYoKAgnT9//obPBdhF2vQ0GcUMOTrexIer/pqAZBS9uWKrRzePLNvMiqac0U6Z+0wZd2UzftG//kyWVPimTg/kuu1jtsunlI/uHHjnDY+RdvHSTEKvgOu/V8zOXcPuyrItoFqAfpjwg07tOKUyTbL+7Es/Z+qFVIq9yHPp93LDhw+/4TESExIlSYFlAm94jDJlymjz9s264847Mrb1G9hPg8MHa87MOXp25LO6tdqtNzx+uhIlSmjd1+sybesf3l/+/v6a/OFkjRk7RmWCsl6XQUFBOnDgwE2fH0DuME1Tpmmf1gl2ynI52jjAbXzwwQfq06ePzpw5ozfffFN9+vTRgAEDNHv2bDmdmT9yennP3kWLFmnOnDmSpGHDhik0NFShoaE6efKkpKw9e+Pj4zV79mw988wz6tOnj8LCwjRmzBgdOnQof75RuK358+frqaee0u+//251lHyR/oPxembOOxwO2/4ghet4+eWX9cYbbyg+Pt7qKDfnBi4F82dTaaPT5FzklJl2lQGK/fXnhSvsT79cuRzhrtL/befgvZTTu09r/cD1+uGDH+RMu3KbE59SPpKk1MTUbPdn/Dzk+oKLyMm9XLq1a9aqTLEy6tu7r1JTU1WyVMlMhd507f/VXpK0f+/+G8o2dsxYBfgEaNLESVc97pZbbpEkxZ6LzXY/96AAXBHFXrgVp9OpV199VX5+furdu7fuvPNOffzxx/r888+v+JpGjRqpWbNmkqQ+ffpo6NChGjp0qPz9/bM9/sSJE9q6davq1aunPn36qH379jpy5IhefvllnTlzJk++LxQMCxYs0DvvvKPKlStr6NChbl/0TX8TxuG49o8iwzCyvGkD5NR7772n5557ThUqVHDtom8Oi1HmPlPO+U4ZdxoyOhkyPP5+oWmaMhNMmedNmYdNOT9xSg7JqHyFwSn2ws1lFHWu8/o6tfOUdr+3W4ENA1VzUE05PP7+mWaappLPJ+viuYs6t++cDsw5IMNhqFiNYtkPxvUFF5OTezlJ+nTlp+rWqZuCOwVryowpKlToyh80PnHihCSpRKkSOc71yqhX9OrLr+q9ie9p0JBBmfYlJyfr9KnT+u3ob/po+Uca/+54VbqlkqpWq5rtWNyDAnBFFHvhVlJSUnTPPfdo0KBBevDBB/XUU0+pcuXK+uKLL674mltuuUVVqlSRJDVs2FAtWrRQixYt5OPjk+3xlSpV0rvvvqsePXrogQceUKdOnfTyyy8rJSXlqucBrldqaqomTZrk9kXfY8eOSZKKFSt2zWMDAgL0xx9/5HEiFBSxsbEaOXKkyxZ9zfN/VYKy/zGV+dg9l9oyGLUNGcGGDMc/KljxknOsU85xTjmnOaVYXSoIl86+0mV4GxmvA9xR8tlLC6gVKnztbncnt53U7vG7FXRPkO4YcEeW6ys5Nlkbhm7Qxic2avtr23XhzAXdOehOFSlXJNvxCvleOufFcxdv8rsA8kf6vVlAQMA1j10Rs0K9Qnupe8/u+jDqw0zrp/xTcnKyPnj/A1WuXFn1G9TPUabn//O83h77tj6I+iDbBeNWxKxQlfJVdGe1O9Wza0+VK19O0Uujr1h4DggI0J9//qnU1Oxn5APIX6YNH3ZEz164nQcffDDT13fccYe++uqrXBv/8h6+TqdTCQkJ8vHxUdmyZXXw4MFcO8+NSEhI0B133KE///zT0hy4McnJf6/Qnb768MSJEzVx4kRt27ZN9evn7GY3t6SkpCg2NjbLtosXL+rUqVOZtpcoUeKaszvOnTunX375RW+//bb8/f3VsGHDa2Zo2bKlli9frgkTJqhDhw4KCgqypJ/2d999p9atW+viRX4Rd0UXLvzdm8A0TcXGxuq5557TqFGjlJSUlOuLcZppZtZ2CGmSUiUz4R83hr7KWoj953hJpnRWMjeZkrek8lc/v3O3U+ZSU0YDQ8YjRvbfn6/k6OO4lOkPU+ZP5qV+vFdSQVIhyfmVU442DingsgIwkI+cqU6lJmUuvpipppwpTiWfz/yP2LOI5zWvr5SEFCWdTNKRz47Iw9dD/lWy/4RXuuObjuunqJ9U/r7yqt6rerbXl2dRT9V5to6cKU6dP3xef277M6MncHb8b/WXw9Ohwx8dlmc3T3mX9FYhH35dw8272r3c2bNnJV26Pzt96rSKlyh+XfdyB389qInvTZS/v7/qNah31eMXRS9SRL8I9RvYT2++8+Y1f94+88Qz2vvTXi2KWXTV2b+XM01TTz/xtKZPma6oGVHqEtol2+PubXmvln+yXLGxsfpy3ZfavXt3xjoS2WnZsqXee+89vfjiiwoPD1fZsmXl7e19XZkAwCrcPcCteHp6Zmm/UKRIkav+AM8pp9OpTz/9VKtXr9bJkyczfazHz88v185zI3x9fTV27FiKvS5q8uTJ+uGHHzK+NgxDHh4eatOmjWrWrGlZro0bN+q+++7Lsv2bb77RggULMm07ePCgKleufNXxgoOD9eWXX8rf31/Lli27ruvmiSee0KZNmzRs2DANGzZMX3zxhVq1apWTbyNX3H777Ro7dizFXhf13HPPKTExMdO2okWLqn///rle6JUkHZGcM7J+9NM8asr8IXOx1/Fvh1T86sM5FzilQ5K8JUc3x9WLrGclc4kpo6YhR7sr/9JuFDKkv9a9MW43ZFY15ZzqlFnElHF71vENP0OOEIecS51yTnTKqGPI6EixF/kv9kCsdry+I+uOn6WTW05m2tR0XFP5lva96ni7x+/Wub3n5OHrobuG35UxyzY7SX8maU/kHgU2CtRtvW+74nGOQg6VqHnpI+il6pRSiTtL6LvR38nL30ul6pTKcrx3MW/dGXGn9kTu0Zb/blFQ86CbWmwOSHc993L/avsvSdLufbt1S+Vbrjpejy49tOGrDfL399fchXOvei93+NBhDQwbqOBOwRr37rhrZn3vrfc0Y9oMvfDSC3ro4YeueXy6BXMXKD4+Xu+8/84VC73SpcXk0heUCw4J1rg3xin4kWDt+HFHtgu0dezYUU899ZTGjBmjMWPGaPr06QoLC7vuXABgBYq9cCvX2y/qZixbtkwLFy7Ufffdp65du6po0aIyDEMzZ860vHm/w+FQt27dLM2AG/f555/rhx9+kIeHhzw9PTVs2DCNGDFCpUuXtjRX7dq1tWbNmkzbnn76aQUFBWnEiBGZtgcFBV1zvHHjxmn37t165ZVX1Lt3b+3fv19FimT/kdZ006dP16JFizR06FC1adNGtWvXzvk3kguKFi2q8PBwS86Nmzdq1CglJibKMAyVKlVK//d//6eBAwdesW3PTQv6a9bsZZyfOaWikqPZP35eFb32cI42DpknTZnrTTmXOuUY7pDhdYVCq9+lMc0DpszfTRnlr68ga1QyJD/J3JV9sddMMOX8yCmVloxmhowyFHphjaKViqrOs3Uybft5/s/yCvBSpUcqZdruFeB1zfGqdaum+KPxOrT8kPZE7lHTsU3l4Z39x8y9i3nLq5iXTn9/WnEH4645CzhdQPUAeRXz0vFvjmdb7E2OS9be6XtVpFwRVXy4ovwqWTuJAO7javdywcHBGjx4sN4e/7ZurXZrtgXPfxr9+mjt+WGP3nj1DYX3C9f2H7Zf8V6uTFAZBZUN0ppVa7T9u+2qV//Ks4DnzpqrF59/Uf0H9tezI5/N0ffYuGlj7d61W5M/nKyOnTuqRInr6/XboWMHvfLiK1r50Ur1G9gvy/41a9bo3XffVWhoqLp166bGjRvnKBeA3GWapuV1l8vZKcvlKPYCObRlyxbVrFlTgwZlbvafmJh4xUXdgOtRvHhx+fj42KbIm6548eJ64IEHsmwrW7Zslu3Xo0GDBmrQoIEMw1Dfvn21efNmtW7d+qqvWbFihapUqaL3338/x+cD0pUoUUKFChXK+yLvXwzfv2fNZvC9NDvWuDXnRVKjvCGjvCGnnDJjTOk3SdmvJyMVkhw9HXLOcMo5xylHX4eMwOs8Z6pkXrzCjesRSUl/zSy+0iJuQD7wLOKZMWs2XaEiheRVzCvL9uvhX8Vf/lX8ZRiGfpryk2J/jr3iOA5Ph2o/WVs7Xt+h78d9r7oj66pohet4x0aSM8WptKTsWznE7o9VakKqqg2vpuI1rjHVH8iBq93LpRcvGzRqoDp161zXePXq11O9+vVkGIYeH/i4tm7Zqlb3t8r2WB8fHy1ctlDtH2qvkPYh+vTzT3XHnXdkOW7lipUaOmio/hX8L701/q0cfX+SVPXWqvrfmP/pkQcfUUj7EH206qPr+vRYeounuNi4bPd//PHH8vLy0syZM2nfAMBlsEAbIGX8wv/Pj/dmx+FwZHn3ZtOmTTpz5kyeZEPBMXHiRJ04cUJjx461TaE3L1WqdGnm1blz5655bFxcnCpUqJDHieDutm7dqiNHjmjYsGF5XujNS0bAX0XWf/YD/udxPoYcvR1SEck5yynzzN8/u8xkU2Zy1oKuuceUkiSjXPaF3IwiMO9twk15l7xUzElNvPpiTIUKF1LtEbXl6e+pnW/uVOKJv+8h0y6mZdub9+TWk0pNSJVflewLUKkXLp3Tp4Tr/v8JBUuFipfuzf7ZD/ifAgICtOzjZSpdurQ6PNJBv/7ya6b9G7/eqL69+6pZi2aaMnPKDX9as9ZdtbR4+WLt37tfoSGhSkpKyth3+tTpbGfgzZw2U5JUt37dbMeMi4tT6dKlKfQCcCnM7AUkValSRZK0YMEC3XPPPfLw8FD9+vWzLQbUq1dPS5Ys0QcffKDbb79dR44c0YYNG1SmzLU/8gRczbVaGbib9Bv56/noi2ma+dKmBe6teHE3mSmXXoe9jk+NGUUMOfo45JzqlHOmU47+Dhn+hnT6UgHYqGlIpf4a89il9g0qJhlNrjBrN/2cTOqFm8pJ/24vPy/VHVFX3736nXaO3an6z9eXdwlvJR5P1M6xOxXYOFCFyxaWYRiKOxinE5tOyKeUjyq2qZj9gFxfcDE5uZcrWaqkln+yXA/d95A6PNxBn33xmcqVL6cjh4+oW6duMgxDHTp20LIlyzK9rtZdtVTrrlp/f33bpf/+Yf8Pyk6jxo00f/F8de7QWb279db8xfPl6empBfMWaFrUND36r0dVuUplxZ+P1+drPtcXa7/Qw+0eVsv7WmY7HveggP2Y13MTXMBR7AUkVatWTV27dtXnn3+unTt3yjRNvf/++9kWezt27KiLFy9q48aN2rRpk6pUqaL//Oc/mj9/vgXJAdfl4XGpF2L6x+euJikpyfIFEAHb+Ot3TjPVlHEdVSHD35DjMYec05xyzrrU0kH+knGHIfOgKX0vKU2XiryNDBn3GjIKX2HclMwZAHdjOC7923cmZ11cMTveJbxV59k62v7adu14c4fq/beevEt4q3SD0jq756yObzguZ5pTPiV9VKF1Bd3yr1vkWdQz27HSki/NBjY8qPbCNeTkXk6SypUvp+WfLlfb1m3V4ZEOWrV2lQ4fOpwxM/jpJ57O8prnXnguU7E3ISFBVW+9Ug+jS1re11Iz585Ur269NLDvQE2bNU1NmzXVt5u/1eKFi3XyxEkVKlRI1W+rrtfGvqZBQwZdcaykpCQVKkTZBIBr4f9acFmtWrVSq1atMr4ePHiwBg8enOW4Ll26qEuXzCuyRkdHZzmuU6dO6tSpU5btEyZMyPS1p6enevfurd69e2faPmrUqExfBwYGZnsewB2sX7/+pscoX768JGnhwoVq0qSJgoKCVLTo3z0PnU6n/vzzT/3000/avXt3lusYcEUefbNf8ClH/nrfw/zRlFnBlIpKhvffxaHszmGUMOTxTObtxr+uv6BkXjCleMn8yZQ8JBWsDyLARdQbeeWFn66Xd/FLH9U++e1J+Vfzl1eAlwr5/P0rU3bnKFymsJq/1zzTthp9a1z3OVMTU5Ucl6w/v/tThochL79rLygH3Kz0e7nt27ff8Bhly5WVJC1bvEwNGzVUmaAyme7lPlnzSZbXVL21qvYf2p/xdYuWLRR3Mft+uf+096e9On3qtD6M+jDT9uxe/0j7R3Qm4e82e/Xq19PMeTOv6zzpfvzxR23YsEHVqlXL0esAwGrMywAAWKJq1arq2rWrPvroI1WvXl1Dhw7NtP/IkSMKCgrSfffdJy8vLz3++OMWJQXsxShhXGq/sE9yjnfK/CTvP8rmnO+U832n9OulFg9GIWYewj35BvoqsFGgTu08pc3Pbtb+2fuv/aKbtOu9Xdr8n806++NZVXyoohye/IoG11ClahWFdA7Rpys/Vd2adfXMv5/J0/N9tf4rNWrSSG0faZun50nXp08fnTlzRv/+97/z5XwArs2UKdO00dOmLSWY2QsAsEx0dLTGjRunQ4cOqWTJkpn2BQUFae3atQoICFDNmjVdekEtILc5ujpkxprSOUm++XC+hxxSqqQSklGUQi/cW60htXSh2wVdOHXhii0XclP17tWVlpymwmUKyyuAWb1wLTPmztDo10fryOEjKlGyRJ6eK/zxcIU/Hp6n57jczJkzFRISkmm2MgC4Aoq9AABLVaxYURUrZl2sxsfHR/fff78FiQDXYAQYUkA+nascBV4ULD4lfeRTMn/eZPSrTE96uLYKFSuoQsUKVsfIdbVq1aLQC8AlUewFAAAAAAAAYGum7NU6wU5ZLkdDKAAAAAAAAABwAxR7gesUGhqqRYsW5fh1J0+eVGhoaMaKtwAAAAAAAChYXnrpJRmGkelZo0aNXD8PxV64nPXr1ys0NFShoaHau3dvlv2maWrw4MEKDQ3VG2+8YUFCAFeycOFC3X333fL19VXfvn0z7Tt06JA8PDxUunRpdevWTefOnbMmJODCnD84lfZBmtL+lybnMmemfeZZU2kvpSntjTQ5FzllJtnzY2eAnZ3YckJbnt+i9QPWa0/Unkz7kv5M0rqwdfp66Nf64YMflJKQYlFKwDUtXbxUTes3VWBAoB4f+HimfYcPHVYx32KqUr6KwnqFcZ8IFFCmadrumVM1a9bUH3/8kfHcsGFDrv890bMXLsvT01MbNmzI8i7Inj17dPr0aXl65v3qyQCuX0JCgsLCwlSmTBm9/vrratSoUab9pUuX1tSpU/Xdd99pwoQJuu222/TKK69YlBZwPWayKTPGlIpIxgOGjAr/WFStiGR0MKRjkvmtKZWUjPtZeA24XmkX0/TTlJ/k5e+lW7veKv+q/pn2e/l76Y7+d+j8ofP67fPfVDiosKqGVLUoLeBaEhIS9PiAxxUYGKiXRr+k+g3rZ9pfqnQpTYycqB3bd2jyh5NVrXo1vTDqBYvSAsCNK1SokIKCgvL2HHk6OpCH6tatq82bN6tv377y8PDI2L5x40ZVrVpV58+ftzAdgH/66aeflJSUpKefflpDhw7Nsr9IkSIKCwtTWFiYPvvsM+3cuTP/QwKu7E9JKZJxjyFH46wf3jK8DBl1DamulPZLmszjzOwFciLhWIKcyU5ValtJFR6skGW/h7eHyrYoq7Ityur07tOKPxxvQUrANe3bu09JSUka+u+hihgckWV/kSJF1LNPT/Xs01Nr16zV7u93W5ASALIXFxeX6Wtvb295e3tne+yBAwdUrlw5+fj4qGnTphozZowqVaqUq3ko9sJlNWvWTFu3btWuXbtUt25dSVJqaqo2b96skJAQrVq1KtPxFy5c0MKFC7V582bFxsaqdOnSat26tR599FEZxt8zm1JSUjRv3jx9/fXXSklJUc2aNdW/f/9sM5w5c0bR0dHasWOHEhISFBQUpEcffVT33Xdf3n3jgItKSEiQJJUpU+aaxwYFBfGGDZBTf31i3Ch6HbN1i0q6mKdpALeTdjFNkuQV4HXNY70CvJR6ITWvIwFuIzEhUZIUWCbwmseWCSqj+HjeTAEKIvOvh12kZ6lYsWKm7aNGjdJLL72U5fjGjRtrxowZuv322/XHH3/o5ZdfVosWLfTDDz/Iz88v13JR7IXLKl26tKpXr66NGzdmFHt37NihxMRE3XPPPZmKvaZp6s0339SPP/6o++67T5UrV9b333+vOXPm6MyZM3rssccyjo2MjNTXX3+tZs2a6fbbb9cPP/yg119/Pcv5z507pxdeuPTRoYceekj+/v7auXOnJk2apMTERLVr1y6P/wYA15Lez+jyN1euxOFw3FD/I6BAy8klQ/cGIOfSr7HruH4MBxcZkBPcJwJwZUePHpW//9/tna40q/fhhx/O+O+7775bjRs31i233KKFCxdecZLhjaDYC5fWvHlzzZ8/X8nJyfLy8tKGDRt05513qkSJEpmO27Ztm3744QeFhoYqJCRE0qUC7dtvv61PP/1UDz30kIKCgnTo0CF9/fXXatOmTcaF9tBDD2n8+PE6cuRIpjEXLFggp9OpN998M+MdmAcffFDvvfeeFi9erAcffFBeXtee+QEUFE7npcWiHI5rrw1qGIbS0tLyOhLgXnJQiMp0PIDrklFcus5rzHRykQHXi/tEAK7M398/U7H3ehUrVky33Xabfv7551zNc+3/kwI21rRpUyUnJ+u7775TUlKStm/frmbNmmU5bseOHXI4HJneRZGkRx99VKZpZvQG3bFjhyRlOe6RRx7J9LVpmvr2229Vr149maapuLi4jGft2rWVmJioX3/9NRe/U8D1HTt2TNKlH2jXEhAQoD/++COPEwHuxTz/V2HJ5zoO9pFEpxQgR5LPJkuSChW+9nyZQoULKTk2Oa8jAW4j/b4vICDgmsf6+/vr+B/H8zoSABsyTdN2z5sRHx+vX375RWXLls2lv6FLmNkLl+bv76+77rpLGzduVHJyspxOp5o0aZLluFOnTql48eLy9fXNtL1ChQoZ+9P/NAwjS0/RcuXKZfo6Li5OCQkJWrt2rdauXZtttn826AYKqnPnzumXX37R22+/LX9/fzVs2PCar2nZsqWWL1+uCRMmqEOHDgoKCpKnp2c+pAVcj5lkSmclc5MpeUsqf+3XGLcYMveacm5xyqhhSEUlw4OPnQPZSUlIUdLJJB357Ig8fD3kX+XaM3eK3V5Mp7af0m9rflOpeqXkFeAlRyHm2QD/dO7cOR389aAmvjdR/v7+qteg3jVf06xFM638aKUiP4hUu/btVCaoDPeJAFzCM888o/bt2+uWW27RsWPHNGrUKHl4eKh79+65eh6KvXB5zZo10+TJk3Xu3DnVqVNHRYoUyfNzpr9706JFC917773ZHnPLLbfkeQ4gvyUnJ+vMmTOZtpUuXVoeHh5XfE1wcLC+/PJL+fv7a9myZdfVeP6JJ57Qpk2bNGzYMA0bNkxffPGFWrVqdbPxAdszU00p6R8bi1y9/6dzgVM6JMlbcnRzyPC+dtHWaGJIv0nmJ6bMT0w5whxSlZuKDrgEZ6pTKfEpmbZ5+Xtd9RrbPX63zu09Jw9fD901/C4V8r32r1AV21RU3M9x2j9nv/bP2a+6z9VV8TuK33R+wM6Sk5N19szZTNtKlS511fvEHl16aMNXG+Tv76+5C+de133i4GGDtXXLVo14coRGPDlCK1evVIuWLW46PwDktd9++03du3fX6dOnVbp0aTVv3lybN29W6dKlc/U8FHvh8ho1aqSoqCgdOHBA//73v7M9plSpUtq9e7eSkpIyze79/fffM/an/2mapk6cOJFpNm/6x8/T+fv7y9fXV06nU3fffXcuf0eAfX3zzTe67777Mm07ePCgKleufMXXjBs3Trt379Yrr7yi3r17a//+/dd8U2b69OlatGiRhg4dqjZt2qh27dq5ER+wv6OSc4Yz0ybHvx3SVWpEjjYOmSdNmetNOZc65RjukOF19YKvucOU+aMpo5Eho5ohBeVGeMD+Yg/EasfrOzJtazquqXxL+17hFVK1btUUfzReh5Yf0p7IPWo6tqk8vK9cvJKkP77+Qye3nlSFByqoRK0SKlqpaK7kB+xsy6Ytatcm8yLVu/ft1i2VrzwJZvTro7Xnhz1649U3FN4vXNt/2H7N+8Q5M+do2ZJlCn88XK0faK1ad9fKlfwA7M/862EXOc2yYMGCPEqSGcVeuDwfHx8NGDBAJ0+eVP369bM9pm7dulq7dq1WrVqljh07ZmxfuXKlDMNQnTp1Mo5bsGCBPv3000wrIX7yySeZxnM4HGrUqJE2btyoI0eOqFKlSpn2x8XF3VBzbsDuateurTVr1mTaFhR09SpRgwYN1KBBAxmGob59+2rz5s1q3br1VV+zYsUKValSRe+///5NZwZcSpDk6POPj3pfo0ZklDdklDfklFNmjCn9Jqnq1V9j7jOl4pKjHR8rR8FStFJR1Xm2TqZtXgFXX1DXv4q//Kv4yzAM/TTlJ8X+HKsSNUtc9TWndpyST2kf3db7tpuNDLiMWnfX0vJPlmfaViaozBWOvqRe/XqqV7+eDMPQ4wMf19YtW9Xq/lZXfc0nH3+iypUra9y74242MgC4JYq9cAstW7a86v769eurZs2aio6O1p9//qlbbrlFu3bt0rZt2/TII49kFKsqV66sZs2aafXq1UpMTNRtt92mH374QcePZ10AoEePHtqzZ49eeOEF3X///apQoYLi4+N18OBB7d69W9OmTcuT7xWwUvHixfXAAw/c0GvT3xQ5d+7cNY+Ni4vL6KkNFCSGryHdeoOvDTAuzS64cB0HX5TEe5IogDyLeF6zUHsl3iW9JUmpianXPDY1KVXexb1v6DyAqypevLjua33ftQ/MRoWKl+77YmNjr3ns+fPnVa5CuWseBwAFFcVeFAgOh0PPPvusFi5cqG+++Ubr169XYGCgevXqpUcffTTTsYMGDZK/v782bNigrVu3qlatWnruuec0ePDgTMcVK1ZMr776qpYsWaJvv/1Wq1evlp+fnypUqKCePXvm57cHuASH49IMwutZsdQ0zYzjAVyn9M4N1/tpMtZjA3LEMHJ20VytDzCAzLhPBHA9TNO8rv9P5Bc7ZbkcxV64nFatWl3XQk0TJkzI9LWPj4/69OmjPn36XPV1Xl5eCgsLU1hYWKbt0dHRWY4NCAhQv3791K9fvyuOFxgYmO1rgYImfXGOCxeuPe0wKSnpuhboAHCZv37vNVNNGdeq5KZIYtIhkCPpxVtnsvMaR146xsPn6n19Afwtx/eJRblPBIAr4e0wAEC+KF++vCRp4cKF+vnnnxUfH59pv9Pp1IkTJ7R+/Xrt3r0743gA1+mv33vNH02Zp02ZFzPPNDCdpsx4U+ZBUzopGX7MOgRyIr0tw8lvTyrxRKJSL2Ru52A6TSXHJuvsT2cV/1s8bRyAHChbrqwkadniZfrl51+yvU88eeKkvv7ya+35YY/Kli9rRUwAcAkUewEA+aJq1arq2rWrPvroI1WvXl1Dhw7NtP/IkSMKCgrSfffdJy8vLz3++OMWJQVck1HCkFHTkPZJzvFOmZ/842NlsZLzTaecM5ySh2Q0pNgL5IRvoK8CGwXq1M5T2vzsZu2fvT/T/gunL2jD8A3a8foOOQo5VP5+3rQErleVqlUU0jlEn678VHVr1tUz/34m0/6jR46qWqVqatemnby8vNQ/vP8VRgLgzkwbPuyINg4AgHwTHR2tcePG6dChQypZsmSmfUFBQVq7dq0CAgJUs2ZN+fj4WJQScF2Org6ZsaZ0TpLvP3YWlRyPOSQfSaUlw5NiL5BTtYbU0oVuF3Th1AV5FvXMtM8rwEt1/lNHhXwLqUj5IvLwoo0DkBMz5s7Q6NdH68jhIypRMvNCimWCyuijVR/JP8Bfd9x5B/eJAHAVFHsBAPmqYsWKqlixYpbtPj4+uv/++y1IBLgXI8CQArLZ7mlIVfM/D+BufEr6yKdk1kKTh5eHStxZIptXALheFSpWUIWKFbJs9/HxUcv7WlqQCABcD8VeAAAAAAAAALZmmqZM0z6tE+yU5XL07AUAAAAAAAAAN8DMXtjG77//bnUE2+DvArntp59+sjqCrfD3gdxmnrLnu/pW4e8DuS3hWILVEWyFvw/ktn1791kdwTb4uwDg6ij2wnJ+fn6SpAkTJlicxH7S/26AG5X+b6hXr14WJ7EnrjHcrPR/Q+YS+67GayWuMdys9H9DeyL3WJzEnrjGcLPS/w0NDBtocRL74foC7MeUve657ZTlcoZp1wYTKFAOHDig8+fPWx3DVvz8/FS9enWrY8ANcH1lj2sMuYVrLHtcY8gtXGPZ4xpDbuEay4rrC7CXuLg4BQQEKOjVIDl87NOR1nnBqePPH1dsbKz8/f2tjpOBYi8AAAAAAAAAW6LYmzO0cQAAAAAAAABga6Zpyk5zVu2U5XL2KYcDAAAAAAAAAG4YxV4AAAAAAAAAcAO0cQAAAAAAAABga+ZfD7uwU5bLMbMXAAAAAAAAANwAxV4AAAAAAAAAcAO0cQAAAAAAAABga6ZpyjTt0zrBTlkux8xeAAAAAAAAAHADFHsBAAAAAAAAwA3QxgEAAAAAAACArZl/PezCTlkux8xeAAAAAAAAAHADFHsBAAAAAAAAwA3QxgEAAAAAAACArZmmKdO0T+sEO2W5HDN7AQAAAAAAAMANUOwFAAAAAAAAADdAGwcAAAAAAAAAtmb+9bALO2W5HDN7AQAAAAAAAMANUOwFAAAAAAAAADdAGwcAAAAAAAAAtmaapkzTPq0T7JTlcszsBQAAAAAAAAA3QLEXAAAAAAAAANwAbRwAAAAAAAAA2J4pe7ZOsBNm9gIAAAAAAACAG6DYCwAAAAAAAABugDYOAAAAAAAAAGzNNE3ZqYuDadoozGWY2QsAAAAAAAAAboBiLwAAAAAAAAC4Ado4AAAAAAAAALA10049HGS/POmY2QsAAAAAAAAAboBiLwAAAAAAAAC4Ado4AAAAAAAAALA10zRlp84JpmmjMJdhZi8AAAAAAAAAuAGKvQAAAAAAAADgBmjjAAAAAAAAAMDWTDv1cJD98qRjZi8AAAAAAAAAuAGKvQAAAAAAAADgBmjjAAAAAAAAAMDWTNOUnTonmKaNwlyGmb0AAAAAAAAA4AYo9gIAAAAAAACAG6CNAwAAAAAAAABbM+3Uw0H2y5OOmb0AAAAAAAAA4AYo9gIAAAAAAACAG6CNAwAAAAAAAABbM01TduqcYJo2CnMZZvYCAAAAAAAAgBug2AsAAAAAAAAAboA2DgAAAAAAAABszbRTDwfZL086ZvYCAAAAAAAAgBug2AsAAAAAAAAAboA2DgAAAAAAAABszTRN2alzgmnaKMxlmNkLAAAAAAAAAG6AYi8AAAAAAAAAuAHaOAAAAAAAAACwNdNOPRxkvzzpmNkLAAAAAAAAAG6AYi8AAAAAAAAAuAHaOAAAAAAAAACwNdM0ZafOCaZpozCXYWYvAAAAAAAAALgBir0AAAAAAAAA4AZo4wAAAAAAAADA1kw79XCQ/fKkY2YvAAAAAAAAALgBir0AAAAAAAAA4AZo4wAAAAAAAADA1kzTlJ06J5imjcJchpm9AAAAAAAAAOAGKPYCAAAAAAAAgBugjQMAAAAAAAAAWzPt1MNB9suTjpm9AAAAAAAAAOAGKPYCAAAAAAAAgBugjQMAAAAAAAAAWzNNU3bqnGCaNgpzGWb2AgAAAAAAAIAboNgLAAAAAAAAAG6ANg4AAAAAAAAAbM20Uw8H2S9POmb2AgAAAAAAAIAboNgLAAAAAAAAAG6ANg4AAAAAAAAAbM00Tdmpc4Jp2ijMZZjZCwAAAAAAAABugGIvAAAAAAAAALgBir0AAAAAAAAAbM+00eNGTZw4UZUrV5aPj48aN26sb7/9Nhf/hij2AgAAAAAAAECei46O1lNPPaVRo0Zp+/btql27th566CGdPHky185BsRcAAAAAAAAA8tjbb7+tgQMHqm/fvrrzzjs1adIkFS5cWNOmTcu1cxTKtZEAAAAAAAAAIC9ctDrAP/yVJy4uLtNmb29veXt7Zzk8OTlZ3333nUaOHJmxzeFw6IEHHtCmTZtyLRbFXgAAAAAAAAC25OXlpaCgIB1/57jVUbIoWrSoKlasmGnbqFGj9NJLL2U59tSpU0pLS1OZMmUybS9Tpoz27t2ba5ko9gIAAAAAAACwJR8fHx08eFDJyclWR8nCNE0ZhpFpW3azevMTxV4AAAAAAAAAtuXj4yMfHx+rY9yUUqVKycPDQydOnMi0/cSJEwoKCsq187BAGwAAAAAAAADkIS8vL9WvX19r167N2OZ0OrV27Vo1bdo0187DzF4AAAAAAAAAyGNPPfWUHnvsMTVo0ECNGjXSu+++q4SEBPXt2zfXzkGxFwAAAAAAAADyWGhoqP7880+9+OKLOn78uOrUqaNVq1ZlWbTtZhimaZq5NhoAAAAAAAAAwBL07AUAAAAA4P/bsQMZAAAAgEH+1vf4CiMAGJC9AAAAAAADshcAAAAAYED2AgAAAAAMyF4AAAAAgAHZCwAAAAAwIHsBAAAAAAZkLwAAAADAgOwFAAAAABiQvQAAAAAAA7IXAAAAAGAgt2gFN0pxhCoAAAAASUVORK5CYII=", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], + "outputs": [], "source": [ "# # Customize the colors\n", "# criterion_values = [model.get_criterion(petab_select.Criterion.AICC) for model in models]\n", diff --git a/doc/examples/workflow_cli.ipynb b/doc/examples/workflow_cli.ipynb index a531538..6ddd902 100644 --- a/doc/examples/workflow_cli.ipynb +++ b/doc/examples/workflow_cli.ipynb @@ -13,7 +13,7 @@ }, { "cell_type": "code", - "execution_count": 1, + "execution_count": null, "id": "18dbcbbb", "metadata": {}, "outputs": [], @@ -63,7 +63,7 @@ }, { "cell_type": "code", - "execution_count": 2, + "execution_count": null, "id": "eab391ee", "metadata": {}, "outputs": [], @@ -90,66 +90,10 @@ }, { "cell_type": "code", - "execution_count": 3, + "execution_count": null, "id": "1f6ac569", "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "- model_subspace_id: M1_0\n", - " model_subspace_indices:\n", - " - 0\n", - " - 0\n", - " - 0\n", - " criteria: {}\n", - " model_hash: M1_0-000\n", - " model_subspace_petab_yaml: ../model_selection/petab_problem.yaml\n", - " estimated_parameters: null\n", - " iteration: 1\n", - " model_id: M1_0-000\n", - " parameters:\n", - " k1: 0\n", - " k2: 0\n", - " k3: 0\n", - " predecessor_model_hash: virtual_initial_model-\n", - "- model_subspace_id: M1_1\n", - " model_subspace_indices:\n", - " - 0\n", - " - 0\n", - " - 0\n", - " criteria: {}\n", - " model_hash: M1_1-000\n", - " model_subspace_petab_yaml: ../model_selection/petab_problem.yaml\n", - " estimated_parameters: null\n", - " iteration: 1\n", - " model_id: M1_1-000\n", - " parameters:\n", - " k1: 0.2\n", - " k2: 0.1\n", - " k3: estimate\n", - " predecessor_model_hash: virtual_initial_model-\n", - "- model_subspace_id: M1_2\n", - " model_subspace_indices:\n", - " - 0\n", - " - 0\n", - " - 0\n", - " criteria: {}\n", - " model_hash: M1_2-000\n", - " model_subspace_petab_yaml: ../model_selection/petab_problem.yaml\n", - " estimated_parameters: null\n", - " iteration: 1\n", - " model_id: M1_2-000\n", - " parameters:\n", - " k1: 0.2\n", - " k2: estimate\n", - " k3: 0\n", - " predecessor_model_hash: virtual_initial_model-\n", - "\n" - ] - } - ], + "outputs": [], "source": [ "with open(output_path / \"uncalibrated_models_1.yaml\") as f:\n", " print(f.read())" @@ -171,7 +115,7 @@ }, { "cell_type": "code", - "execution_count": 4, + "execution_count": null, "id": "73665662-60ea-425c-843e-24a98c64c6a6", "metadata": {}, "outputs": [], @@ -205,70 +149,10 @@ }, { "cell_type": "code", - "execution_count": 5, + "execution_count": null, "id": "703da45d", "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "- model_subspace_id: M1_0\n", - " model_subspace_indices:\n", - " - 0\n", - " - 0\n", - " - 0\n", - " criteria:\n", - " AIC: 180\n", - " model_hash: M1_0-000\n", - " model_subspace_petab_yaml: ../model_selection/petab_problem.yaml\n", - " estimated_parameters: {}\n", - " iteration: 1\n", - " model_id: M1_0-000\n", - " parameters:\n", - " k1: 0\n", - " k2: 0\n", - " k3: 0\n", - " predecessor_model_hash: virtual_initial_model-\n", - "- model_subspace_id: M1_1\n", - " model_subspace_indices:\n", - " - 0\n", - " - 0\n", - " - 0\n", - " criteria:\n", - " AIC: 100\n", - " model_hash: M1_1-000\n", - " model_subspace_petab_yaml: ../model_selection/petab_problem.yaml\n", - " estimated_parameters: {}\n", - " iteration: 1\n", - " model_id: M1_1-000\n", - " parameters:\n", - " k1: 0.2\n", - " k2: 0.1\n", - " k3: estimate\n", - " predecessor_model_hash: virtual_initial_model-\n", - "\n", - "- model_subspace_id: M1_2\n", - " model_subspace_indices:\n", - " - 0\n", - " - 0\n", - " - 0\n", - " criteria:\n", - " AIC: 50\n", - " model_hash: M1_2-000\n", - " model_subspace_petab_yaml: ../model_selection/petab_problem.yaml\n", - " estimated_parameters: {}\n", - " iteration: 1\n", - " model_id: M1_2-000\n", - " parameters:\n", - " k1: 0.2\n", - " k2: estimate\n", - " k3: 0\n", - " predecessor_model_hash: virtual_initial_model-\n", - "\n" - ] - } - ], + "outputs": [], "source": [ "with open(\"model_selection/calibrated_models_1.yaml\") as f:\n", " print(f.read())" @@ -284,7 +168,7 @@ }, { "cell_type": "code", - "execution_count": 6, + "execution_count": null, "id": "22dfcc1f", "metadata": {}, "outputs": [], @@ -328,50 +212,10 @@ }, { "cell_type": "code", - "execution_count": 7, + "execution_count": null, "id": "dd2f8850", "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "- model_subspace_id: M1_4\n", - " model_subspace_indices:\n", - " - 0\n", - " - 0\n", - " - 0\n", - " criteria: {}\n", - " model_hash: M1_4-000\n", - " model_subspace_petab_yaml: ../model_selection/petab_problem.yaml\n", - " estimated_parameters: null\n", - " iteration: 1\n", - " model_id: M1_4-000\n", - " parameters:\n", - " k1: 0.2\n", - " k2: estimate\n", - " k3: estimate\n", - " predecessor_model_hash: M1_2-000\n", - "- model_subspace_id: M1_6\n", - " model_subspace_indices:\n", - " - 0\n", - " - 0\n", - " - 0\n", - " criteria: {}\n", - " model_hash: M1_6-000\n", - " model_subspace_petab_yaml: ../model_selection/petab_problem.yaml\n", - " estimated_parameters: null\n", - " iteration: 1\n", - " model_id: M1_6-000\n", - " parameters:\n", - " k1: estimate\n", - " k2: estimate\n", - " k3: 0\n", - " predecessor_model_hash: M1_2-000\n", - "\n" - ] - } - ], + "outputs": [], "source": [ "with open(output_path / \"uncalibrated_models_2.yaml\") as f:\n", " print(f.read())" @@ -387,7 +231,7 @@ }, { "cell_type": "code", - "execution_count": 8, + "execution_count": null, "id": "29cb0d84-4399-4e6b-895c-e92f9cc82d68", "metadata": {}, "outputs": [], @@ -421,37 +265,10 @@ }, { "cell_type": "code", - "execution_count": 9, + "execution_count": null, "id": "54c5b027", "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "model_subspace_id: M1_4\n", - "model_subspace_indices:\n", - "- 0\n", - "- 0\n", - "- 0\n", - "criteria:\n", - " AIC: 15\n", - "model_hash: M1_4-000\n", - "model_subspace_petab_yaml: ../model_selection/petab_problem.yaml\n", - "estimated_parameters:\n", - " k2: 0.15\n", - " k3: 0.0\n", - "iteration: 1\n", - "model_id: M1_4-000\n", - "parameters:\n", - " k1: 0\n", - " k2: estimate\n", - " k3: estimate\n", - "predecessor_model_hash: M1_2-000\n", - "\n" - ] - } - ], + "outputs": [], "source": [ "with open(\"model_selection/calibrated_M1_4.yaml\") as f:\n", " print(f.read())" @@ -459,7 +276,7 @@ }, { "cell_type": "code", - "execution_count": 10, + "execution_count": null, "id": "818e59e4", "metadata": {}, "outputs": [], @@ -485,34 +302,10 @@ }, { "cell_type": "code", - "execution_count": 11, + "execution_count": null, "id": "9f393030", "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "- model_subspace_id: M1_7\n", - " model_subspace_indices:\n", - " - 0\n", - " - 0\n", - " - 0\n", - " criteria: {}\n", - " model_hash: M1_7-000\n", - " model_subspace_petab_yaml: ../model_selection/petab_problem.yaml\n", - " estimated_parameters: null\n", - " iteration: 2\n", - " model_id: M1_7-000\n", - " parameters:\n", - " k1: estimate\n", - " k2: estimate\n", - " k3: estimate\n", - " predecessor_model_hash: M1_4-000\n", - "\n" - ] - } - ], + "outputs": [], "source": [ "with open(output_path / \"uncalibrated_models_3.yaml\") as f:\n", " print(f.read())" @@ -520,7 +313,7 @@ }, { "cell_type": "code", - "execution_count": 12, + "execution_count": null, "id": "a4084bd1-5bd7-4e12-8146-67137da4909a", "metadata": {}, "outputs": [], @@ -547,38 +340,10 @@ }, { "cell_type": "code", - "execution_count": 13, + "execution_count": null, "id": "9ef2fe2f", "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "model_subspace_id: M1_7\n", - "model_subspace_indices:\n", - "- 0\n", - "- 0\n", - "- 0\n", - "criteria:\n", - " AIC: 20\n", - "model_hash: M1_7-000\n", - "model_subspace_petab_yaml: ../model_selection/petab_problem.yaml\n", - "estimated_parameters:\n", - " k1: 0.25\n", - " k2: 0.1\n", - " k3: 0.0\n", - "iteration: 2\n", - "model_id: M1_7-000\n", - "parameters:\n", - " k1: estimate\n", - " k2: estimate\n", - " k3: estimate\n", - "predecessor_model_hash: M1_4-000\n", - "\n" - ] - } - ], + "outputs": [], "source": [ "with open(\"model_selection/calibrated_M1_7.yaml\") as f:\n", " print(f.read())" @@ -586,7 +351,7 @@ }, { "cell_type": "code", - "execution_count": 14, + "execution_count": null, "id": "35ed7ceb-6783-4956-9951-dbc55bfa9239", "metadata": {}, "outputs": [], @@ -604,19 +369,10 @@ }, { "cell_type": "code", - "execution_count": 15, + "execution_count": null, "id": "5fe1e848-e112-4ad2-ae09-57cdb7506ff8", "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "[]\n", - "\n" - ] - } - ], + "outputs": [], "source": [ "with open(output_path / \"uncalibrated_models_4.yaml\") as f:\n", " print(f.read())" @@ -624,7 +380,7 @@ }, { "cell_type": "code", - "execution_count": 16, + "execution_count": null, "id": "02df7ed9-422d-4f28-9b01-8670be873933", "metadata": {}, "outputs": [], @@ -641,19 +397,10 @@ }, { "cell_type": "code", - "execution_count": 17, + "execution_count": null, "id": "57e483fd-5ffa-48a4-8c2a-359f6ebd1422", "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "terminate: true\n", - "\n" - ] - } - ], + "outputs": [], "source": [ "with open(\"output_cli/metadata.yaml\") as f:\n", " print(f.read())" @@ -670,7 +417,7 @@ }, { "cell_type": "code", - "execution_count": 18, + "execution_count": null, "id": "d5b5087d", "metadata": {}, "outputs": [], @@ -691,66 +438,10 @@ }, { "cell_type": "code", - "execution_count": 19, + "execution_count": null, "id": "30721bfa", "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "- model_subspace_id: M1_3\n", - " model_subspace_indices:\n", - " - 0\n", - " - 0\n", - " - 0\n", - " criteria: {}\n", - " model_hash: M1_3-000\n", - " model_subspace_petab_yaml: ../model_selection/petab_problem.yaml\n", - " estimated_parameters: null\n", - " iteration: 1\n", - " model_id: M1_3-000\n", - " parameters:\n", - " k1: estimate\n", - " k2: 0.1\n", - " k3: 0\n", - " predecessor_model_hash: virtual_initial_model-\n", - "- model_subspace_id: M1_5\n", - " model_subspace_indices:\n", - " - 0\n", - " - 0\n", - " - 0\n", - " criteria: {}\n", - " model_hash: M1_5-000\n", - " model_subspace_petab_yaml: ../model_selection/petab_problem.yaml\n", - " estimated_parameters: null\n", - " iteration: 1\n", - " model_id: M1_5-000\n", - " parameters:\n", - " k1: estimate\n", - " k2: 0.1\n", - " k3: estimate\n", - " predecessor_model_hash: virtual_initial_model-\n", - "- model_subspace_id: M1_6\n", - " model_subspace_indices:\n", - " - 0\n", - " - 0\n", - " - 0\n", - " criteria: {}\n", - " model_hash: M1_6-000\n", - " model_subspace_petab_yaml: ../model_selection/petab_problem.yaml\n", - " estimated_parameters: null\n", - " iteration: 1\n", - " model_id: M1_6-000\n", - " parameters:\n", - " k1: estimate\n", - " k2: estimate\n", - " k3: 0\n", - " predecessor_model_hash: virtual_initial_model-\n", - "\n" - ] - } - ], + "outputs": [], "source": [ "with open(output_path / \"uncalibrated_models_5.yaml\") as f:\n", " print(f.read())" @@ -767,7 +458,7 @@ }, { "cell_type": "code", - "execution_count": 20, + "execution_count": null, "id": "73d54111", "metadata": {}, "outputs": [], @@ -787,37 +478,10 @@ }, { "cell_type": "code", - "execution_count": 21, + "execution_count": null, "id": "c36564f1", "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "model_subspace_id: M1_4\n", - "model_subspace_indices:\n", - "- 0\n", - "- 0\n", - "- 0\n", - "criteria:\n", - " AIC: 15.0\n", - "model_hash: M1_4-000\n", - "model_subspace_petab_yaml: ../model_selection/petab_problem.yaml\n", - "estimated_parameters:\n", - " k2: 0.15\n", - " k3: 0.0\n", - "iteration: 1\n", - "model_id: M1_4-000\n", - "parameters:\n", - " k1: 0\n", - " k2: estimate\n", - " k3: estimate\n", - "predecessor_model_hash: M1_2-000\n", - "\n" - ] - } - ], + "outputs": [], "source": [ "with open(output_path / \"best_model.yaml\") as f:\n", " print(f.read())" @@ -833,18 +497,10 @@ }, { "cell_type": "code", - "execution_count": 22, + "execution_count": null, "id": "d5d03cd6", "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "petab_select/doc/examples/output_cli/best_model_petab/problem.yaml\n" - ] - } - ], + "outputs": [], "source": [ "%%bash -s \"$output_path_str\"\n", "output_path_str=$1\n", diff --git a/doc/examples/workflow_python.ipynb b/doc/examples/workflow_python.ipynb index 2b1f667..c943565 100644 --- a/doc/examples/workflow_python.ipynb +++ b/doc/examples/workflow_python.ipynb @@ -27,22 +27,10 @@ }, { "cell_type": "code", - "execution_count": 1, + "execution_count": null, "id": "eab391ee", "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Information about the model selection problem:\n", - "Method: Method.FORWARD\n", - "Criterion: Criterion.AIC\n", - "Format version: 1.0.0\n", - "\n" - ] - } - ], + "outputs": [], "source": [ "import petab_select\n", "from petab_select import Model\n", @@ -130,7 +118,7 @@ }, { "cell_type": "code", - "execution_count": 2, + "execution_count": null, "id": "f0f327ad", "metadata": {}, "outputs": [], @@ -160,25 +148,10 @@ }, { "cell_type": "code", - "execution_count": 3, + "execution_count": null, "id": "edefa697", "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Model subspace ID: M1_0\n", - "PEtab YAML location: model_selection/petab_problem.yaml\n", - "Custom model parameters: {'k1': 0, 'k2': 0, 'k3': 0}\n", - "Model hash: M1_0-000\n", - "Model ID: M1_0-000\n", - "Criterion.AIC: None\n", - "Model was calibrated in iteration: 1\n", - "\n" - ] - } - ], + "outputs": [], "source": [ "for candidate_model in iteration[UNCALIBRATED_MODELS]:\n", " print_model(candidate_model)" @@ -194,7 +167,7 @@ }, { "cell_type": "code", - "execution_count": 4, + "execution_count": null, "id": "0f027ef2", "metadata": {}, "outputs": [], @@ -212,25 +185,10 @@ }, { "cell_type": "code", - "execution_count": 5, + "execution_count": null, "id": "1c51dd49", "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Model subspace ID: M1_0\n", - "PEtab YAML location: model_selection/petab_problem.yaml\n", - "Custom model parameters: {'k1': 0, 'k2': 0, 'k3': 0}\n", - "Model hash: M1_0-000\n", - "Model ID: M1_0-000\n", - "Criterion.AIC: 200.0\n", - "Model was calibrated in iteration: 1\n", - "\n" - ] - } - ], + "outputs": [], "source": [ "local_best_model = petab_select.ui.get_best(\n", " problem=select_problem, models=iteration_results[MODELS]\n", @@ -257,7 +215,7 @@ }, { "cell_type": "code", - "execution_count": 6, + "execution_count": null, "id": "b15c30ea", "metadata": {}, "outputs": [], @@ -288,42 +246,10 @@ }, { "cell_type": "code", - "execution_count": 7, + "execution_count": null, "id": "5b6969ca", "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Model subspace ID: M1_1\n", - "PEtab YAML location: model_selection/petab_problem.yaml\n", - "Custom model parameters: {'k1': 0.2, 'k2': 0.1, 'k3': 'estimate'}\n", - "Model hash: M1_1-000\n", - "Model ID: M1_1-000\n", - "Criterion.AIC: 150.0\n", - "Model was calibrated in iteration: 2\n", - "\n", - "Model subspace ID: M1_2\n", - "PEtab YAML location: model_selection/petab_problem.yaml\n", - "Custom model parameters: {'k1': 0.2, 'k2': 'estimate', 'k3': 0}\n", - "Model hash: M1_2-000\n", - "Model ID: M1_2-000\n", - "Criterion.AIC: 140.0\n", - "Model was calibrated in iteration: 2\n", - "\n", - "\u001b[1mBEST MODEL OF CURRENT ITERATION\u001b[0m\n", - "Model subspace ID: M1_3\n", - "PEtab YAML location: model_selection/petab_problem.yaml\n", - "Custom model parameters: {'k1': 'estimate', 'k2': 0.1, 'k3': 0}\n", - "Model hash: M1_3-000\n", - "Model ID: M1_3-000\n", - "Criterion.AIC: 130.0\n", - "Model was calibrated in iteration: 2\n", - "\n" - ] - } - ], + "outputs": [], "source": [ "iteration_results = dummy_calibration_tool(\n", " problem=select_problem, candidate_space=iteration_results[CANDIDATE_SPACE]\n", @@ -348,34 +274,10 @@ }, { "cell_type": "code", - "execution_count": 8, + "execution_count": null, "id": "6d3468d3", "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Model subspace ID: M1_5\n", - "PEtab YAML location: model_selection/petab_problem.yaml\n", - "Custom model parameters: {'k1': 'estimate', 'k2': 0.1, 'k3': 'estimate'}\n", - "Model hash: M1_5-000\n", - "Model ID: M1_5-000\n", - "Criterion.AIC: -70.0\n", - "Model was calibrated in iteration: 3\n", - "\n", - "\u001b[1mBEST MODEL OF CURRENT ITERATION\u001b[0m\n", - "Model subspace ID: M1_6\n", - "PEtab YAML location: model_selection/petab_problem.yaml\n", - "Custom model parameters: {'k1': 'estimate', 'k2': 'estimate', 'k3': 0}\n", - "Model hash: M1_6-000\n", - "Model ID: M1_6-000\n", - "Criterion.AIC: -110.0\n", - "Model was calibrated in iteration: 3\n", - "\n" - ] - } - ], + "outputs": [], "source": [ "iteration_results = dummy_calibration_tool(\n", " problem=select_problem, candidate_space=iteration_results[CANDIDATE_SPACE]\n", @@ -400,26 +302,10 @@ }, { "cell_type": "code", - "execution_count": 9, + "execution_count": null, "id": "9f9c438c", "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\u001b[1mBEST MODEL OF CURRENT ITERATION\u001b[0m\n", - "Model subspace ID: M1_7\n", - "PEtab YAML location: model_selection/petab_problem.yaml\n", - "Custom model parameters: {'k1': 'estimate', 'k2': 'estimate', 'k3': 'estimate'}\n", - "Model hash: M1_7-000\n", - "Model ID: M1_7-000\n", - "Criterion.AIC: 50.0\n", - "Model was calibrated in iteration: 4\n", - "\n" - ] - } - ], + "outputs": [], "source": [ "iteration_results = dummy_calibration_tool(\n", " problem=select_problem, candidate_space=iteration_results[CANDIDATE_SPACE]\n", @@ -444,7 +330,7 @@ }, { "cell_type": "code", - "execution_count": 10, + "execution_count": null, "id": "30344b30", "metadata": {}, "outputs": [], @@ -464,18 +350,10 @@ }, { "cell_type": "code", - "execution_count": 11, + "execution_count": null, "id": "7843fcb6", "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Number of candidate models: 0.\n" - ] - } - ], + "outputs": [], "source": [ "print(f\"Number of candidate models: {len(iteration_results[MODELS])}.\")" ] @@ -490,25 +368,10 @@ }, { "cell_type": "code", - "execution_count": 12, + "execution_count": null, "id": "219d27e4", "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Model subspace ID: M1_6\n", - "PEtab YAML location: model_selection/petab_problem.yaml\n", - "Custom model parameters: {'k1': 'estimate', 'k2': 'estimate', 'k3': 0}\n", - "Model hash: M1_6-000\n", - "Model ID: M1_6-000\n", - "Criterion.AIC: -110.0\n", - "Model was calibrated in iteration: 3\n", - "\n" - ] - } - ], + "outputs": [], "source": [ "best_model = petab_select.ui.get_best(\n", " problem=select_problem,\n", @@ -528,7 +391,7 @@ }, { "cell_type": "code", - "execution_count": 13, + "execution_count": null, "id": "cacda13d", "metadata": {}, "outputs": [], @@ -545,25 +408,10 @@ }, { "cell_type": "code", - "execution_count": 14, + "execution_count": null, "id": "7440cc69", "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Model subspace ID: M1_4\n", - "PEtab YAML location: model_selection/petab_problem.yaml\n", - "Custom model parameters: {'k1': 0.2, 'k2': 'estimate', 'k3': 'estimate'}\n", - "Model hash: M1_4-000\n", - "Model ID: M1_4-000\n", - "Criterion.AIC: -40.0\n", - "Model was calibrated in iteration: 1\n", - "\n" - ] - } - ], + "outputs": [], "source": [ "for candidate_model in iteration[UNCALIBRATED_MODELS]:\n", " calibrate(candidate_model)\n", @@ -580,7 +428,7 @@ }, { "cell_type": "code", - "execution_count": 15, + "execution_count": null, "id": "10b62dd7-a3c3-420e-a88d-9ac44e367145", "metadata": {}, "outputs": [], @@ -595,170 +443,10 @@ }, { "cell_type": "code", - "execution_count": 16, + "execution_count": null, "id": "68d1f89a-31a2-4f96-8fe0-82d1ad130832", "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
model_idmodel_hashCriterion.NLLHCriterion.AICCriterion.AICCCriterion.BICiterationpredecessor_model_hashestimated_parameters
0M1_0-000M1_0-000None200.0NoneNone1virtual_initial_model-None
1M1_1-000M1_1-000None150.0NoneNone2M1_0-000None
2M1_2-000M1_2-000None140.0NoneNone2M1_0-000None
3M1_3-000M1_3-000None130.0NoneNone2M1_0-000None
4M1_5-000M1_5-000None-70.0NoneNone3M1_3-000None
5M1_6-000M1_6-000None-110.0NoneNone3M1_3-000None
6M1_7-000M1_7-000None50.0NoneNone4M1_6-000None
7M1_4-000M1_4-000None-40.0NoneNone1virtual_initial_model-None
\n", - "
" - ], - "text/plain": [ - " model_id model_hash Criterion.NLLH Criterion.AIC Criterion.AICC \\\n", - "0 M1_0-000 M1_0-000 None 200.0 None \n", - "1 M1_1-000 M1_1-000 None 150.0 None \n", - "2 M1_2-000 M1_2-000 None 140.0 None \n", - "3 M1_3-000 M1_3-000 None 130.0 None \n", - "4 M1_5-000 M1_5-000 None -70.0 None \n", - "5 M1_6-000 M1_6-000 None -110.0 None \n", - "6 M1_7-000 M1_7-000 None 50.0 None \n", - "7 M1_4-000 M1_4-000 None -40.0 None \n", - "\n", - " Criterion.BIC iteration predecessor_model_hash estimated_parameters \n", - "0 None 1 virtual_initial_model- None \n", - "1 None 2 M1_0-000 None \n", - "2 None 2 M1_0-000 None \n", - "3 None 2 M1_0-000 None \n", - "4 None 3 M1_3-000 None \n", - "5 None 3 M1_3-000 None \n", - "6 None 4 M1_6-000 None \n", - "7 None 1 virtual_initial_model- None " - ] - }, - "execution_count": 16, - "metadata": {}, - "output_type": "execute_result" - } - ], + "outputs": [], "source": [ "# Print all models\n", "select_problem.state.models.df"